531
Views
83
CrossRef citations to date
0
Altmetric
Reviews

Perivascular adipose tissue and vascular disease

&
Pages 79-91 | Published online: 18 Jan 2017

Bibliography

  • Caterson I, Hubbard V, Bray G et al.: Prevention Conference VII: Obesity, a worldwide epidemic related to heart disease and stroke: Group III: worldwide comorbidities of obesity. Circulation 110, E476–E483 (2004)
  • Canoy D: Distribution of body fat and risk of coronary heart disease in men and women. Curr. Opin. Cardiol. 23, 591–598 (2008)
  • Fox CS, Massaro JM, Hoffmann U et al.: Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116, 39–48 (2007)
  • Mahabadi AA, Massaro JM, Rosito GA et al.: Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur. Heart J. 30, 850–856 (2011).
  • Demonstrates a cross-sectional association between increasing amounts of pericardial fat and prevalent cardiovascular disease
  • Wang Y, Rimm EB, Stampfer MJ, Willett WC, Hu FB: Comparison of abdominal adiposity and overall obesity in predicting risk of Type 2 diabetes among men. Am. J. Clin. Nutr. 81, 555–563 (2005)
  • Montani JP, Carroll JF, Dwyer TM, Antic V, Yang Z, Dulloo AG: Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int. J. Obes. Relat. Metab. Disord. 28, S58–S65 (2004)
  • Rosito GA, Massaro JM, Hoffmann U et al.: Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117, 605–613 (2008).
  • Demonstrates a cross-sectional association between pericardial fat and certain metabolic risk factors after adjustment for clinical measures of adiposity, as well as an association between pericardial fat and coronary calcium that remains after adjustment for cardiovascular risk factors and visceral adipose tissue, suggesting a potential local toxic effect of pericardial fat on the coronary vasculature
  • Lehman SJ, Massaro JM, Schlett CL, O’Donnell CJ, Hoffmann U, Fox CS: Peri-aortic fat, cardiovascular disease risk factors, and aortic calcification: the Framingham Heart Study. Atherosclerosis 210, 656–661 (2010)
  • Iacobellis G, Ribaudo MC, Assael F et al.: Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J. Clin. Endocrinol. Metab. 88, 5163–5168 (2003)
  • Gao YJ: Dual modulation of vascular function by perivascular adipose tissue and its potential correlation with adiposity/ lipoatrophy-related vascular dysfunction. Curr. Pharm. Des. 13, 2185–2192 (2007)
  • Sacks HS, Fain JN, Holman B et al.: Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J. Clin. Endocrinol. Metab. 94, 3611–3615 (2011)
  • Yudkin JS, Eringa E, Stehouwer CDA: ‘Vasocrine’ signaling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 365, 1817–1820 (2005).
  • Describes the ‘vasocrine’ signaling hypothesis of perivascular fat. Speculates that perivascular fat may modulate the effect of insulin on the vasculature
  • Chatterjee TK, Stoll LL, Denning GM et al.: Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ. Res. 104, 541–549 (2011).
