334
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Preβ1.HDL, a key element of reverse cholesterol transport: its potential as a biomarker

&
Pages 355-365 | Published online: 18 Jan 2017

Bibliography

  • Kannel WB: Cholesterol and risk of coronary heart disease and mortality in men. Clin. Chem. 34, B53–B59 (1988).
  • Karalis DG: Intensive lowering of low-density lipoprotein cholesterol levels for primary prevention of coronary artery disease. Mayo Clin. Proc. 84, 345–352 (2009).
  • Assmann G, Gotto AM Jr: HDL cholesterol and protective factors in atherosclerosis. Circulation 109, 8–14 (2004).
  • Brewer HB Jr, Remaley AT, Neufeld EB, Basso F, Joyce C: Regulation of plasma high-density lipoprotein levels by the ABCA1 transporter and the emerging role of high-density lipoprotein in the treatment of cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 24, 1755–1760 (2004).
  • Fielding CJ, Fielding PE: Molecular physiology of reverse cholesterol transport. J. Lipid Res. 36, 211–228 (1995).
  • Sviridov D, Nestel P: Dynamics of reverse cholesterol transport: protection against atherosclerosis. Atherosclerosis 161, 245–254 (2002).
  • von Eckardstein A, Nofer JR, Assmann G: Acceleration of reverse cholesterol transport. Curr. Opin. Cardiol. 15, 348–354 (2000).
  • von Eckardstein A, Nofer JR, Assmann G: High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 21, 13–27 (2001).
  • Fielding CJ, Fielding PE: Cellular cholesterol efflux. Biochim. Biophys. Acta 1533, 175–189 (2001).
  • Miyazaki O, Kobayashi J, Fukamachi I, Miida T, Bujo H, Saito Y: A new sandwich enzyme immunoassay for measurement of plasma pre-β1-HDL levels. J. Lipid Res. 41, 2083–2088 (2000).
  • Tashiro J, Miyazaki O, Nakamura Y et al.: Plasma pre β1-HDL level is elevated in unstable angina pectoris. Atherosclerosis 204, 595–600 (2009).
  • ▪▪ Demonstrates that plasma preb1‑HDL is elevated in coronary artery disease patients, even after exclusion of dyslipidemic subjects.
  • Sviridov D, Miyazaki O, Theodore K, Hoang A, Fukamachi I, Nestel P: Delineation of the role of pre-b 1-HDL in cholesterol efflux using isolated pre-b 1-HDL. Arterioscler. Thromb. Vasc. Biol. 22, 1482–1488 (2002).
  • Miyazaki O, Fukamachi I, Mori A et al.: Formation of preβ1-HDL during lipolysis of triglyceride-rich lipoprotein. Biochem. Biophys. Res. Commun. 379, 55–59 (2009).
  • Troutt JS, Alborn WE, Mosior MK et al.: An apolipoprotein A-I mimetic dosedependently increases the formation of preβ1 HDL in human plasma. J. Lipid Res. 49, 581–587 (2008).
  • Kawano M, Nagasaka S, Yagyu H, Ishibashi S: Pitavastatin decreases plasma preβ1-HDL concentration and might promote its disappearance rate in hypercholesterolemic patients. J. Atheroscler. Thromb. 15, 41–46 (2008).
  • Olchawa B, Kingwell BA, Hoang A et al.: Physical fitness and reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 24, 1087–1091 (2004).
  • Jafari M, Leaf DA, Macrae H et al.: The effects of physical exercise on plasma preβ-1 high-density lipoprotein. Metabolism 52, 437–442 (2003).
  • Miida T, Nakamura Y, Inano K et al.: Preb1-high density lipoprotein increases in coronary artery disease. Clin. Chem. 42, 1992–1995 (1996).
  • Asztalos BF, Roheim PS, Milani RL et al.: Distribution of ApoA-I-containing HDL subpopulations in patients with coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 20, 2670–2676 (2000).
