222
Views
7
CrossRef citations to date
0
Altmetric
Reviews

The ASP and C5L2 pathway: another bridge between inflammation and metabolic homeostasis

&
Pages 367-377 | Published online: 18 Jan 2017

Bibliography

  • Cianflone KM, Sniderman AD, Walsh MJ, Vu HT, Gagnon J, Rodriguez MA: Purification and characterization of acylation stimulating protein. J. Biol. Chem. 264(1), 426–430 (1989).
  • Cianflone K, Xia ZN, Chen LY: Critical review of acylation-stimulating protein physiology in humans and rodents. Biochim. Biophys. Acta 1609(2), 127–143 (2003).
  • ▪▪ Very comprehensive review on acylation stimulating protein (ASP) in both humans and rodents.
  • Choy LN, Rosen BS, Spiegelman BM: Adipsin and an endogenous pathway of complement from adipose-cells. J. Biol. Chem. 267(18), 12736–12741 (1992).
  • Kalant D, Cain SA, Maslowska M, Sniderman AD, Cianflone K, Monk PN: The chemoattractant receptor-like protein C5L2 binds the C3a des-Arg(77)/acylationstimulating protein. J. Biol. Chem. 278(13), 11123–11129 (2003).
  • ▪ Pivotal paper with regard to ASP as it proposes and describes its only known receptor.
  • Kalant D, MacLaren R, Cui W et al.: C5L2 is a functional receptor for acylation-stimulating protein. J. Biol. Chem. 280(25), 23936–23944 (2005).
  • ▪ Pivotal paper with regard to ASP as it further characterizes its only known receptor.
  • Cui W, Lapointe M, Gauvreau D, Kalant D, Cianflone K: Recombinant C3adesArg/ acylation stimulating protein (ASP) is highly bioactive: a critical evaluation of C5L2 binding and 3T3-L1 adipocyte activation. Mol. Immunol. 46(16), 3207–3217 (2009).
  • Yasruel Z, Cianflone K, Sniderman AD, Rosenbloom M, Walsh M, Rodriguez MA: Effect of acylation stimulating protein on the triacylglycerol synthetic pathway of human adipose-tissue. Lipids 26(7), 495–499 (1991).
  • Faraj M, Sniderman AD, Cianflone K: ASP enhances in situ lipoprotein lipase activity by increasing fatty acid trapping in adipocytes. J. Lipid Res. 45(4), 657–666 (2004).
  • Van Hermelen V, Reynisdottir S, Cianflone K et al.: Mechanisms involved in the regulation of free fatty acid release from isolated human fat cells by acylation-stimulating protein and insulin. J. Biol. Chem. 274(26), 18243–18251 (1999).
  • Maslowska M, Sniderman AD, Germinario R, Cianflone K: ASP stimulates glucose transport in cultured human adipocytes. Int. J. Obes. 21(4), 261–266 (1997).
  • Tao YH, Cianflone K, Sniderman AD, Colby SP, Germinario RJ: Acylation-stimulating protein (ASP) regulates glucose transport in the rat L6 muscle cell line. Biochim. Biophys. Acta 1344(3), 221–229 (1997).
  • Maslowska M, Legakis H, Assadi F, Cianflone K: Targeting the signaling pathway of acylation stimulating protein. J. Lipid Res. 47(3), 643–652 (2006).
  • Maslowska M, Vu H, Phelis S et al.: Plasma acylation stimulating protein, adipsin and lipids in non-obese and obese populations. Eur. J. Clin. Invest. 29(8), 679–686 (1999).
  • Paglialunga S, Julien P, Cianflone K: The role of acylation stimulating protein in lipoprotein lipase deficiency. Obesity 16, S171 (2008).
  • Muscari A, Antonelli S, Bianchi G et al.: Serum C3 is a stronger inflammatory marker of insulin resistance than C-reactive protein, leukocyte count, and erythrocyte sedimentation rate – comparison study in an elderly population. Diabetes Care 30(9), 2362–2368 (2007).
  • Cianflone K, Zhang XJ, Genest J, Sniderman A: Plasma acylation-stimulating protein in coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 17(7), 1239–1244 (1997).
  • Yang Y, Lu HL, Zhang J et al.: Relationships among acylation stimulating protein, adiponectin and complement C3 in lean vs obese Type 2 diabetes. Int. J. Obes. 30(3), 439–446 (2006).
  • Schrauwen P, Hesselink MKC, Jain M, Cianflone K: Acylation-stimulating protein: effect of acute exercise and endurance training. Int. J. Obes. 29(6), 632–638 (2005).
  • Tahiri Y, Karpe F, Tan GD, Cianflone K: Rosiglitazone decreases postprandial production of acylation stimulating protein in Type 2 diabetics. Nutr. Metab. 4, 11 (2007).
