73
Views
8
CrossRef citations to date
0
Altmetric
Reviews

The beneficial effects of HDL-C on atherosclerosis: rationale and clinical results

, &
Pages 181-208 | Published online: 18 Jan 2017

Bibliography

  • Lloyd-Jones D, Adams R, Carnethon M et al.: Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119(3), E21–E181 (2009).
  • Baigent C, Keech A, Kearney PM et al.: Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366(9493), 1267–1278 (2005).
  • Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285(19), 2486–2497 (2001).
  • Cannon CP, Braunwald E, McCabe CH et al.: Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N. Engl. J. Med. 350(15), 1495–1504 (2004).
  • Alsheikh-Ali AA, Lin JL, Abourjaily P, Ahearn D, Kuvin JT, Karas RH: Extent to which accepted serum lipid goals are achieved in a contemporary general medical population with coronary heart disease risk equivalents. Am. J. Cardiol. 98(9), 1231–1233 (2006).
  • Kotseva K, Stagmo M, De Bacquer D, De Backer G, Wood D: Treatment potential for cholesterol management in patients with coronary heart disease in 15 European countries: findings from the EUROASPIRE II survey. Atherosclerosis 197(2), 710–717 (2008).
  • Waters DD, Brotons C, Chiang CW et al.: Lipid Treatment Assessment Project 2: a multinational survey to evaluate the proportion of patients achieving low-density lipoprotein cholesterol goals. Circulation 120(1), 28–34 (2009).
  • Bruckert E, Hayem G, Dejager S, Yau C, Begaud B: Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients – the PRIMO study. Cardiovasc. Drugs Ther. 19(6), 403–414 (2005).
  • Ibanez B, Vilahur G, Badim‘n JJ: Plaque progression and regression in atherothrombosis. J. Thromb. Haemost. 5(Suppl. 1), 292–299 (2007).
  • Badim‘n JJ, Ibanez B, Cimmino G: Genesis and dynamics of atherosclerotic lesions: implications for early detection. Cerebrovasc. Dis. 27(Suppl. 1), 38–47 (2009).
  • Calabresi L, Gomaraschi M, Franceschini G: High-density lipoprotein quantity or quality for cardiovascular prevention? Curr. Pharm. Des. 16(13), 1494–1503 (2010).
  • Miller NE, Miller GJ: Letter: High-density lipoprotein and atherosclerosis. Lancet 1(7914), 1033 (1975).
  • Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB: Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA 256(20), 2835–2838 (1986).
  • Gordon DJ, Probstfield JL, Garrison RJ et al.: High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79(1), 8–15 (1989).
  • One of the most classic articles in HDL-C epidemiology, still widely cited 20 years after its publication. It was one of the first works in establishing the inverse relationship between HDL-C levels and cardiovascular (CV) risk.
  • Assmann G, Schulte H, von Eckardstein A, Huang Y: High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis 124(Suppl.), S11–S20 (1996).
  • Luc G, Bard JM, Ferrieres J et al.: Value of HDL cholesterol, apolipoprotein A-I, lipoprotein A-I, and lipoprotein A-I/A-II in prediction of coronary heart disease: the PRIME Study. Prospective Epidemiological Study of Myocardial Infarction. Arterioscler. Thromb. Vasc. Biol. 22(7), 1155–1161 (2002).