  • Demonstrates that human pericoronary adipose tissue has a proinflammatory adipokine profile and that high-fat feeding leads to upregulation of proinflammatory gene expression in murine perivascular adipose tissue
  • Eringa EC, Bakker W, Smulders YM, SernÓ EH, Yudkin JS, Stehouwer CDA: Regulation of vascular function and insulin sensitivity by adipose tissue: focus on perivascular adipose tissue. Microcirculation 14, 389–402 (2007)
  • Vela D, Buja LM, Madjid M et al.: The role of periadventitial fat in atherosclerosis. Arch. Pathol. Lab. Med. 131, 481–487 (2007)
  • Henrichot E, Juge-Aubry CE, Pernin A et al.: Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis? Arterioscler. Thromb. Vasc. Biol. 25, 2594–2599 (2005)
  • Mazurek T, Zhang L, Zalewski A et al.: Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108, 2460–2466 (2003)
  • Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW: Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003)
  • Karastergiou K, Mohamed-Ali V: The autocrine and paracrine roles of adipokines. Mol. Cell. Endocrinol. 318, 69–78 (2010)
  • Halberg N, Wernstedt I, Scherer PE: The adipocyte as an endocrine cell. Endocrinol. Metab. Clin. North Am. 37, 753–768 (2008)
  • Kintscher U, Hartge M, Hess K et al.: T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol. 28, 1304–1310 (2008)
  • Moos MPW, John N, Grabner R et al.: The lamina adventitia is the major site of immune-cell accumulation in standard chow-fed apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 25, 2386–2391 (2005)
  • Soltis E, Cassis L: Influence of perivascular adipose tissue on rat aortic smooth muscle responsiveness. Clin. Exp. Hypertens. A 13, 277–296 (1991)
  • Lohn M, Dubrovska G, Lauterbach B, Luft FC, Gollasch M, Sharma AM: Periadventitial fat releases a vascular relaxing factor. FASEB J. 16, 1057–1063 (2002)
  • Gao YJ, Lu C, Su LY, Sharma AM, Lee RMKW: Modulation of vascular function by perivascular adipose tissue: the role of endothelium and hydrogen peroxide. Br. J. Pharmacol. 151, 323–331 (2007)
  • Verlohren S, Dubrovska G, Tsang S-Y et al.: Visceral periadventitial adipose tissue regulates arterial tone of mesenteric arteries. Hypertension 44, 271–276 (2004)
  • Schleifenbaum J, Kohn C, Voblova N et al.: Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide. J. Hypertens. 28, 1875–1882 (2010)
  • Greenstein AS, Khavandi K, Withers SB et al.: Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation 119, 1661–1670 (2011).
  • Demonstrates a vasodilatory effect of healthy human perivascular adipose tissue. This effect was lost and accompanied by immunohistochemical evidence of inflammation in obese subjects. The application of TNF-a to healthy perivascular fat was shown to reduce vasodilator activity
  • Payne GA, Borbouse L, Bratz IN et al.: Endogenous adipose-derived factors diminish coronary endothelial function via inhibition of nitric oxide synthase. Microcirculation 15, 417–426 (2008)
  • Payne GA, Bohlen HG, Dincer UD, Borbouse L, Tune JD: Periadventitial adipose tissue impairs coronary endothelial function via PKC-b-dependent phosphorylation of nitric oxide synthase. Am. J. Physiol. Heart Circ. Physiol. 297, H460–H465 (2011)
  • Lee RMKW, Ding L, Lu C, Su L-Y, Gao Y-J: Alteration of perivascular adipose tissue function in angiotensin II-induced hypertension. Can. J. Physiol. Pharmacol. 87, 944–953 (2011)
  • Lee RMKW, Lu C, Su L-Y, Werstuck G, Gao Y-J: Effects of hyperglycemia on the modulation of vascular function by perivascular adipose tissue. J. Hypertens. 27, 118–131 (2011)
  • Payne GA, Borbouse L, Kumar S et al.: Epicardial perivascular adipose-derived leptin exacerbates coronary endothelial dysfunction in metabolic syndrome via a protein kinase C-b pathway. Arterioscler. Thromb. Vasc. Biol. 30, 1711–1717 (2010)
  • Galic S, Oakhill JS, Steinberg GR: Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 316, 129–139 (2010)
  • Neels JG, Olefsky JM: Inflamed fat: what starts the fire? J. Clin. Invest. 116, 33–35 (2011)
  • Sartipy P, Loskutoff DJ: Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Natl Acad. Sci. USA 100, 7265–7270 (2003)
  • Lumeng CN, Bodzin JL, Saltiel AR: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007)