  • Miida T, Inano K, Yamaguchi T, Tsuda T, Okada M: LpA-I levels do not reflect pre β1-HDL levels in human plasma. Atherosclerosis 133, 221–226 (1997).
  • Castro GR, Fielding CJ: Early incorporation of cell-derived cholesterol into pre-β-migrating high-density lipoprotein. Biochemistry 27, 25–29 (1988).
  • Barrans A, Jaspard B, Barbaras R, Chap H, Perret B, Collet X: Pre-β HDL: structure and metabolism. Biochim. Biophys. Acta 1300, 73–85 (1996).
  • Kunitake ST, La Sala KJ, Kane JP: Apolipoprotein A-I-containing lipoproteins with pre-β electrophoretic mobility. J. Lipid Res. 26, 549–555 (1985).
  • Jaspard B, Collet X, Barbaras R et al.: Biochemical characterization of pre-β1 high-density lipoprotein from human ovarian follicular fluid: evidence for the presence of a lipid core. Biochemistry 35, 1352–1357 (1996).
  • Asztalos BF, Sloop CH, Wong L, Roheim PS: Two-dimensional electrophoresis of plasma lipoproteins: recognition of new Apo A-I-containing subpopulations. Biochim. Biophys. Acta 1169, 291–300 (1993).
  • Melchior GW, Castle CK: Apolipoprotein A-I metabolism in Cynomolgus monkey. Identification and characterization of β-migrating pools. Arteriosclerosis 9, 470–478 (1989).
  • Nakamura Y, Kotite L, Gan Y, Spencer TA, Fielding CJ, Fielding PE: Molecular mechanism of reverse cholesterol transport: reaction of pre-β-migrating high-density lipoprotein with plasma lecithin/cholesterol acyltransferase. Biochemistry 43, 14811–14820 (2004).
  • ▪ Phospholipid transfer protein is a major factor regulating preb1‑HDL production in plasma.
  • Chau P, Nakamura Y, Fielding CJ, Fielding PE: Mechanism of preβ-HDL formation and activation. Biochemistry 45, 3981–3987 (2006).
  • Duong PT, Weibel GL, Lund-Katz S, Rothblat GH, Phillips MC: Characterization and properties of pre β-HDL particles formed by ABCA1-mediated cellular lipid efflux to ApoA-I. J. Lipid Res. 49, 1006–1014 (2008).
  • ▪▪ Preβ1‑HDL is produced when ApoA‑1 removes cell‑derived phospholipid and cholesterol, mediated by ABCA1 on peripheral cells.
  • Rye KA, Barter PJ: Formation and metabolism of preβ-migrating, lipid-poor apolipoprotein A-I. Arterioscler. Thromb. Vasc. Biol. 24, 421–428 (2004).
  • Davidson WS, Thompson TB: The structure of apolipoprotein A-I in high density lipoproteins. J. Biol. Chem. 282, 22249–22253 (2007).
  • Reichl D, Forte TM, Hong JL, Rudra DN, Pflug J: Human lymphedema fluid lipoproteins: particle size, cholesterol and apolipoprotein distributions, and electron microscopic structure. J. Lipid Res. 26, 1399–1411 (1985).
  • Asztalos BF, Sloop CH, Wong L, Roheim PS: Comparison of Apo A-I-containing subpopulations of dog plasma and prenodal peripheral lymph: evidence for alteration in subpopulations in the interstitial space. Biochim. Biophys. Acta 1169, 301–304 (1993).
  • Silva RA, Hilliard GM, Li L, Segrest JP, Davidson WS: A mass spectrometric determination of the conformation of dimeric apolipoprotein A-I in discoidal high density lipoproteins. Biochemistry 44, 8600–8607 (2005).
  • Kawano M, Miida T, Fielding CJ, Fielding PE: Quantitation of pre β-HDLdependent and nonspecific components of the total efflux of cellular cholesterol and phospholipid. Biochemistry 32, 5025–5028 (1993).