  • Goldbourt U, Yaari S, Medalie JH: Isolated low HDL cholesterol as a risk factor for coronary heart disease mortality. A 21?year follow-up of 8000 men. Arterioscler. Thromb. Vasc. Biol. 17(1), 107–113 (1997). Executive summary .In light of the residual cardiovascular (CV) risk, despite the well-established clinical benefits of statin therapy on CV events and risk reduction, HDL-C-raising therapy appears as an additional strategy to further decrease CV risk. .The antiatherogenic benefits of high HDL-C levels are well established by several epidemiological studies. .The main action of HDL-C seems to be an enhanced reverse cholesterol transport. .HDL-C seems to exert other atheroprotective effects independent of reverse cholesterol transport (‘pleiotropic’?). The main effects are anti-inflammatory, antioxidant, antiapopototic, antithrombotic and vasodilatory and endothelium-protecting activities. .Nonpharmacological measures (healthier lifestyle) are always the first step to take in order to enhance HDL-C levels. .Statins increase HDL-C slightly by approximately 5%, but the main drugs currently available with HDL-C-raising properties are niacin and fibrates. .Niacin is the drug with the most HDL-C-raising effect and is the only one to decrease Lp(a). Flushing, the main side effect, has decreased compliance, but new advances (extended-release niacin and niacin plus laropiprant) seem useful for improving niacin tolerability. Niacin has consistently proved to have an atheroprotective effect (both in clinical and imaging end points). .Fibrates are also useful for raising HDL-C levels and are effective for CV risk reduction in both clinical and imaging end points. There is consistent evidence of fibrates decreasing CV risk in a specific situation, namely patients with high triglycerides (>200 mg/dl) and low HDL-C (<35 mg/dl). .Cholesteryl ester transfer protein inhibition is a promising strategy for raising HDL-C levels. However, the first cholesteryl ester transfer protein inhibitor, torcetrapib, increased CV mortality. New drugs (dalcetrapib and anacetrapib) are undergoing clinical trial evaluation in order to establish their clinical usefulness. .Other promising strategies, still under development, include administration of apoA-I variants, delipidated and/or modified HDL, and agents increasing apoA-I synthesis (e.g., Resverlogix). .HDL-C function remains the next step in HDL-C therapies. For CV risk lowering, functionality of HDL-C (quality) is probably more important than HDL-C levels (quantity).
  • Grover SA, Kaouache M, Joseph L, Barter P, Davignon J: Evaluating the incremental benefits of raising high-density lipoprotein cholesterol levels during lipid therapy after adjustment for the reductions in other blood lipid levels. Arch. Intern. Med. 169(19), 1775–1780 (2009).
  • Nicholls SJ, Tuzcu EM, Sipahi I et al.: Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA 297(5), 499–508 (2007).
  • Barter P, Gotto AM, LaRosa JC et al.: HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N. Engl. J. Med. 357(13), 1301–1310 (2007). 21 deGoma EM, Leeper NJ, Heidenreich PA: Clinical significance of high-density lipoprotein cholesterol in patients with low low-density lipoprotein cholesterol. J. Am. Coll. Cardiol. 51(1), 49–55 (2008). n Solidly proves the protective effect of HDL-C, even in the presence of very low LDL-C concentrations.
  • Ridker PM, Genest J, Boekholdt SM et al.: HDL cholesterol and residual risk of first cardiovascular events after treatment with potent statin therapy: an analysis from the JUPITER trial. Lancet 376(9738), 333–339 (2010).
  • Carlson LA, Rosenhamer G: Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med. Scand. 223(5), 405–418 (1988).
  • Brown BG, Zhao XQ, Chait A et al.: Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N. Engl. J. Med. 345(22), 1583–1592 (2001).
  • Frick MH, Elo O, Haapa K et al.: Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N. Engl. J. Med. 317(20), 1237–1245 (1987).
  • Rubins HB, Robins SJ, Collins D et al.: Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N. Engl. J. Med. 341(6), 410–418 (1999).
  • Briel M, Ferreira-Gonzalez I, You JJ et al.: Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ 338, B92 (2009).
  • Genest JJ, McNamara JR, Salem DN, Schaefer EJ: Prevalence of risk factors in men with premature coronary artery disease. Am. J. Cardiol. 67(15), 1185–1189 (1991).
  • Sachdeva A, Cannon CP, Deedwania PC et al.: Lipid levels in patients hospitalized with coronary artery disease: an analysis of 136,905 hospitalizations in Get With The Guidelines. Am. Heart J. 157(1), 111–117.e2 (2009).
  • Bruckert E: Epidemiology of low HDLcholesterol: results of studies and surveys. Eur. Heart J. Suppl. 8(Suppl. F), F17–F22 (2006).
  • Glomset JA: The plasma lecithins:cholesterol acyltransferase reaction. J. Lipid Res. 9(2), 155–167 (1968).
  • Ross R, Glomset JA: Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180(93), 1332–1339 (1973).
  • Badim‘n JJ, Badimon L, Galvez A, Dische R, Fuster V: High density lipoprotein plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits. Lab. Invest. 60(3), 455–461 (1989).
  • Badim‘n JJ, Badimon L, Fuster V: Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterolfed rabbit. J. Clin. Invest. 85(4), 1234–1241 (1990).
  • First article to experimentally demonstrate the atheroprotective effect of HDL-C. HDL-C infusions achieved atherosclerosis regression in an atherosclerotic rabbit model.
