280
Views
73
CrossRef citations to date
0
Altmetric
Reviews

Mechanisms and clinical implications of hepatocyte lipoapoptosis

&
Pages 71-85 | Published online: 18 Jan 2017

Bibliography

  • Angulo P, Lindor KD: Non­alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 17(Suppl.) S186–S190 (2002).
  • Adams LA, Lymp JF, St Sauver J et al.: The natural history of nonalcoholic fatty liver disease: a population­based cohort study. Gastroenterology 129(1), 113–121 (2005).
  • Ekstedt M, Franzen LE, Mathiesen UL et al.: Long­term follow­up of patients with NAFLD and elevated liver enzymes. Hepatology 44(4), 865–873 (2006).
  • Ratziu V, Poynard T: Assessing the outcome of nonalcoholic steatohepatitis? It’s time to get serious. Hepatology 44(4), 802–805 (2006).
  • Chavez­Tapia NC, Mendez­Sanchez N, Uribe M: The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann. Intern. Med. 144(5), 379; author reply 380 (2006).
  • Parekh S, Anania FA: Abnormal lipid and glucose metabolism in obesity: implications for nonalcoholic fatty liver disease. Gastroenterology 132(6), 2191–2207 (2007).
  • Lee RG: Nonalcoholic steatohepatitis: tightening the morphological screws on a hepatic rambler. Hepatology 21(6), 1742–1743 (1995).
  • Roden M: Mechanisms of disease: hepatic steatosis in Type 2 diabetes – pathogenesis and clinical relevance. Nat. Clin. Pract. Endocrinol. Metab. 2(6), 335–348 (2006).
  • Unger RH: Lipotoxic diseases. Annu. Rev. Med. 53, 319–336 (2002).
  • Kusminski CM, Shetty S, Orci L et al.: Diabetes and apoptosis: lipotoxicity. Apoptosis 14(12), 1484–1495 (2009).
  • Malhi H, Bronk SF, Werneburg NW et al.: Free fatty acids induce JNK­dependent hepatocyte lipoapoptosis. J. Biol. Chem. 281(17), 12093–12101 (2006). Reports for the first time the involvement of the c-Jun N-terminal kinase (JNK) signaling pathway in lipoapoptosis processes.
  • Barreyro FJ, Kobayashi S, Bronk SF et al.: Transcriptional regulation of Bim by FoxO3a mediates hepatocyte lipoapoptosis. J. Biol. Chem. 282(37), 27141–27154 (2007).
  • Cazanave SC, Mott JL, Elmi NA et al.: JNK1­dependent PUMA expression contributes to hepatocyte lipoapoptosis. J. Biol. Chem. 284(39), 26591–26602(2009).
  • Masuoka HC, Mott J, Bronk SF et al.: Mcl­1 degradation during hepatocyte lipoapoptosis. J. Biol. Chem. 284(44), 30039–30048 (2009).
  • Wei Y, Wang D, Topczewski F et al.: Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am. J. Physiol. Endocrinol. Metab. 291(2), E275–E281 (2006).
  • Wang D, Wei Y, Pagliassotti MJ: Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 147(2), 943–951 (2006). Demonstrates that the induction of an endoplasmic reticulum (ER) stress in diet-induced models of steatohepatitis depends on the free fatty acid content of the diet and not on the development of a hepatic steatosis.
  • Wei Y, Wang D, Gentile CL et al.: Reduced endoplasmic reticulum luminal calcium links saturated fatty acid­mediated endoplasmic reticulum stress and cell death in liver cells. Mol. Cell. Biochem. 331(1–2), 31–40 (2009).
  • Listenberger LL, Han X, Lewis SE et al.: Triglyceride accumulation protects against fatty acid­induced lipotoxicity. Proc. Natl Acad. Sci. USA 100(6), 3077–3082 (2003).
  • Yamaguchi K, Yang L, McCall S et al.: Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45(6), 1366–1374 (2007).
  • Larter CZ, Yeh MM, Haigh WG et al.: Hepatic free fatty acids accumulate in experimental steatohepatitis: role of adaptive pathways. J. Hepatol. 48(4), 638–647 (2008).