  • Fielding PE, Kawano M, Catapano AL, Zoppo A, Marcovina S, Fielding CJ: Unique epitope of apolipoprotein A-I expressed in pre-β-1 high-density lipoprotein and its role in the catalyzed efflux of cellular cholesterol. Biochemistry 33, 6981–6985 (1994).
  • Yokoyama S: Release of cellular cholesterol: molecular mechanism for cholesterol homeostasis in cells and in the body. Biochim. Biophys. Acta 1529, 231–244 (2000).
  • Langmann TJ, Klucken M, Reil G et al.: Molecular cloning of the human ATP-binding cassette transport 1 (hABC1): evidence of sterol-dependent regulation in macrophages. Biochem. Biophys. Res. Commun. 257, 29–33 (1999).
  • ▪▪ Describes that ABCA1 expression in macrophages is upregulated by cholesterol loading and is reversed by cholesterol depletion.
  • Lawn RM, Wade DP, Garbin MR et al.: The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J. Clin. Invest. 104, R25–R31 (1999).
  • Oram JF, Lawn RM: ABCA1: the gatekeeper for eliminating excess tissue cholesterol. J. Lipid Res. 42, 1173–1179 (2001).
  • Glomset JA: The lecithin:cholesterol acyltransferase reaction. J. Lipid Res. 9, 155–167 (1968).
  • Francone OL, Gurakar A, Fielding C: Distribution and functions of lecithin: cholesterol acyltransferase and cholesteryl ester transfer protein in plasma lipoproteins. Evidence for a functional unit containing these activities together with apolipoproteins A-I and D that catalyzes the esterification and transfer of cell-derived cholesterol. J. Biol. Chem. 264, 7066–7072 (1989).
  • Lee JY, Parks JS: ATP-binding cassette transporter AI and its role in HDL formation. Curr. Opin. Lipidol. 16, 19–25 (2005).
  • Haghpassand M, Bourassa PA, Francone OL, Aiello RJ: Monocyte/macrophage expression of ABCA1 has minimal contribution to plasma HDL levels. J. Clin. Invest. 108, 1315–1320 (2001).
  • Tsujita M, Wu CA, Abe-Dohmae S, Usui S, Okazaki M, Yokoyama S: On the hepatic mechanism of HDL assembly by the ABCA1/ApoA-I pathway. J. Lipid Res. 46, 154–162 (2005).
  • McCall MR, Forte TM, Shore VG: Heterogeneity of nascent high density lipoproteins secreted by the hepatoma-derived cell line, Hep G2. J. Lipid Res. 29, 1127–1137 (1988).
  • Forte TM, McCall MR, Knowles BB, Shore VG: Isolation and characterization of lipoproteins produced by human hepatoma-derived cell lines other than HepG2. J. Lipid Res. 30, 817–829 (1989).
  • Castle CK, Pape ME, Marotti KR, Melchior GW: Secretion of pre-β-migrating ApoA-I by cynomolgus monkey hepatocytes in culture. J. Lipid Res. 32, 439–447 (1991).
  • Wagner RD, Krul ES, Moberly JB, Alpers DH, Schonfeld G: Apolipoprotein expression and cellular differentiation in Caco-2 intestinal cells. Am. J. Physiol. 263, E374–E382 (1992).
  • Jones LA, Teramoto T, John DJ, Goldberg RB, Rubenstein AH, Getz GS: Characterization of lipoproteins produced by the perfused rhesus monkey liver. J. Lipid Res. 25, 319–335 (1984).
  • Basso F, Freeman L, Knapper CL et al.: Role of the hepatic ABCA1 transporter in modulating intrahepatic cholesterol and plasma HDL cholesterol concentrations. J. Lipid Res. 44, 296–302 (2003).
  • Miida T, Kawano M, Fielding CJ, Fielding PE: Regulation of the concentration of pre β high-density lipoprotein in normal plasma by cell membranes and lecithin-cholesterol acyltransferase activity. Biochemistry 31, 11112–11117 (1992).