  • Clofibrate and niacin in coronary heart disease. JAMA 231(4), 360–381 (1975).
  • Canner PL, Berge KG, Wenger NK et al.: Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J. Am. Coll. Cardiol. 8(6), 1245–1255 (1986).
  • Whitney EJ, Krasuski RA, Personius BE et al.: A randomized trial of a strategy for increasing high-density lipoprotein cholesterol levels: effects on progression of coronary heart disease and clinical events. Ann. Intern. Med. 142(2), 95–104 (2005).
  • Blankenhorn DH, Nessim SA, Johnson RL, Sanmarco ME, Azen SP, Cashin-Hemphill L: Beneficial effects of combined colestipolniacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 257(23), 3233–3240 (1987).
  • Cashin-Hemphill L, Mack WJ, Pogoda JM, Sanmarco ME, Azen SP, Blankenhorn DH: Beneficial effects of colestipol-niacin on coronary atherosclerosis. A 4?year follow-up. JAMA 264(23), 3013–3017 (1990).
  • Brown G, Albers JJ, Fisher LD et al.: Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N. Engl. J. Med. 323(19), 1289–1298 (1990).
  • Blankenhorn DH, Azen SP, Crawford DW et al.: Effects of colestipol-niacin therapy on human femoral atherosclerosis. Circulation 83(2), 438–447 (1991).
  • Blankenhorn DH, Selzer RH, Crawford DW et al.: Beneficial effects of colestipol-niacin therapy on the common carotid artery. Two- and four?year reduction of intima– media thickness measured by ultrasound. Circulation 88(1), 20–28 (1993).
  • Haskell WL, Alderman EL, Fair JM et al.: Effects of intensive multiple risk factor reduction on coronary atherosclerosis and clinical cardiac events in men and women with coronary artery disease. The Stanford Coronary Risk Intervention Project (SCRIP). Circulation 89(3), 975–990 (1994).
  • Taylor AJ, Sullenberger LE, Lee HJ, Lee JK, Grace KA: Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation 110(23), 3512–3517 (2004).
  • Taylor AJ, Lee HJ, Sullenberger LE: The effect of 24 months of combination statin and extended-release niacin on carotid intima–media thickness: ARBITER 3. Curr. Med. Res. Opin. 22(11), 2243–2250 (2006).
  • Taylor AJ, Villines TC, Stanek EJ et al.: Extended-release niacin or ezetimibe and carotid intima–media thickness. N. Engl. J. Med. 361(22), 2113–2122 (2009).
  • Lee JM, Robson MD, Yu LM et al.: Effects of high-dose modified-release nicotinic acid on atherosclerosis and vascular function: a randomized, placebo-controlled, magnetic resonance imaging study. J. Am. Coll. Cardiol. 54(19), 1787–1794 (2009). n Niacin treatment reduces carotid atherosclerosis as assessed by MRI.
  • Trial of clofibrate in the treatment of ischaemic heart disease. Five?year study by a group of physicians of the Newcastle upon Tyne region. BMJ 4(5790), 767–775 (1971).
  • Ischaemic heart disease: a secondary prevention trial using clofibrate. Report by a research committee of the Scottish Society of Physicians. BMJ 4(5790), 775–784 (1971).
  • A co-operative trial in the primary prevention of ischaemic heart disease using clofibrate. Report from the Committee of Principal Investigators. Br. Heart J. 40(10), 1069–1118 (1978).
  • WHO cooperative trial on primary prevention of ischaemic heart disease with clofibrate to lower serum cholesterol: final mortality follow-up. Report of the Committee of Principal Investigators. Lancet 2(8403), 600–604 (1984).
  • Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation 102(1), 21–27 (2000).
  • Meade T, Zuhrie R, Cook C, Cooper J: Bezafibrate in men with lower extremity arterial disease: randomised controlled trial. BMJ 325(7373), 1139 (2002).
  • Keech A, Simes RJ, Barter P et al.: Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with Type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366(9500), 1849–1861 (2005).
  • Ericsson CG, Hamsten A, Nilsson J, Grip L, Svane B, de Faire U: Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 347(9005), 849–853 (1996).
  • Frick MH, Syvanne M, Nieminen MS et al.: Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol. Lopid Coronary Angiography Trial (LOCAT) study group. Circulation 96(7), 2137–2143 (1997).