  • Larter CZ, Yeh MM, Williams J et al.: MCD­induced steatohepatitis is associated with hepatic adiponectin resistance and adipogenic transformation of hepatocytes. J. Hepatol. 49(3), 407–416 (2008).
  • Feldstein AE, Canbay A, Angulo P et al.: Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125(2), 437–443 (2003). Observes that the severity of nonalcoholic fatty liver disease (NAFLD) correlates with an increase in hepatocyte apoptosis, which constitutes a hallmark of nonalcoholic steatohepatitis (NASH).
  • Nehra V, Angulo P, Buchman AL et al.: Nutritional and metabolic considerations in the etiology of nonalcoholic steatohepatitis. Dig. Dis. Sci. 46(11), 2347–2352 (2001).
  • Feldstein AE, Wieckowska A, Lopez AR et al.: Cytokeratin­18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatology 50(4), 1072–1078 (2009).
  • Lewis GF, Carpentier A, Adeli K et al.: Disordered fat storage and mobilization in the pathogenesis of insulin resistance and Type 2 diabetes. Endocr. Rev. 23(2), 201–229 (2002).
  • Donnelly KL, Smith CI, Schwarzenberg SJ et al.: Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115(5), 1343–1351 (2005).
  • Pohl J, Ring A, Hermann T et al.: Role of FATP in parenchymal cell fatty acid uptake. Biochim. Biophys. Acta 1686(1–2), 1–6 (2004).
  • Zhou J, Febbraio M, Wada T et al.: Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPAR­g in promoting steatosis. Gastroenterology 134(2), 556–567 (2008).
  • Doege H, Baillie RA, Ortegon AM et al.: Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology 130(4), 1245–1258 (2006).
  • Doege H, Grimm D, Falcon A et al.: Silencing of hepatic fatty acid transporter protein 5 in vivo reverses diet­induced non­alcoholic fatty liver disease and improves hyperglycemia. J. Biol. Chem. 283(32), 22186–22192 (2008).
  • Koonen DP, Jacobs RL, Febbraio M et al.: Increased hepatic CD36 expression contributes to dyslipidemia associated with diet­induced obesity. Diabetes 56(12), 2863–2871 (2007).
  • Baumgardner JN, Shankar K, Hennings L et al.: A new model for nonalcoholic steatohepatitis in the rat utilizing total enteral nutrition to overfeed a high­polyunsaturated fat diet. Am. J. Physiol. Gastrointest. Liver Physiol. 294(1), G27–G38 (2008).
  • Greco D, Kotronen A, Westerbacka J et al.: Gene expression in human NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol. 294(5), G1281–G1287 (2008).
  • Westerbacka J, Kolak M, Kiviluoto T et al.: Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin­resistant subjects. Diabetes 56(11), 2759–2765 (2007).
  • Mitsuyoshi H, Yasui K, Harano Y et al.: Analysis of hepatic genes involved in the metabolism of fatty acids and iron in nonalcoholic fatty liver disease. Hepatol. Res. 39(4), 366–373 (2009).
  • Newberry EP, Xie Y, Kennedy S et al.: Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid­binding protein gene. J. Biol. Chem. 278(51), 51664–51672 (2003).
  • Newberry EP, Kennedy SM, Xie Y et al.: Diet­induced alterations in intestinal and extrahepatic lipid metabolism in liver fatty acid binding protein knockout mice. Mol. Cell. Biochem. 326(1–2), 79–86 (2009).
  • Charlton M, Viker K, Krishnan A et al.: Differential expression of lumican and fatty acid binding protein­1: new insights into the histologic spectrum of nonalcoholic fatty liver disease. Hepatology 49(4), 1375–1384 (2009).
  • de Almeida IT, Cortez­Pinto H, Fidalgo G et al.: Plasma total and free fatty acids composition in human non­alcoholic steatohepatitis. Clin. Nutr. 21(3), 219–223 (2002).