  • Okuhira K, Tsujita M, Yamauchi Y et al.: Potential involvement of dissociated ApoA-1 in the ABCA1-dependent cellular lipid release by HDL. J. Lipid Res. 45, 645–652 (2004).
  • Rye KA, Barter PJ: Formation and metabolism of preβ-migrating, lipid-poor apolipoprotein A-I. Arterioscler. Thromb. Vasc. Biol. 24, 421–428 (2004).
  • Barrans A, Collet X, Barbaras R et al.: Hepatic lipase induces the formation of pre-β 1 high density lipoprotein (HDL) from triacylglycerol-rich HDL2. A study comparing liver perfusion to in vitro incubation with lipases. J. Biol. Chem. 269, 11572–11577 (1994).
  • Guendouzi K, Jaspard B, Barbaras R et al.: Biochemical and physical properties of remnant-HDL2 and of pre β 1-HDL produced by hepatic lipase. Biochemistry 38, 2762–2768 (1999).
  • von Eckardstein A, Jauhiainen M, Huang Y et al.: Phospholipid transfer protein mediated conversion of high density lipoproteins generates pre β 1-HDL. Biochim. Biophys. Acta 1301, 255–262 (1996).
  • Lie J, de Crom R, Jauhiainen M et al.: Evaluation of phospholipid transfer protein and cholesteryl ester transfer protein as contributors to the generation of pre β-high-density lipoproteins. Biochem. J. 360, 379–385 (2001).
  • Francone OL, Royer L, Haghpassand M: Increased preβ-HDL levels, cholesterol efflux, and LCAT-mediated esterification in mice expressing the human cholesteryl ester transfer protein (CETP) and human apolipoprotein A-I (ApoA-I) transgenes. J. Lipid Res. 37, 1268–1277 (1996).
  • Liang HQ, Rye KA, Barter PJ: Dissociation of lipid-free apolipoprotein A-I from high density lipoproteins. J. Lipid Res. 35, 1187–1199 (1994).
  • Tiege UJ, Maugeais C, Cain W et al.: Overexpression of secretory phospholipase A(2) causes rapid catabolism and altered tissue uptake of high density lipoprotein cholesteryl ester and apolipoprotein A-I. J. Biol. Chem. 275, 10077–10084 (2000).
  • van der Westhuyzen DR, de Beer FC, Webb NR: HDL cholesterol transport during inflammation. Curr. Opin. Lipidol. 18, 147–151 (2007).
  • Jahangiri A, de Beer MC, Noffsinger V et al.: HDL remodeling during the acute phase response. Arterioscler. Thromb. Vasc. Biol. 29, 261–267 (2009).
  • Coetzee GA, Strachan AF, van der Westhuyzen DR, Hoppe HC, Jeenah MS, de Beer FC: Serum amyloid A-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition. J. Biol. Chem. 261, 9644–9651 (1986).
  • Malle E, Steinmetz A, Raynes JG: Serum amyloid A (SAA): an acute phase protein and apolipoprotein. Atherosclerosis 102, 131–146 (1993).
  • Miida T, Yamada T, Yamadera T, Ozaki K, Inano K, Okada M: Serum amyloid A protein generates preβ1 high-density lipoprotein from α-migrating high density lipoprotein. Biochemistry 38, 16958–16962 (1999).
  • Labeur C, Lambert G, Van Cauteren T et al.: Displacement of Apo A-I from HDL by Apo A-II or its C-terminal helix promotes the formation of pre-β1 migrating particles and decreases LCAT activation. Atherosclerosis. 139, 351–362 (1998).
  • Rye KA, Wee K, Curtiss LK, Bonnet DJ, Barter PJ: Apolipoprotein A-II inhibits high density lipoprotein remodeling and lipid-poor apolipoprotein A-I formation. J. Biol. Chem. 278, 22530–22536 (2003).
