1,826
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Trafficking and partitioning of fatty acids: the transition from fasted to fed state

&
Pages 131-144 | Published online: 18 Jan 2017

Bibliography

  • Hodson L, Skeaff CM, Fielding BA: Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 47(5), 348–380 (2008).
  • Kotronen A, Yki‑Jarvinen H: Fatty liver: a novel component of the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 28(1), 27–38 (2007).
  • Kelley DE, Goodpaster B, Wing RR, Simoneau JA: Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol. 277(6 Pt 1), E1130–E1141 (1999).
  • Zammit VA: Role of insulin in hepatic fatty acid partitioning: emerging concepts.Biochem. J. 314(Pt 1), 1–14 (1996).
  • Taskinen MR: Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 46(6), 733–749 (2003).
  • Malmstrom R, Packard CJ, Caslake M et al.: Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects. Diabetes 47(5), 779–787 (1998).
  • Lewis GF, Carpentier A, Adeli K, Giacca A: Disordered fat storage and mobilization in the pathogenesis of insulin resistance and Type 2 diabetes. Endocr. Rev. 23(2), 201–229 (2002).
  • Jump DB, Botolin D, Wang Y et al.: Fatty acid regulation of hepatic gene transcription.J. Nutr. 135(11), 2503–2506 (2005).
  • Schmitz G, Ecker J: The opposing effects of n‑3 and n‑6 fatty acids. Prog. Lipid Res. 47(2), 147–155 (2008).
  • Iqbal J, Hussain MM: Intestinal lipid absorption. Am. J. Physiol. Endocrinol. Metab. 296(6), E1183–E1194 (2009).
  • Duez H, Lamarche B, Uffelman KD et al.: Hyperinsulinemia is associated with increased production rate of intestinal apolipoprotein B‑48‑containing lipoproteins in humans.Arterioscler. Thromb. Vasc. Biol. 26(6), 1357–1363 (2006).
  • Mu H, Hoy CE: The digestion of dietary triacylglycerols. Prog. Lipid Res. 43(2), 105–133 (2004).
  • Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B: Role of bile acids and bile acid receptors in metabolic regulation.Physiol. Rev. 89(1), 147–191 (2009).
  • Davidson NO, Drewek MJ, Gordon JI, Elovson J: Rat intestinal apolipoprotein B gene expression. Evidence for integrated regulation by bile salt, fatty acid, and phospholipid flux. J. Clin. Invest. 82(1), 300–308 (1988).
  • Mansbach CM 2nd, Gorelick F: Development and physiological regulation of intestinal lipid absorption. II. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons. Am. J. Physiol. Gastrointest. Liver Physiol. 293(4), G645–G650 (2007).
  • Hamilton JA, Kamp F: How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 48(12), 2255–2269 (1999).
  • Stremmel W, Pohl L, Ring A, Herrmann T: A new concept of cellular uptake and intracellular trafficking of long‑chain fatty acids. Lipids 36(9), 981–989 (2001).
  • Waku K: Origins and fates of fatty acyl‑CoA esters. Biochim. Biophys. Acta 1124(2), 101–111 (1992).
  • Shim J, Moulson CL, Newberry EP et al.: Fatty acid transport protein 4 is dispensable for intestinal lipid absorption in mice. J. Lipid Res. 50(3), 491–500 (2009).
  • Williams KJ: Molecular processes that handle – and mishandle – dietary lipids. J. Clin. Invest. 118(10), 3247–3259 (2008).
  • Bysted A, Holmer G, Lund P, Sandstrom B, Tholstrup T: Effect of dietary fatty acids on the postprandial fatty acid composition of triacylglycerol‑rich lipoproteins in healthy male subjects. Eur. J. Clin. Nutr. 59(1), 24–34 (2005).
  • Hodson L, McQuaid SE, Karpe F, Frayn KN, Fielding BA: Differences in partitioning of meal fatty acids into blood lipid fractions: a comparison of linoleate, oleate, and palmitate. Am. J. Physiol. Endocrinol. Metab. 296(1), E64–E71 (2009). Demonstrates differences in the partitioning of meal fatty acids to different lipid pools within the blood.