  • Diraison F, Moulin P, Beylot M: Contribution of hepatic de novo lipogenesis and re­esterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non­alcoholic fatty liver disease. Diabetes Metab. 29(5), 478–485 (2003).
  • Puri P, Baillie RA, Wiest MM et al.: A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46(4), 1081–1090 (2007).
  • Allard JP, Aghdassi E, Mohammed S et al.: Nutritional assessment and hepatic fatty acid composition in non­alcoholic fatty liver disease (NAFLD): a cross­sectional study. J. Hepatol. 48(2), 300–307 (2008).
  • Mu YM, Yanase T, Nishi Y et al.: Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology 142(8), 3590–3597 (2001).
  • Li ZZ, Berk M, McIntyre TM et al.: Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl­CoA desaturase. J. Biol. Chem. 284(9), 5637–5644 (2009).
  • Akazawa Y, Cazanave S, Mott JL et al.: Palmitoleate attenuates palmitate­induced Bim and PUMA upregulation and hepatocyte lipoapoptosis. J. Hepatol. (2009) (In press).
  • Ron D, Walter P: Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8(7), 519–529 (2007).
  • Lu PD, Harding HP, Ron D: Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell Biol. 167(1), 27–33 (2004).
  • Luo S, Baumeister P, Yang S et al.: Induction of Grp78/BiP by translational block: activation of the Grp78 promoter by ATF4 through and upstream ATF/CRE site independent of the endoplasmic reticulum stress elements. J. Biol. Chem. 278(39), 37375–37385 (2003).
  • Shaffer AL, Shapiro­Shelef M, Iwakoshi NN et al.: XBP1, downstream of Blimp­1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21(1), 81–93 (2004).
  • Urano F, Wang X, Bertolotti A et al.: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453), 664–666 (2000).
  • Yamamoto K, Sato T, Matsui T et al.: Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6a and XBP1. Dev. Cell 13(3), 365–376 (2007).
  • Wu J, Rutkowski DT, Dubois M et al.: ATF6a optimizes long­term endoplasmic reticulum function to protect cells from chronic stress. Dev. Cell 13(3), 351–364 (2007).
  • Ozcan U, Cao Q, Yilmaz E et al.: Endoplasmic reticulum stress links obesity, insulin action, and Type 2 diabetes. Science 306(5695), 457–461 (2004).
  • Puri P, Mirshahi F, Cheung O et al.: Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 134(2), 568–576 (2008).
  • Borradaile NM, Han X, Harp JD et al.: Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J. Lipid Res. 47(12), 2726–2737 (2006).
  • Ma Y, Hendershot LM: ER chaperone functions during normal and stress conditions. J. Chem. Neuroanat. 28(1–2), 51–65 (2004).
  • Scorrano L, Oakes SA, Opferman JT et al.: BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300(5616), 135–139 (2003).
  • Cunha DA, Hekerman P, Ladriere L et al.: Initiation and execution of lipotoxic ER stress in pancreatic b­cells. J. Cell Sci. 121(Pt 14), 2308–2318 (2008).
  • Ji C, Mehrian­Shai R, Chan C et al.: Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding. Alcohol. Clin. Exp. Res. 29(8), 1496–1503 (2005).
  • McCullough KD, Martindale JL, Klotz LO et al.: Gadd153 sensitizes cells to endoplasmic reticulum stress by down­regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21(4), 1249–1259 (2001).
  • Puthalakath H, O’Reilly LA, Gunn P et al.: ER stress triggers apoptosis by activating BH3­only protein Bim. Cell 129(7), 1337–1349 (2007).
  • Feldstein AE, Werneburg NW, Li Z et al.: Bax inhibition protects against free fatty acid­induced lysosomal permeabilization. Am. J. Physiol. Gastrointest. Liver Physiol. 290(6), G1339–G1346 (2006).
  • Yamaguchi H, Wang HG: CHOP is involved in endoplasmic reticulum stress­induced apoptosis by enhancing DR5 expression in human carcinoma cells. J. Biol. Chem. 279(44), 45495–45502 (2004).
  • Guicciardi ME, Gores GJ: Life and death by death receptors. FASEB J. 23(6), 1625–1637 (2009).