  • Wellen KE, Hotamisligil GKS: Obesityinduced inflammatory changes in adipose tissue. J. Clin. Invest. 112, 1785–1788 (2003)
  • Wimalasundera R, Fexby S, Regan L, Thom S, Hughes A: Effect of tumor necrosis factor-a and interleukin-1b on endotheliumdependent relaxation in rat mesenteric resistance arteries in vitro. Br. J. Pharmacol. 138, 1285–1294 (2003)
  • Salgado-Somoza A, Teijeira-Fernandez E, Fernandez AL, Gonzalez-Juanatey JR, Eiras S: Proteomic analysis of epicardial and subcutaneous adipose tissue reveals differences in proteins involved in oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 299, H202–H209 (2010)
  • DeMarco V, Johnson M, Whaley-Connell A, Sowers J: Cytokine abnormalities in the etiology of the cardiometabolic syndrome. Curr. Hypertens. Rep. 12, 93–98 (2010)
  • Tsioufis C, Dimitriadis K, Selima M et al.: Low-grade inflammation and hypoadiponectinaemia have an additive detrimental effect on aortic stiffness in essential hypertensive patients. Eur. Heart J. 28, 1162–1169 (2007)
  • Barandier C, Montani J-P, Yang Z: Mature adipocytes and perivascular adipose tissue stimulate vascular smooth muscle cell proliferation: effects of aging and obesity. Am. J. Physiol. Heart Circ. Physiol. 289, H1807–H1813 (2005)
  • Zhang H, Zhang C: Regulation of microvascular function by adipose tissue in obesity and Type 2 diabetes: evidence of an adipose-vascular loop. Am. J. Biomed. Sci. 1, 133 (2011)
  • Guzik TJ, Hoch NE, Brown KA et al.: Role of the T cell in the genesis of angiotensin IIinduced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007)
  • Eringa EC, Stehouwer CDA, Walburg K et al.: Physiological concentrations of insulin induce endothelin-dependent vasoconstriction of skeletal muscle resistance arteries in the presence of tumor necrosis factor-a dependence on c-Jun N-terminal kinase. Arterioscler. Thromb. Vasc. Biol. 26, 274–280 (2011)
  • Eringa EC, Stehouwer CDA, Roos MH, Westerhof N, Sipkema P: Selective resistance to vasoactive effects of insulin in muscle resistance arteries of obese zucker (fa/fa) rats. Am. J. Physiol. Endocrinol. Metab. 293, E1134–E1139 (2007)
  • Guzik T, Mangalat D, Korbut R: Adipocytokines – novel link between inflammation and vascular function? J. Physiol. Pharmacol. 54, 505–528 (2007)
  • Gao Y-J, Holloway AC, Zeng Z-H et al.: Prenatal exposure to nicotine causes postnatal obesity and altered perivascular adipose tissue function. Obesity 13, 687–692 (2005)
  • Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM: Increased adipose tissue expression of tumor necrosis factor-a in human obesity and insulin resistance. J. Clin. Invest. 95, 2409–2415 (1995)
  • Mohamed-Ali V, Goodrick S, Rawesh A et al.: Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-a, in vivo. J. Clin. Endocrinol. Metab. 82, 4196–4200 (1997)
  • Tune JD, Considine R: Effects of leptin on cardiovascular physiology. J. Am. Soc. Hypertens. 1, 231–241 (2007)
  • Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ: Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J. Biol. Chem. 278, 45021–45026 (2003)
  • Gustafsson S, Lind L, Soderberg S, Ingelsson E: Associations of circulating adiponectin with measures of vascular function and morphology. J. Clin. Endocrinol. Metab. 95, 2927–2934 (2010)
  • Knudson JD, Dick GM, Tune JD: Adipokines and coronary vasomotor dysfunction. Exp. Biol. Med. 232, 727–736 (2007)
  • Weber C, Schober A, Zernecke A: Chemokines: key regulators of mononuclear cell recruitment in atherosclerotic vascular disease. Arterioscler. Thromb. Vasc. Biol. 24, 1997–2008 (2004)
  • Thorlacius H, Lindbom L, Raud J: Cytokineinduced leukocyte rolling in mouse cremaster muscle arterioles in P-selectin dependent. Am. J. Physiol. Heart Circ. Physiol. 272, H1725–1729 (1997)
  • Apovian CM, Bigornia S, Mott M et al.: Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler. Thromb. Vasc. Biol. 28, 1654–1659 (2008)
  • Libby P, Ridker PM, Maseri A: Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002)
  • Moreno PR, Purushothaman KR, Fuster V, O’Connor WN: Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta: implications for plaque vulnerability. Circulation 105, 2504–2511 (2002)
  • Maiellaro K, Taylor WR: The role of the adventitia in vascular inflammation. Cardiovasc. Res. 75, 640–648 (2007)