  • Cianflone K, Zakarian R, Couillard C, Delplanque B, Despres JP, Sniderman A: Fasting acylation-stimulating protein is predictive of postprandial triglyceride clearance. J. Lipid Res. 45(1), 124–131 (2004).
  • Roy C, Paglialunga S, Fisette A et al.: Shift in metabolic fuel in acylation-stimulating protein-deficient mice following a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 294(6), E1051–E1059 (2008).
  • ▪ Obesity resistance and altered substrate use in ASP-deficient mice are detailed and expanded.
  • Xia ZN, Stanhope KL, Digitale E et al.: Acylation-stimulating protein (ASP)/complement C3adesArg deficiency results in increased energy expenditure in mice. J. Biol. Chem. 279(6), 4051–4057 (2004).
  • Murray I, Sniderman AD, Cianflone K: Enhanced triglyceride clearance with intraperitoneal human acylation stimulating protein in C57BL/6 mice. Am. J. Physiol. Endocrinol. Metab. 277(3), E474–E480 (1999).
  • Xia Z, Sniderman AD, Cianflone K: Acylation-stimulating protein (ASP) deficiency induces obesity resistance and increased energy expenditure in ob/ob mice. J. Biol. Chem. 277(48), 45874–45879 (2002).
  • Paglialunga S, Schrauwen P, Roy C et al.: Reduced adipose tissue triglyceride synthesis and increased muscle fatty acid oxidation in C5L2 knockout mice. J. Endocrinol. 194(2), 293–304 (2007).
  • Cui W, Paglialunga S, Kalant D et al.: Acylation-stimulating protein/C5L2-neutralizing antibodies alter triglyceride metabolism in vitro and in vivo. Am. J. Physiol. Endocrinol. Metab. 293(6), E1482–E1491 (2007).
  • Hotamisligil GS: Inflammation and metabolic disorders. Nature 444(7121), 860–867 (2006).
  • ▪ Reviews the basic interaction between inflammation and metabolic disorders.
  • MacLaren R, Cui W, Cianflone K: Adipokines and the immune system: an adipocentric view. Adv. Exp. Med. Biol. 632, 1–21 (2008).
  • Bastard JP, Maachi M, Lagathu C et al.: Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 17(1), 4–12 (2006).
  • Lumeng CN, Bodzin JL, Saltiel AR: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117(1), 175–184 (2007).
  • Bourlier V, Zakaroff-Girard A, Miranville A et al.: Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation 117(6), 806–815 (2008).
  • Harboe M, Mollnes TE: The alternative complement pathway revisited. J. Cell. Mol. Med. 12(4), 1074–1084 (2008).
  • Haas PJ, van Strijp J: Anaphylatoxins – their role in bacterial infection and inflammation. Immunol. Res. 37(3), 161–175 (2007).
  • Monk PN, Scola AM, Madala P, Fairlie DP: Function, structure and therapeutic potential of complement C5a receptors. Br. J. Pharmacol. 152(4), 429–448 (2007).
  • Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Kohl J: The role of the anaphylatoxins in health and disease. Mol. Immunol. 46(14), 2753–2766 (2009).
  • Bokisch VA, Mullereb HJ: Anaphylatoxin inactivator of human plasma – its isolation and characterization as a carboxypeptidase. J. Clin. Invest. 49(12), 2427–2436 (1970).
  • Boulay F, Mery L, Tardif M, Brouchon L, Vignais P: Expression cloning of a receptor for C5A anaphylatoxin on differentiated Hl-60 Cells. Biochemistry 30(12), 2993–2999 (1991).
  • Gerard NP, Gerard C: The chemotactic receptor for human-C5A anaphylatoxin. Nature 349(6310), 614–617 (1991).
  • Ames RS, Li Y, Sarau HM et al.: Molecular cloning and characterization of the human anaphylatoxin C3a receptor. J. Biol. Chem. 271(34), 20231–20234 (1996).
  • Crass T, Raffetseder U, Martin U et al.: Expression cloning of the human C3a anaphylatoxin receptor (C3aR) from differentiated U-937 cells. Eur. J. Immunol. 26(8), 1944–1950 (1996).
  • Roglic A, Prossnitz ER, Cavanagh SL, Pan ZX, Zou AH, Ye RD: cDNA cloning of a novel G protein-coupled receptor with a large extracellular loop structure. Biochim. Biophys. Acta 1305(1–2), 39–43 (1996).
  • Ohno M, Hirata T, Enomoto M, Araki T, Ishimaru H, Takahashi TA: A putative chemoattractant receptor, C5L2, is expressed in granulocyte and immature dendritic cells, but not in mature dendritic cells. Mol. Immunol. 37(8), 407–412 (2000).