  • Summers LK, Barnes SC, Fielding BA et al.: Uptake of individual fatty acids into adipose tissue in relation to their presence in the diet.Am. J. Clin. Nutr. 71(6), 1470–1477 (2000).
  • Yli‑Jokipii KM, Schwab US, Tahvonen RL et al.: Chylomicron and VLDL TAG structures and postprandial lipid response induced by lard and modified lard. Lipids 38(7), 693–703 (2003).
  • Robertson MD, Parkes M, Warren BF et al.: Mobilisation of enterocyte fat stores by oral glucose in humans. Gut 52(6), 834–839 (2003).
  • Zhu J, Lee B, Buhman KK, Cheng JX: A dynamic, cytoplasmic triacylglycerol pool in enterocytes revealed by ex vivo and in vivo coherent anti‑Stokes Raman scattering imaging. J. Lipid Res. 50(6), 1080–1089 (2009).
  • Mendeloff AI: The effects of eating and of sham feeding upon the absorption of vitamin A palmitate in man. J. Clin. Invest. 33(7), 1015–1021 (1954).
  • Fielding BA, Callow J, Owen RM et al.: Postprandial lipemia: the origin of an early peak studied by specific dietary fatty acid intake during sequential meals. Am. J. Clin. Nutr. 63(1), 36–41 (1996).
  • Heath RB, Karpe F, Milne RW et al.: Dietary fatty acids make a rapid and substantial contribution to VLDL‑triacylglycerol in the fed state. Am. J. Physiol. Endocrinol. Metab. 292(3), E732–E739 (2007).
  • Mahan JT, Heda GD, Rao RH, Mansbach CM 2nd: The intestine expresses pancreatic triacylglycerol lipase: regulation by dietary lipid. Am. J. Physiol. Gastrointest. Liver Physiol. 280(6), G1187–G1196 (2001).
  • Bierman EL, Gordis E, Hamlin JT 3rd: Heterogeneity of fat particles in plasma during alimentary lipemia. J. Clin. Invest. 41, 2254–2260 (1962).
  • Wood P, Imaichi K, Knowles J, Michaels G, Kinsell L: The lipid composition of human plasma chylomicrons. J. Lipid Res. 5, 225–231 (1964).
  • Duez H, Pavlic M, Lewis GF: Mechanism of intestinal lipoprotein overproduction in insulin resistant humans. Atheroscler. Suppl. 9(2), 33–38 (2008).
  • Duez H, Lamarche B, Valero R et al.: Both intestinal and hepatic lipoprotein production are stimulated by an acute elevation of plasma free fatty acids in humans. Circulation 117(18), 2369–2376 (2008).
  • Fielding BA, Frayn KN: Lipoprotein lipase and the disposition of dietary fatty acids.Br. J. Nutr. 80(6), 495–502 (1998).
  • Wang H, Eckel RH: Lipoprotein lipase: from gene to obesity. Am. J. Physiol. Endocrinol. Metab. 297(2), E271–E288 (2009).
  • Beisiegel U, Heeren J: Lipoprotein lipase (EC 3.1.1.34) targeting of lipoproteins to receptors. Proc. Nutr. Soc. 56(2), 731–737 (1997).
  • Olivecrona T, Hultin M, Bergo M, Olivecrona G: Lipoprotein lipase: regulation and role in lipoprotein metabolism. Proc. Nutr. Soc. 56(2), 723–729 (1997).
  • Ardilouze JL, Fielding BA, Currie JM, Frayn KN, Karpe F: Nitric oxide and b‑adrenergic stimulation are major regulators of preprandial and postprandial subcutaneous adipose tissue blood flow in humans. Circulation 109(1), 47–52 (2004).