  • Malhi H, Barreyro FJ, Isomoto H et al.: Free fatty acids sensitise hepatocytes to TRAIL mediated cytotoxicity. Gut 56(8), 1124–1131 (2007).
  • Volkmann X, Fischer U, Bahr MJ et al.: Increased hepatotoxicity of tumor necrosis factor­related apoptosis­inducing ligand in diseased human liver. Hepatology 46(5), 1498–1508 (2007).
  • Ribeiro PS, Cortez­Pinto H, Sola S et al.: Hepatocyte apoptosis, expression of death receptors, and activation of NF­kB in the liver of nonalcoholic and alcoholic steatohepatitis patients. Am. J. Gastroenterol. 99(9), 1708–1717 (2004).
  • Feldstein AE, Canbay A, Guicciardi ME et al.: Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice. J. Hepatol. 39(6), 978–983 (2003).
  • Siebler J, Schuchmann M, Strand S et al.: Enhanced sensitivity to CD95­induced apoptosis in ob/ob mice. Dig. Dis. Sci. 52(9), 2396–2402 (2007).
  • Schattenberg JM, Singh R, Wang Y et al.: JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology 43(1), 163–172 (2006).
  • Singh R, Wang Y, Xiang Y et al.: Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology 49(1), 87–96 (2009). Characterizes the proapoptotic effects of JNK1 isoform and the antiapoptotic functions of JNK2 isoform in murine model of steatohepatitis.
  • Wang Y, Ausman LM, Russell RM et al.: Increased apoptosis in high­fat diet­induced nonalcoholic steatohepatitis in rats is associated with c­Jun NH2­terminal kinase activation and elevated proapoptotic Bax. J. Nutr. 138(10), 1866–1871 (2008).
  • Jaeschke A, Davis RJ: Metabolic stress signaling mediated by mixed­lineage kinases. Mol. Cell 27(3), 498–508 (2007).
  • Czaja MJ: The future of GI and liver research: editorial perspectives. III. JNK/AP­1 regulation of hepatocyte death. Am. J. Physiol. Gastrointest. Liver Physiol. 284(6), G875–G8759 (2003).
  • Czaja MJ: Cell signaling in oxidative stress­induced liver injury. Semin. Liver Dis. 27(4), 378–389 (2007).
  • Davis RJ: Signal transduction by the JNK group of MAP kinases. Cell 103(2), 239–252 (2000).
  • Kodama Y, Taura K, Miura K et al.: Antiapoptotic effect of c­Jun N­terminal kinase­1 through Mcl­1 stabilization in TNF­induced hepatocyte apoptosis. Gastroenterology 136(4), 1423–1434 (2009).
  • Sabapathy K, Hochedlinger K, Nam SY et al.: Distinct roles for JNK1 and JNK2 in regulating JNK activity and c­Jun­dependent cell proliferation. Mol. Cell 15(5), 713–725 (2004).
  • Videla LA, Tapia G, Rodrigo R et al.: Liver NF­kB and AP­1 DNA binding in obese patients. Obesity (Silver Spring) 17(5), 973–979 (2009).
  • Yamamoto K, Ichijo H, Korsmeyer SJ: BCL­2 is phosphorylated and inactivated by an ASK1/Jun N­terminal protein kinase pathway normally activated at G(2)/M. Mol. Cell. Biol. 19(12), 8469–8478 (1999).
  • Donovan N, Becker EB, Konishi Y et al.: JNK phosphorylation and activation of BAD couples the stress­activated signaling pathway to the cell death machinery. J. Biol. Chem. 277(43), 40944–40949 (2002).
  • Lei K, Davis RJ: JNK phosphorylation of Bim­related members of the Bcl2 family induces Bax­dependent apoptosis. Proc. Natl Acad. Sci. USA 100(5), 2432–2437 (2003).
  • Kim BJ, Ryu SW, Song BJ: JNK­ and p38 kinase­mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J. Biol. Chem. 281(30), 21256–21265 (2006).