  • Zwirner J, Fayyazi A, Gotze O: Expression of the anaphylatoxin C5a receptor in non-myeloid cells. Mol. Immunol. 36(13–14), 877–884 (1999).
  • Gao HW, Neff TA, Guo RF et al.: Evidence for a functional role of the second C5a receptor C5L2. FASEB J. 19(3), 1003–1005 (2005).
  • Mamane Y, Chan CC, Lavallee G et al.: The C3a anaphylatoxin receptor is a key mediator of insulin resistance and functions by modulating adipose tissue macrophage infiltration and activation. Diabetes 58(9), 2006–2017 (2009).
  • Chen NJ, Mirtsos C, Suh D et al.: C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature 446(7132), 203–207 (2007).
  • ▪ Functional evidence of C5L2 signaling.
  • Ward PA: Functions of C5a receptors. J. Mol. Med. 87(4), 375–378 (2009).
  • Cain SA, Monk PN: The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). J. Biol. Chem. 277(9), 7165–7169 (2002).
  • Johswich K, Martin M, Thalmann J, Rheinheimer C, Monk PN, Klos A: Ligand specificity of the anaphylatoxin C5L2 receptor and its regulation on myeloid and epithelial cell lines. J. Biol. Chem. 281(51), 39088–39095 (2006).
  • Gerard NP, Lu B, Liu PX et al.: An anti-inflammatory function for the complement anaphylatoxin C5a-binding protein, C5L2. J. Biol. Chem. 280(48), 39677–39680 (2005).
  • Scola AM, Johswich KO, Morgan BP, Klos A, Monk PN: The human complement fragment receptor, C5L2, is a recycling decoy receptor. Mol. Immunol. 46(6), 1149–1162 (2009).
  • ▪ Potential scavenging role associated with C5L2.
  • Geva A, Lassere TB, Lichtarge O, Pollitt SK, Baranski TJ: Genetic mapping of the human C5a receptor – identification of transmembrane amino acids critical for receptor function. J. Biol. Chem. 275(45), 35393–35401 (2000).
  • Floyd DH, Geva A, Bruinsma SP, Overton MC, Blumer KJ, Baranski TJ: C5a receptor oligomerization – II. Fluorescence resonance energy transfer studies of a human G protein-coupled receptor expressed in yeast. J. Biol. Chem. 278(37), 35354–35361 (2003).
  • Klco JM, Lassere TB, Baranski TJ: C5a receptor oligomerization – I. Disulfide trapping reveals oligomers and potential contact surfaces in a G protein-coupled receptor. J. Biol. Chem. 278(37), 35345–35353 (2003).
  • Hopken UE, Lu B, Gerard NP, Gerard C: Impaired inflammatory responses in the reverse arthus reaction through genetic deletion of the C5a receptor. J. Exp. Med. 186(5), 749–756 (1997).
  • Karp CL, Grupe A, Schadt E et al.: Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat. Immunol. 1(3), 221–226 (2000).
  • Rittirsch D, Flierl MA, Nadeau BA et al.: Functional roles for C5a receptors in sepsis. Nat. Med. 14(5), 551–557 (2008).
  • Proctor LM, Woodruff TM, Taylor SM: Recent developments in C5/C5a inhibitors. Expert Opin. Ther. Pat. 16(4), 445–458 (2006).
  • Wenderfer SE, Wang HY, Ke BZ, Wetsel RA, Braun MC: C3a receptor deficiency accelerates the onset of renal injury in the MRL/Ipr mouse. Mol. Immunol. 46(7), 1397–1404 (2009).
  • Drouin SM, Corry DB, Hollman TJ, Kildsgaard J, Wetsel RA: Absence of the complement anaphylatoxin C3a receptor suppresses Th2 effector functions in a murine model of pulmonary allergy. J. Immunol. 169(10), 5926–5933 (2002).
  • Kildsgaard J, Hollmann TJ, Matthews KW, Bian K, Murad F, Wetsel RA: Cutting edge: targeted disruption of the C3a receptor gene demonstrates a novel protective anti-inflammatory role for C3a in endotoxin-shock. J. Immunol. 165(10), 5406–5409 (2000).
  • Boos L, Campbell LL, Ames R, Wetsel RA, Barnum SR: Deletion of the complement anaphylatoxin C3a receptor attenuates, whereas ectopic expression of C3a in the brain exacerbates, experimental autoimmune encephalomyelitis. J. Immunol. 173(7), 4708–4714 (2004).
  • Qu H, Ricklin D, Lambris JD: Recent developments in low molecular weight complement inhibitors. Mol. Immunol. 47(2–3), 185–195 (2009).
  • van Lith LHC, Oosterom J, van Elsas A, Zaman GJR: C5a-stimulated recruitment of b-arresting to the nonsignaling 7-transmembrane decoy receptor C5L2. J. Biomol. Screen. 14(9), 1067–1075 (2009).