  • Dahlbäck B, Nielsen LB: Apolipoprotein M – a novel player in high-density lipoprotein metabolism and atherosclerosis. Curr. Opin. Lipidol. 17, 291–295 (2006).
  • Wolfrum C, Poy MN, Stoffel M: Apolipoprotein M is required for preβ-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat. Med. 11, 418–422 (2005).
  • Mulya A, Seo J, Brown AL et al.: Apolipoprotein M expression increases the size of nascent pre-β HDL formed by ATP binding cassette transporter A1 (ABCA1). J. Lipid Res. 51(3), 514–524 (2010).
  • Neary R, Bhatnagar D, Durrington P, Ishola M, Arrol S, Mackness M: An investigation of the role of lecithin:cholesterol acyltransferase and triglyceride-rich lipoproteins in the metabolism of pre-β high density lipoproteins. Atherosclerosis 8935–8948 (1991).
  • Glickman RM, Green PH, Lees RS, Tall A: Apoprotein A-I synthesis in normal intestinal mucosa and in Tangier disease. N. Engl. J. Med. 299, 1424–1427 (1978).
  • Mahley RW, Innerarity TL, Rall SC Jr, Weisgraber KH: Plasma lipoproteins: apolipoprotein structure and function. J. Lipid Res. 25, 1277–1294 (1984).
  • Tall AR, Green PH, Glickman RM, Riley JW: Metabolic fate of chylomicron phospholipids and apoproteins in the rat. J. Clin. Invest. 64, 977–989 (1979).
  • Schaefer EJ, Jenkins LL, Brewer HB Jr: Human chylomicron apolipoprotein metabolism. Biochem. Biophys. Res. Commun. 80, 405–412 (1978).
  • O’Connnor PJ, Naya-Vigne P, Duchateau B et al.: Measurement of pre β-1 HDL in human plasma by ultrafiltration-isotope dilution technique. Anal. Biochem. 251, 234–240 (1997).
  • Nanjee MN, Brinton EA: Very small apolipoprotein A-I-containing particles from human plasma: isolation and quantification by high-performance size-exclusion chromatography. Clin. Chem. 46, 207–223 (2000).
  • Miida T, Miyazaki O, Nakamura Y et al.: Analytical performance of a sandwich enzyme immunoassay for preβ1-HDL in stabilized plasma. J. Lipid Res. 44, 645–650 (2003).
  • Miida T, Miyazaki O, Hanyu O et al.: LCAT-dependent conversion of preβ1-HDL into a-migrating HDL is severely delayed in hemodialysis patients. J. Am. Soc. Nephrol. 14, 732–738 (2003).
  • Hirayama S, Ito T, Miyazaki O et al.: Preβ1-HDL is elevated in the fasting state, but markedly reduced postprandially in poorly controlled Type 2 diabetic patients. Clin. Chim. Acta 401, 57–62 (2009).
  • Hirayama S, Miida T, Miyazaki O, Aizawa Y: Preβ1-HDL concentration is a predictor of carotid atherosclerosis in Type 2 diabetic patients. Diabetes Care 30, 1289–1291 (2007).
  • Sasahara T, Yamashita T, Sviridov D, Fidge N, Nestel P: Altered properties of high density lipoprotein subfractions in obese subjects. J. Lipid Res. 38, 600–611 (1997).
  • Chait A, Han CY, Oram JF, Heinecke JW: Thematic review series: the immune system and atherogenesis. Lipoprotein-associated inflammatory proteins: markers or mediators of cardiovascular disease? J. Lipid Res. 46, 389–403 (2005).
  • Pussinen PJ, Metso J, Malle E et al.: The role of plasma phospholipid transfer protein (PLTP) in HDL remodeling in acute-phase patients. Biochim. Biophys. Acta 1533, 153–163 (2001).
  • Kosuge M, Ebina T, Ishikawa T et al.: Serum amyloid A is a better predictor of clinical outcomes than C-reactive protein in non-ST-segment elevation acute coronary syndromes. Circ. J. 71, 186–190 (2007).