  • Eichhorst ST, Muller M, Li­Weber M et al.: A novel AP­1 element in the CD95 ligand promoter is required for induction of apoptosis in hepatocellular carcinoma cells upon treatment with anticancer drugs. Mol. Cell. Biol. 20(20), 7826–7837 (2000).
  • Erlacher M, Labi V, Manzl C et al.: Puma cooperates with Bim, the rate­limiting BH3­only protein in cell death during lymphocyte development, in apoptosis induction. J. Exp. Med. 203(13), 2939–2951 (2006).
  • Yamaguchi H, Wang HG: Bcl­xL protects BimEL­induced Bax conformational change and cytochrome C release independent of interacting with Bax or BimEL. J. Biol. Chem. 277(44), 41604–41612 (2002).
  • Adams JM, Cory S: The Bcl­2 apoptotic switch in cancer development and therapy. Oncogene 26(9), 1324–1337 (2007).
  • Gallenne T, Gautier F, Oliver L et al.: Bax activation by the BH3­only protein Puma promotes cell dependence on antiapoptotic Bcl­2 family members. J. Cell Biol. 185(2), 279–290 (2009).
  • Chipuk JE, Fisher JC, Dillon CP et al.: Mechanism of apoptosis induction by inhibition of the anti­apoptotic BCL­2 proteins. Proc. Natl Acad. Sci. USA 105(51), 20327–20332 (2008).
  • Jabbour AM, Heraud JE, Daunt CP et al.: Puma indirectly activates Bax to cause apoptosis in the absence of Bid or Bim. Cell Death Differ. 16(4), 555–563 (2009).
  • Taylor RC, Cullen SP, Martin SJ: Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9(3), 231–241 (2008).
  • Li Z, Berk M, McIntyre TM et al.: The lysosomal­mitochondrial axis in free fatty acid­induced hepatic lipotoxicity. Hepatology 47(5), 1495–1503 (2008).
  • Sanyal AJ, Campbell­Sargent C, Mirshahi F et al.: Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120(5), 1183–1192 (2001).
  • Caldwell SH, Swerdlow RH, Khan EM et al.: Mitochondrial abnormalities in non­alcoholic steatohepatitis. J. Hepatol. 31(3), 430–434 (1999).
  • Caldwell SH, Chang CY, Nakamoto RK et al.: Mitochondria in nonalcoholic fatty liver disease. Clin. Liver Dis. 8(3), 595–617, (2004).
  • Summers SA: Ceramides in insulin resistance and lipotoxicity. Prog. Lipid Res. 45(1), 42–72 (2006).
  • Holland WL, Brozinick JT, Wang LP et al.: Inhibition of ceramide synthesis ameliorates glucocorticoid­, saturated­fat­, and obesity­ induced insulin resistance. Cell Metab. 5(3), 167–179 (2007).
  • Shimabukuro M, Zhou YT, Levi M et al.: Fatty acid­induced b cell apoptosis: a link between obesity and diabetes. Proc. Natl Acad. Sci. USA 95(5), 2498–2502 (1998).
  • Unger RH, Orci L: Lipoapoptosis: its mechanism and its diseases. Biochim. Biophys. Acta 1585(2–3), 202–212 (2002).
  • Paumen MB, Ishida Y, Muramatsu M et al.: Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate­induced apoptosis. J. Biol. Chem. 272(6), 3324–3329 (1997).
  • Shah C, Yang G, Lee I et al.: Protection from high fat diet­induced increase in ceramide in mice lacking plasminogen activator inhibitor 1. J. Biol. Chem. 283(20), 13538–13548 (2008).
  • Kolak M, Westerbacka J, Velagapudi VR et al.: Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity. Diabetes 56(8), 1960–1968 (2007).
  • Paris F, Grassme H, Cremesti A et al.: Natural ceramide reverses Fas resistance of acid sphingomyelinase­/­ hepatocytes. J. Biol. Chem. 276(11), 8297–8305 (2001).
  • Kotronen A, Seppanen­Laakso T, Westerbacka J et al.: Hepatic stearoyl­CoA desaturase (SCD)­1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes 58(1), 203–208 (2009).