  • Bickerton AS, Roberts R, Fielding BA et al.: Preferential uptake of dietary fatty acids in adipose tissue and muscle in the postprandial period. Diabetes 56(1), 168–176 (2007). Demonstrates, for the first time, direct uptake of nonesterified fatty acids into adipose tissue during the postprandial period. Demonstrates, for the first time, direct uptake of nonesterified fatty acids into adipose tissue during the postprandial period.
  • Schweiger M, Schreiber R, Haemmerle G et al.: Adipose triglyceride lipase and hormone‑sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J. Biol. Chem. 281(52), 40236–40241 (2006).
  • Lafontan M, Langin D: Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 48(5), 275–297 (2009).
  • Lass A, Zimmermann R, Haemmerle G et al.: Adipose triglyceride lipase‑mediated lipolysis of cellular fat stores is activated by CGI‑58 and defective in Chanarin‑Dorfman syndrome. Cell Metab. 3(5), 309–319 (2006).
  • Bezaire V, Mairal A, Ribet C et al.: Contribution of adipose triglyceride lipase and hormone‑sensitive lipase to lipolysis in human hMADS adipocytes. J. Biol. Chem. 284(27), 18282–18291 (2009). Provides further insight into the regulation of adipose triglyceride lipase.
  • Getty L, Panteleon AE, Mittelman SD, Dea MK, Bergman RN: Rapid oscillations in omental lipolysis are independent of changing insulin levels in vivo. J. Clin. Invest. 106(3), 421–430 (2000).
  • Karpe F, Fielding BA, Coppack SW et al.: Oscillations of fatty acid and glycerol release from human subcutaneous adipose tissue in vivo. Diabetes 54(5), 1297–1303 (2005).
  • Getty‑Kaushik L, Richard AM, Corkey BE: Free fatty acid regulation of glucosedependent intrinsic oscillatory lipolysis in perifused isolated rat adipocytes. Diabetes 54(3), 629–637 (2005).
  • Halliwell KJ, Fielding BA, Samra JS, Humphreys SM, Frayn KN: Release of individual fatty acids from human adipose tissue in vivo after an overnight fast. J. Lipid Res. 37(9), 1842–1848 (1996).
  • Frayn KN: Obesity and metabolic disease: is adipose tissue the culprit? Proc. Nutr. Soc. 64(1), 7–13 (2005).
  • Getty‑Kaushik L, Song DH, Boylan MO, Corkey BE, Wolfe MM: Glucose‑dependent insulinotropic polypeptide modulates adipocyte lipolysis and reesterification.Obesity (Silver Spring) 14(7), 1124–1131 (2006).
  • Maslowska M, Wang HW, Cianflone K: Novel roles for acylation stimulating protein/ C3adesArg: a review of recent in vitro and in vivo evidence. Vitam. Horm. 70, 309–332 (2005).
  • Duplus E, Benelli C, Reis AF et al.: Expression of phosphoenolpyruvate carboxykinase gene in human adipose tissue: induction by rosiglitazone and genetic analyses of the adipocyte‑specific region of the promoter in Type 2 diabetes. Biochimie 85(12), 1257–1264 (2003).
  • Coppack SW, Fisher RM, Gibbons GF et al.: Postprandial substrate deposition in human forearm and adipose tissues in vivo. Clin. Sci. (Lond.) 79(4), 339–348 (1990).
  • Karpe F, Fielding BA, Ardilouze JL et al.: Effects of insulin on adipose tissue blood flow in man. J. Physiol. 540(Pt 3), 1087–1093 (2002).
  • Sukonina V, Lookene A, Olivecrona T, Olivecrona G: Angiopoietin‑like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc. Natl Acad. Sci. USA 103(46), 17450–17455 (2006). Describes a novel regulator of lipoprotein lipase.
  • Beigneux AP, Davies BS, Bensadoun A, Fong LG, Young SG: GPIHBP1, a GPI‑anchored protein required for the lipolytic processing of triglyceride‑rich lipoproteins.J. Lipid Res. 50(Suppl.), S57–S62 (2009).