  • Lima LM, das Graças Carvalho M, da Fonseca Neto CP, Garcia JC, Sousa MO. Secretory phospholipase A2 in patients with coronary artery disease. J. Thromb. Thrombolysis 29(3), 276–281 (2010).
  • Kugiyama K, Ota Y, Takazoe K et al.: Circulating levels of secretory type II phospholipase A(2) predict coronary events in patients with coronary artery disease. Circulation 100, 1280–1284 (1999).
  • Schlitt A, Bickel C, Thumma P et al.: High plasma phospholipid transfer protein levels as a risk factor for coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 23, 1857–1862 (2003).
  • Filep JG, El Kebir D: Serum amyloid A as a marker and mediator of acute coronary syndromes. Future Cardiol. 4, 495–504 (2008).
  • Schlitt A, Blankenberg S, Bickel C et al.: PLTP activity is a risk factor for subsequent cardiovascular events in CAD patients under statin therapy: the AtheroGene study. J. Lipid Res. 50, 723–729 (2009).
  • Bielicki JK, Johnson WJ, Weinberg RB, Glick JM, Rothblat GH: Efflux of lipid from fibroblasts to apolipoproteins: dependence on elevated levels of cellular unesterified cholesterol. J. Lipid Res. 33, 1699–1709 (1992).
  • Vaisman BL, Lambert G, Amar M et al.: ABCA1 overexpression leads to hyperalipoproteinemia and increased biliary cholesterol excretion in transgenic mice. J. Clin. Invest. 108, 303–309 (2001).
  • ▪ Both plasma α‑HDL and preβ1‑HDL levels increase in ABCA1‑upregulated mice.
  • Miida T, Yamaguchi T, Tsuda T, Okada M: High preβ1-HDL levels in hypercholesterolemia are maintained by probucol but reduced by a low-cholesterol diet. Atherosclerosis 138, 129–134 (1998).
  • Miida T, Ozaki K, Murakami T et al.: Preβ1-high-density lipoprotein (preβ1-HDL) concentration can change with low-density lipoprotein-cholesterol (LDL-C) concentration independent of cholesteryl ester transfer protein (CETP). Clin. Chim. Acta 292, 69–80 (2000).
  • Miida T, Seino U, Miyazaki O et al.: Probucol markedly reduces HDL phospholipids and elevated preβ1-HDL without delayed conversion into a-migrating HDL: putative role of angiopoietin-like protein 3 in probucol-induced HDL remodeling. Atherosclerosis 200, 329–335 (2008).
  • ▪ Probucol elevates the plasma preβ1‑HDL level without delayed conversion into α‑HDL.
  • Miida T, Sakai K, Ozaki K et al.: Bezafibrate increases preβ 1-HDL at the expense of HDL2β in hypertriglyceridemia. Arterioscler. Thromb. Vasc. Biol. 20, 2428–2433 (2000).
  • Sasahara T, Jerums G, Nestel P: Effects of insulin therapy and glycemic control on distribution of HDL α and pre-β subfractions in non insulin-dependent diabetic subjects. Nutr. Metab. Cardiovasc. 9, 19–24 (1999).
  • Yamashita S, Matsuzawa Y: Where are we with probucol: a new life for an old drug? Atherosclerosis 207, 16–23 (2009).
  • Tsujita M, Yokoyama S: Selective inhibition of free apolipoprotein-mediated cellular lipid efflux by probucol. Biochemistry 35, 13011–13020 (1996).
  • Wu CA, Tsujita M, Hayashi M, Yokoyama S: Probucol inactivates ABCA1 in the plasma membrane with respect to its mediation of apolipoprotein binding and high density lipoprotein assembly and to its proteolytic degradation. J. Biol. Chem. 279, 30168–30174 (2004).