  • Chaldakov GN, Tonchev AB, Stankulov IS et al.: Periadventitial adipose tissue (tunica adiposa): enemy or friend around? Arch. Pathol. Lab. Med. 131, 1766–1768 (2007)
  • Clark M, Wallis M, Barrett E et al.: Blood flow and muscle metabolism: a focus on insulin action. Am. J. Physiol. Endocrinol. Metab. 284, E241–E258 (2003)
  • Cardillo C, Nambi SS, Kilcoyne CM et al.: Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation 100, 820–825 (1999)
  • Hopkins TA, Ouchi N, Shibata R, Walsh K: Adiponectin actions in the cardiovascular system. Cardiovasc. Res. 74, 11–18 (2007)
  • Yamauchi T, Kamon J, Minokoshi Y et al.: Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002)
  • Fox CS, Massaro JM, Schlett CL et al.: Peri-aortic fat deposition is associated with peripheral arterial disease: the Framingham Heart Study. Circ. Cardiovasc. Imaging 3, 515–519 (2010)
  • Schlett CL, Massaro JM, Lehman SJ et al.: Novel measurements of periaortic adipose tissue in comparison to anthropometric measures of obesity, and abdominal adipose tissue. Int. J. Obes. 33, 226–232 (2011)
  • Pietrobelli A, Boner AL, Tato L: Adipose tissue and metabolic effects: new insight into measurements. Int. J. Obes. Relat. Metab. Disord. 29, S97–S100 (2005)
  • Maurovich-Horvat P, Massaro J, Fox CS, Moselewski F, O’Donnell CJ, Hoffmann U: Comparison of anthropometric, area- and volume-based assessment of abdominal subcutaneous and visceral adipose tissue volumes using multidetector computed tomography. Int. J. Obes. 31, 500–506 (2007)
  • Fluchter S, Haghi D, Dinter D et al.: Volumetric assessment of epicardial adipose tissue with cardiovascular magnetic resonance imaging. Obesity 15, 870–878 (2007)
  • Iacobellis G, Assael F, Ribaudo MC et al.: Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obesity 11, 304–310 (2003)
  • Abbara S, Desai JC, Cury RC, Butler J, Nieman K, Reddy V: Mapping epicardial fat with multidetector computed tomography to facilitate percutaneous transepicardial arrhythmia ablation. Eur. J. Radiol. 57, 417–422 (2011)
  • Saura D, Oliva MJ, RodrÓguez D et al.: Reproducibility of echocardiographic measurements of epicardial fat thickness. Int. J. Cardiol. 141, 311–313 (2008)
  • Pennell DJ: Cardiovascular magnetic resonance. Circulation 121, 692–705 (2010)
  • Liu J, Fox CS, Hickson D et al.: Pericardial adipose tissue, atherosclerosis, and cardiovascular disease risk factors. Diabetes Care 33, 1635–1639 (2010)
  • Ding J, Hsu F-C, Harris TB et al.: The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Clin. Nutr. 90, 499–504 (2011).
  • Demonstrates an association between pericardial fat and incident coronary heart disease after adjustment for BMI and cardiovascular risk factors in a case–cohort study
  • Gorter PM, de Vos AM, van der Graaf Y et al.: Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am. J. Cardiol. 102, 380–385 (2008)
  • Mahabadi AA, Reinsch N, Lehmann N et al.: Association of pericoronary fat volume with atherosclerotic plaque burden in the underlying coronary artery: a segment analysis. Atherosclerosis 211, 195–199 (2010).
  • Demonstrates a cross-sectional association between pericoronary fat and atherosclerotic plaque in the same coronary segment by computed tomography angiography
  • Iacobellis G, Leonetti F, Singh N, Sharma A: Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int. J. Cardiol. 115, 272–273 (2007)
  • Iacobellis G, Ribaudo MC, Zappaterreno A, Iannucci CV, Leonetti F: Relation between epicardial adipose tissue and left ventricular mass. Am. J. Cardiol. 94, 1084–1087 (2004)
  • Fox CS, Gona P, Hoffmann U et al.: Pericardial fat, intrathoracic fat, and measures of left ventricular structure and function: the Framingham Heart Study. Circulation 119, 1586–1591 (2011)
  • Thanassoulis G, Massaro JM, O’Donnell CJ et al.: Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study. Circ. Arrhythm. Electrophysiol. 3, 345–350 (2010)
  • Al Chekakie MO, Welles CC, Metoyer R et al.: Pericardial fat is independently associated with human atrial fibrillation. J. Am. Coll. Cardiol. 56, 784–788 (2010)
  • Heid IM, Jackson AU, Randall JC et al.: Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949–960 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.