  • Ruge T, Hodson L, Cheeseman J et al.: Fasted to fed trafficking of fatty acids in human adipose tissue reveals a novel regulatory step for enhanced fat storage. J. Clin. Endocrinol. Metab. 94(5), 1781–1788 (2009). Demonstration of the effect of sequential meal feeding on fat storage in healthy men.
  • Tan CY, Vidal‑Puig A: Adipose tissue expandability: the metabolic problems of obesity may arise from the inability to become more obese. Biochem. Soc. Trans. 36(Pt 5), 935–940 (2008).
  • Koutsari C, Snozek CL, Jensen MD: Plasma NEFA storage in adipose tissue in the postprandial state: sex‑related and regional differences. Diabetologia 51(11), 2041–2048 (2008).
  • Levak‑Frank S, Weinstock PH, Hayek T et al.: Induced mutant mice expressing lipoprotein lipase exclusively in muscle have subnormal triglycerides yet reduced high density lipoprotein cholesterol levels in plasma. J. Biol. Chem. 272(27), 17182–17190 (1997).
  • Miles JM, Park YS, Walewicz D et al.: Systemic and forearm triglyceride metabolism: fate of lipoprotein lipase‑generated glycerol and free fatty acids. Diabetes 53(3), 521–527 (2004).
  • Miles JM, Nelson RH: Contribution of triglyceride‑rich lipoproteins to plasma free fatty acids. Horm. Metab. Res. 39(10), 726–729 (2007).
  • Schaffer JE: Fatty acid transport: the roads taken. Am. J. Physiol. Endocrinol. Metab. 282(2), E239–E246 (2002).
  • Coppack SW, Evans RD, Fisher RM et al.: Adipose tissue metabolism in obesity: lipase action in vivo before and after a mixed meal.Metabolism 41(3), 264–272 (1992).
  • Jelic K, Hallgreen CE, Colding‑Jorgensen M: A model of NEFA dynamics with focus on the postprandial state. Ann. Biomed. Eng. 37(9), 1897–1909 (2009).
  • Corpeleijn E, Saris WH, Blaak EE: Metabolic flexibility in the development of insulin resistance and Type 2 diabetes: effects of lifestyle. Obes. Rev. 10(2), 178–193 (2009).
  • Glatz JF, Bonen A, Luiken JJ: Exercise and insulin increase muscle fatty acid uptake by recruiting putative fatty acid transporters to the sarcolemma. Curr. Opin. Clin. Nutr. Metab. Care 5(4), 365–370 (2002).
  • Jensen MD: Fate of fatty acids at rest and during exercise: regulatory mechanisms.Acta Physiol. Scand. 178(4), 385–390 (2003).
  • Moro C, Bajpeyi S, Smith SR: Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 294(2), E203–E213 (2008).
  • Kelley DE, Simoneau JA: Impaired free fatty acid utilization by skeletal muscle in non‑insulin‑dependent diabetes mellitus.J. Clin. Invest. 94(6), 2349–2356 (1994).
  • Blaak EE, Hul G, Verdich C et al.: Fat oxidation before and after a high fat load in the obese insulin‑resistant state. J. Clin. Endocrinol. Metab. 91(4), 1462–1469 (2006).
  • Blaak EE, Wagenmakers AJ: The fate of [U‑(13)C]palmitate extracted by skeletal muscle in subjects with Type 2 diabetes and control subjects. Diabetes 51(3), 784–789 (2002).
  • Havel RJ, Kane JP, Balasse EO, Segel N, Basso LV: Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J. Clin. Invest. 49(11), 2017–2035 (1970).
  • Basso LV, Havel RJ: Hepatic metabolism of free fatty acids in normal and diabetic dogs.J. Clin. Invest. 49(3), 537–547 (1970).
  • Gibbons GF, Bartlett SM, Sparks CE, Sparks JD: Extracellular fatty acids are not utilized directly for the synthesis of very‑low‑density lipoprotein in primary cultures of rat hepatocytes. Biochem. J. 287(Pt 3), 749–753 (1992).