  • Tomimoto S, Tsujita M, Okazaki M et al.: Effect of probucol in lecithin-cholesterol acyltransferase-deficient mice: inhibition of 2 independent cellular cholesterol-releasing pathways in vivo. Arterioscler. Thromb. Vasc. Biol. 21, 394–400 (2001).
  • Ishigami M, Yamashita S, Sakai N et al.: High-density lipoproteins from probucoltreated patients have increased capacity to promote cholesterol efflux from mouse peritoneal macrophages loaded with acetylated low-density lipoproteins. Eur. J. Clin. Invest. 27, 285–292 (1997).
  • Goldenberg I, Benderly M, Goldbourt U: Update on the use of fibrates: focus on bezafibrate. Vasc. Health Risk Manag. 4, 131–141 (2008).
  • Duez H, Lefebvre B, Poulain P et al.: Regulation of human ApoA-I by gemfibrozil and fenofibrate through selective peroxisome proliferator-activated receptor a modulation. Arterioscler. Thromb. Vasc. Biol. 25, 585–591 (2005).
  • Fruchart JC: Peroxisome proliferator-activated receptor-a (PPARa): at the crossroads of obesity, diabetes and cardiovascular disease. Atherosclerosis 205, 1–8 (2009).
  • Schoonjans K, Peinado-Onsurbe J, Lefebvre AM et al.: PPARa and PPARg activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 15, 5336–5348 (1996).
  • Aoyama T, Peters JM, Iritani N et al.: Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor a (PPARa). J. Biol. Chem. 273, 5678–5684 (1998).
  • Staels B, Auwerx J: Regulation of Apo A-I gene expression by fibrates. Atherosclerosis 137, S19–S23 (1998).
  • Chinetti G, Lestavel S, Bocher V et al.: PPAR-a and PPAR-g activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat. Med. 7, 53–58 (2001).
  • Asztalos BF, Le Maulf F, Dallal GE et al.: Comparison of the effects of high doses of rosuvastatin versus atorvastatin on the subpopulations of high-density lipoproteins. Am. J. Cardiol. 99, 681–689 (2007).
  • Hoang A, Tefft C, Duffy SJ et al.: ABCA1 expression in humans is associated with physical activity and alcohol consumption. Atherosclerosis 197, 197–203 (2008).
  • Sviridov D, Kingwell B, Hoang A, Dart A, Nestel P: Single session exercise stimulates formation of preβ 1-HDL in leg muscle. J. Lipid Res. 44, 522–526 (2003).
  • Grandjean PW, Crouse SF, Rohack JJ: Influence of cholesterol status on blood lipid and lipoprotein enzyme responses to aerobic exercise. J. Appl. Physiol. 89, 472–480 (2000).
  • Ghanbari-Niaki A, Khabazian BM, Hossaini-Kakhak SA, Rahbarizadeh F, Hedayati M: Treadmill exercise enhances ABCA1 expression in rat liver. Biochem. Biophys. Res. Commun. 361, 841–846 (2007).
  • Khabazian BM, Ghanbari-Niaki A, Safarzadeh-Golpordesari AR, Ebrahimi M, Rahbarizadeh F, Abednazari H: Endurance training enhances ABCA1 expression in rat small intestine. Eur. J. Appl. Physiol. 107, 351–358 (2009).
  • Shige H, Nestel P, Sviridov D, Noakes M, Clifton P: Effect of weight reduction on the distribution of apolipoprotein A-I in high-density lipoprotein subfractions in obese non-insulin-dependent diabetic subjects. Metabolism 49, 1453–1459 (2000).
  • Miida T, Obayashi K, Seino U et al.: LCAT-dependent conversion rate is a determinant of plasma preβ1-HDL concentration in healthy Japanese. Clin. Chim. Acta 350, 107–114 (2004).
  • O’Connor PM, Zysow BR, Schoenhaus SA et al.: preβ-1 HDL in plasma of normolipidemic individuals: influences of plasma lipoproteins, age, and gender. J. Lipid Res. 39, 670–678 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.