  • Mari M, Caballero F, Colell A et al.: Mitochondrial free cholesterol loading sensitizes to TNF­ and Fas­mediated steatohepatitis. Cell Metab. 4(3), 185–198 (2006).
  • Ichi I, Nakahara K, Kiso K et al.: Effect of dietary cholesterol and high fat on ceramide concentration in rat tissues. Nutrition 23(7–8), 570–574 (2007).
  • Feng B, Yao PM, Li Y et al.: The endoplasmic reticulum is the site of cholesterol­induced cytotoxicity in macrophages. Nat. Cell Biol. 5(9), 781–792 (2003).
  • Devries­Seimon T, Li Y, Yao PM et al.: Cholesterol­induced macrophage apoptosis requires ER stress pathways and engagement of the Type A scavenger receptor. J. Cell Biol. 171(1), 61–73 (2005).
  • Calamita G, Portincasa P: Present and future therapeutic strategies in non­alcoholic fatty liver disease. Expert Opin. Ther. Targets. 11(9), 1231–1249 (2007).
  • Lin HZ, Yang SQ, Chuckaree C et al.: Metformin reverses fatty liver disease in obese, leptin­deficient mice. Nat. Med. 6(9), 998–1003 (2000).
  • Nair S, Diehl AM, Wiseman M et al.: Metformin in the treatment of non­alcoholic steatohepatitis: a pilot open label trial. Aliment Pharmacol. Ther. 20(1), 23–28 (2004).
  • Witek RP, Stone WC, Karaca FG et al.: Pan­caspase inhibitor VX­166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology 50(5), 1421–1430 (2009).
  • Fromenty B, Robin MA, Igoudjil A et al.: The ins and outs of mitochondrial dysfunction in NASH. Diabetes Metab. 30(2), 121–138 (2004).
  • Feldstein AE, Werneburg NW, Canbay A et al.: Free fatty acids promote hepatic lipotoxicity by stimulating TNF­a expression via a lysosomal pathway. Hepatology 40(1), 185–194 (2004).
  • Svegliati­Baroni G, Candelaresi C, Saccomanno S et al.: A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator­activated receptor­a and n­3 polyunsaturated fatty acid treatment on liver injury. Am. J. Pathol. 169(3), 846–860 (2006).
  • Araya J, Rodrigo R, Videla LA et al.: Increase in long­chain polyunsaturated fatty acid n­6/n­3 ratio in relation to hepatic steatosis in patients with non­alcoholic fatty liver disease. Clin. Sci. (Lond). 106(6), 635–643 (2004).
  • Videla LA, Rodrigo R, Araya J et al.: Oxidative stress and depletion of hepatic long­chain polyunsaturated fatty acids may contribute to nonalcoholic fatty liver disease. Free Radic. Biol. Med. 37(9), 1499–1507 (2004).
  • Capanni M, Calella F, Biagini MR et al.: Prolonged n­3 polyunsaturated fatty acid supplementation ameliorates hepatic steatosis in patients with non­alcoholic fatty liver disease: a pilot study. Aliment Pharmacol. Ther. 23(8), 1143–1151 (2006).
  • Spadaro L, Magliocco O, Spampinato D et al.: Effects of n­3 polyunsaturated fatty acids in subjects with nonalcoholic fatty liver disease. Dig. Liver Dis. 40(3), 194–199 (2008).
  • Ozcan U, Yilmaz E, Ozcan L et al.: Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of Type 2 diabetes. Science 313(5790), 1137–1140 (2006). Reports that chemical chaperones, which enhance the adaptative capacity of the ER, may have therapeutic potential in the treatment of obesity and NAFLD.
  • Lindor KD, Kowdley KV, Heathcote EJ et al.: Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology 39(3), 770–778 (2004).
  • Cnop M, Igoillo­Esteve M, Cunha DA et al.: An update on lipotoxic endoplasmic reticulum stress in pancreatic b­cells. Biochem. Soc. Trans. 36(Pt 5), 909–915 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.