  • Gibbons GF, Wiggins D: The enzymology of hepatic very‑low‑density lipoprotein assembly. Biochem. Soc. Trans. 23(3), 495–500 (1995).
  • Diraison F, Beylot M: Role of human liver lipogenesis and reesterification in triglycerides secretion and in FFA reesterification. Am. J. Physiol. 274(2 Pt 1), E321–E327 (1998).
  • Sidossis LS, Mittendorfer B, Walser E, Chinkes D, Wolfe RR: Hyperglycemiainduced inhibition of splanchnic fatty acid oxidation increases hepatic triacylglycerol secretion. Am. J. Physiol. 275(5 Pt 1), E798–E805 (1998).
  • Babin PJ, Gibbons GF: The evolution of plasma cholesterol: direct utility or a ‘spandrel’ of hepatic lipid metabolism? Prog. Lipid Res. 48(2), 73–91 (2009).
  • Angulo P: Nonalcoholic fatty liver disease. N. Engl. J. Med. 346(16), 1221–1231 (2002).
  • Gibbons GF, Islam K, Pease RJ: Mobilisation of triacylglycerol stores. Biochim. Biophys. Acta 1483(1), 37–57 (2000).
  • Trickett JI, Patel DD, Knight BL et al.: Characterization of the rodent genes for arylacetamide deacetylase, a putative microsomal lipase, and evidence for transcriptional regulation. J. Biol. Chem. 276(43), 39522–39532 (2001).
  • Gilham D, Ho S, Rasouli M et al.: Inhibitors of hepatic microsomal triacylglycerol hydrolase decrease very low density lipoprotein secretion. FASEB J. 17(12), 1685–1687 (2003).
  • Reid BN, Ables GP, Otlivanchik OA et al.: Hepatic overexpression of hormone‑sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J. Biol. Chem. 283(19), 13087–13099 (2008).
  • Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A: Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J. Lipid Res. 50(1), 3–21 (2009).
  • Singh R, Kaushik S, Wang Y et al.: Autophagy regulates lipid metabolism.Nature 458(7242), 1131–1135 (2009).
  • Olofsson SO, Boren J: Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis.J. Intern. Med. 258(5), 395–410 (2005).
  • Adiels M, Packard C, Caslake MJ et al.: A new combined multicompartmental model for apolipoprotein B‑100 and triglyceride metabolism in VLDL subfractions. J. Lipid Res. 46(1), 58–67 (2005).
  • Adiels M, Olofsson SO, Taskinen MR, Boren J: Overproduction of very low‑density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome.Arterioscler. Thromb. Vasc. Biol. 28(7), 1225–1236 (2008).
  • Kotronen A, Juurinen L, Tiikkainen M, Vehkavaara S, Yki‑Jarvinen H: Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in Type 2 diabetes. Gastroenterology 135(1), 122–130 (2008).
  • Ravikumar B, Carey PE, Snaar JE et al.: Real‑time assessment of postprandial fat storage in liver and skeletal muscle in health and Type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 288(4), E789–E797 (2005).
  • Gibbons GF, Wiggins D, Brown AM, Hebbachi AM: Synthesis and function of hepatic very‑low‑density lipoprotein. Biochem. Soc. Trans. 32(Pt 1), 59–64 (2004).
  • Malmstrom R, Packard CJ, Watson TD et al.: Metabolic basis of hypotriglyceridemic effects of insulin in normal men. Arterioscler. Thromb. Vasc. Biol. 17(7), 1454–1464 (1997).
  • Malmstrom R, Packard CJ, Caslake M et al.: Defective regulation of triglyceride metabolism by insulin in the liver in NIDDM. Diabetologia 40(4), 454–462 (1997).
  • Lam TK, Gutierrez‑Juarez R, Pocai A et al.: Brain glucose metabolism controls the hepatic secretion of triglyceride‑rich lipoproteins. Nat. Med. 13(2), 171–180 (2007).
  • Berk PD: Regulatable fatty acid transport mechanisms are central to the pathophysiology of obesity, fatty liver, and metabolic syndrome. Hepatology 48(5), 1362–1376 (2008).