  • Gao ZG, Hwang D, Bataille F et al.: Serine phosphorylation of insulin receptor substrate 1 by inhibitor kB kinase complex. J. Biol. Chem. 277(50), 48115–48121 (2002).
  • Glass CK, Ogawa S: Combinatorial roles of nuclear receptors in inflammation and immunity. Nat. Rev. Immunol. 6(1), 44–55 (2006).
  • Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS: TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116(11), 3015–3025 (2006).
  • Aguirre V, Uchida T, Yenush L, Davis R, White MF: The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J. Biol. Chem. 275(12), 9047–9054 (2000).
  • Griffin ME, Marcucci MJ, Cline GW et al.: Free fatty acid-induced insulin resistance is associated with activation of protein kinase C τ and alterations in the insulin signaling cascade. Diabetes 48(6), 1270–1274 (1999).
  • Waetzig V, Herdegen T: Context-specific inhibition of JNKs: overcoming the dilemma of protection and damage. Trends Pharmacol. Sci. 26(9), 455–461 (2005).
  • Lago F, Dieguez C, Gomez-Reino J, Gualillo O: The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev. 18(3–4), 313–325 (2007).
  • Hotamisligil GS, Spiegelman BM: Tumor-necrosis-factor-α – a key component of the obesity-diabetes link. Diabetes 43(11), 1271–1278 (1994).
  • Harmon CM, Abumrad NA: Binding of sulfosuccinimidyl fatty-acids to adipocyte membrane-proteins – isolation and aminoterminal sequence of an 88-kd protein implicated in transport of long-chain fatty-acids. J. Membr. Biol. 133(1), 43–49 (1993).
  • Savill J, Hogg N, Haslett C: Macrophage vitronectin receptor, Cd36, and thrombospondin cooperate in recognition of neutrophils undergoing programmed cell-death. Chest 99(3), S6–S7 (1991).
  • Steppan CM, Bailey ST, Bhat S et al.: The hormone resistin links obesity to diabetes Nature. 409(6818), 307–312 (2001).
  • Holcomb IN, Kabakoff RC, Chan B et al.: FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J. 19(15), 4046–4055 (2000).
  • Coenen KR, Gruen ML, Chait A, Hasty AH: Diet-induced increases in adiposity, but not plasma lipids, promote macrophage infiltration into white adipose tissue. Diabetes 56(3), 564–573 (2007).
  • Chung S, LaPoint K, Martinez K, Kennedy A, Sandberg MB, McIntosh MK: Preadipocytes mediate lipopolysaccharideinduced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology 147(11), 5340–5351 (2006).
  • Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE: Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts Type II diabetes independent of insulin resistance. Diabetologia 43(12), 1498–1506 (2000).
  • Maslowska M, Wang HW, Cianflone K: Novel roles for acylation stimulating prote in/C3adesArg: a review of recent in vitro and in vivo evidence. Vitam. Horm. 70, 309–332 (2005).
  • Paglialunga S, Fisette A, Yan YF et al.: Acylation-stimulating protein deficiency and altered adipose tissue in alternative complement pathway knockout mice. Am. J. Physiol. Endocrinol. Metab. 294(3), E521–E529 (2008).
  • Saleh J, Summers LKM, Cianflone K, Fielding BA, Sniderman AD, Frayn KN: Coordinated release of acylation stimulating protein (ASP) and triacylglycerol clearance by human adipose tissue in vivo in the postprandial period. J. Lipid Res. 39(4), 884–891 (1998).
  • Kalant D, Phelis S, Fielding BA, Frayn KN, Cianflone K, Sniderman AD: Increased postprandial fatty acid trapping in subcutaneous adipose tissue in obese women. J. Lipid Res. 41(12), 1963–1968 (2000).
  • He SQ, Atkinson C, Qiao F, Cianflone K, Chen XP, Tomlinson S: A complementdependent balance between hepatic ischemia/reperfusion injury and liver regeneration in mice. J. Clin. Invest. 119(8), 2304–2316 (2009).
  • ▪ Highlights new properties of ASP and further supports its physiological relevance.
  • Astarcioglu I, Adam R, Gigou M, Isaac J, Bismuth H: High-levels of glycogen in the donor liver improve survival after livertransplantation in rats. Transplant. Proc. 23(5), 2465–2466 (1991).
  • Caraceni P, Nardo B, Domenicali M et al.: Ischemia-reperfusion injury in rat fatty liver: role of nutritional status. Hepatology 29(4), 1139–1146 (1999).
  • Wernstedt I, Olsson B, Jernas M et al.: Increased levels of acylation-stimulating protein in interleukin-6-deficient (IL-6-/-) mice. Endocrinology 147(6), 2690–2695 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.