  • Havel RJ, Hamilton RL: Hepatic catabolism of remnant lipoproteins: where the action is.Arterioscler. Thromb. Vasc. Biol. 24(2), 213–215 (2004).
  • Craig WY, Cooper AD: Effects of chylomicron remnants and b‑VLDL on the class and composition of newly secreted lipoproteins by HepG2 cells. J. Lipid Res. 29(3), 299–308 (1988).
  • Wu X, Sakata N, Dixon J, Ginsberg HN: Exogenous VLDL stimulates apolipoprotein B secretion from HepG2 cells by both pre‑ and post‑translational mechanisms.J. Lipid Res. 35(7), 1200–1210 (1994).
  • Barrows BR, Parks EJ: Contributions of different fatty acid sources to very low‑density lipoprotein‑triacylglycerol in the fasted and fed states. J. Clin. Endocrinol. Metab. 91(4), 1446–1452 (2006).
  • Donnelly KL, Smith CI, Schwarzenberg SJ et al.: Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115(5), 1343–1351 (2005).
  • Hodson L, Bickerton AS, McQuaid SE et al.: The contribution of splanchnic fat to VLDL triglyceride is greater in insulin‑resistant than insulin‑sensitive men and women: studies in the postprandial state.Diabetes 56(10), 2433–2441 (2007).
  • Timlin MT, Parks EJ: Temporal pattern of de novo lipogenesis in the postprandial state in healthy men. Am. J. Clin. Nutr. 81(1), 35–42 (2005). De novo lipogenesis was not previously thought to be important, but this paper demonstrates the significance of this pathway in the postprandial state.
  • Vedala A, Wang W, Neese RA, Christiansen MP, Hellerstein MK: Delayed secretory pathway contributions to VLDL‑triglycerides from plasma NEFA, diet, and de novo lipogenesis in humans. J. Lipid Res. 47(11), 2562–2574 (2006).
  • Parks EJ, Krauss RM, Christiansen MP, Neese RA, Hellerstein MK: Effects of a low‑fat, high‑carbohydrate diet on VLDL‑triglyceride assembly, production, and clearance. J. Clin. Invest. 104(8), 1087–1096 (1999).
  • Ntambi JM: The regulation of stearoyl‑CoA desaturase (SCD). Prog. Lipid Res. 34(2), 139–150 (1995).
  • Flowers MT, Ntambi JM: Role of stearoylcoenzyme A desaturase in regulating lipid metabolism. Curr. Opin. Lipidol. 19(3), 248–256 (2008).
  • Man WC, Miyazaki M, Chu K, Ntambi J: Colocalization of SCD1 and DGAT2: implying preference for endogenous monounsaturated fatty acids in triglyceride synthesis. J. Lipid Res. 47(9), 1928–1939 (2006).
  • Robinson AM, Williamson DH: Physiological roles of ketone bodies as substrates and signals in mammalian tissues.Physiol. Rev. 60(1), 143–187 (1980).
  • Drynan L, Quant PA, Zammit VA: Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over b‑oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states. Biochem. J. 317(Pt 3), 791–795 (1996).
  • Ontko JA: Metabolism of free fatty acids in isolated liver cells. Factors affecting the partition between esterification and oxidation. J. Biol. Chem. 247(6), 1788–1800 (1972).
  • Sugden MC, Ball AJ, Ilic V, Williamson DH: Stimulation of 1–14Coleate oxidation to 14CO2 in isolated rat hepatocytes by vasopressin: effects of Ca2+. FEBS Lett. 116(1), 37–40 (1980).
  • Birkenfeld AL, Budziarek P, Boschmann M et al.: Atrial natriuretic peptide induces postprandial lipid oxidation in humans.Diabetes 57(12), 3199–3204 (2008).
  • van der Vusse GJ, van Bilsen M, Glatz JF, Hasselbaink DM, Luiken JJ: Critical steps in cellular fatty acid uptake and utilization.Mol. Cell. Biochem. 239(1–2), 9–15 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.