  • Effect of fenofibrate on progression of coronary-artery disease in Type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 357(9260), 905–910 (2001).
  • Barter PJ, Caulfield M, Eriksson M et al.: Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357(21), 2109–2122 (2007).
  • Nissen SE, Tardif JC, Nicholls SJ et al.: Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 356(13), 1304–1316 (2007).
  • The cholesteryl ester transfer protein (CETP) inhibitor torcetrapib, despite increasing HDL-C levels, increases CV mortality and permits atherosclerosis progression.
  • Kastelein JJ, van Leuven SI, Burgess L et al.: Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N. Engl. J. Med. 356(16), 1620–1630 (2007).
  • Bots ML, Visseren FL, Evans GW et al.: Torcetrapib and carotid intima–media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet 370(9582), 153–160 (2007).
  • Nissen SE, Tsunoda T, Tuzcu EM et al.: Effect of recombinant apoA-IMilano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290(17), 2292–2300 (2003).
  • A total of 4 weekly injections of apoA?IMilano in acute coronary syndrome patients reduce atherosclerosis burden as assessed by intravenous ultrasound.
  • Tardif JC, Gregoire J, L’Allier PL et al.: Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 297(15), 1675–1682 (2007).
  • Nissen SE, Nicholls SJ, Wolski K et al.: Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with Type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 299(13), 1561–1573 (2008).
  • Nissen SE, Nicholls SJ, Wolski K et al.: Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 299(13), 1547–1560 (2008).
  • Dormandy JA, Charbonnel B, Eckland DJ et al.: Secondary prevention of macrovascular events in patients with Type 2 diabetes in the Proactive study (Prospective Pioglitazone Clinical Trial in Macrovascular Events): a randomised controlled trial. Lancet 366(9493), 1279–1289 (2005).
  • Mazzone T, Meyer PM, Feinstein SB et al.: Effect of pioglitazone compared with glimepiride on carotid intima–media thickness in Type 2 diabetes: a randomized trial. JAMA 296(21), 2572–2581 (2006).
  • Singh IM, Shishehbor MH, Ansell BJ: High-density lipoprotein as a therapeutic target: a systematic review. JAMA 298(7), 786–798 (2007).
  • Excellent review regarding current HDL-C therapies.
  • Santos-Gallego CG, Ibanez B, Badim‘n JJ: HDL-cholesterol: is it really good? Differences between apoA-I and HDL. Biochem. Pharmacol. 76(4), 443–452 (2008).
  • Williamson R, Lee D, Hagaman J, Maeda N: Marked reduction of high density lipoprotein cholesterol in mice genetically modified to lack apolipoprotein A-I. Proc. Natl Acad. Sci. USA 89(15), 7134–7138 (1992).
  • Moore RE, Navab M, Millar JS et al.: Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation. Circ. Res. 97(8), 763–771 (2005).
  • Cimmino G, Chen W, Speidl WS et al.: Safe and sustained overexpression of functional apolipoprotein A-I/high-density lipoprotein in apolipoprotein A-I-null mice by muscular adeno-associated viral serotype 8 vector gene transfer. J. Cardiovasc. Pharmacol. 54(5), 405–411 (2009).
  • Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM: Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature 353(6341), 265–267 (1991).
  • Wang X, Collins HL, Ranalletta M et al.: Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 117(8), 2216–2224 (2007). 75 van Eck M, Bos IS, Kaminski WE et al.: Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc. Natl Acad. Sci. USA 99(9), 6298–6303 (2002).
  • Wellington CL, Brunham LR, Zhou S et al.: Alterations of plasma lipids in mice via adenoviral-mediated hepatic overexpression of human ABCA1. J. Lipid Res. 44(8), 1470–1480 (2003).
  • Van Eck M, Singaraja RR, Ye D et al.: Macrophage ATP-binding cassette transporter A1 overexpression inhibits atherosclerotic lesion progression in low-density lipoprotein receptor knockout mice. Arterioscler. Thromb. Vasc. Biol. 26(4), 929–934 (2006).
  • Braun A, Trigatti BL, Post MJ et al.: Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ. Res. 90(3), 270–276 (2002).
  • Zhang W, Yancey PG, Su YR et al.: Inactivation of macrophage scavenger receptor class B type I promotes atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 108(18), 2258–2263 (2003).
  • Kozarsky KF, Donahee MH, Rigotti A, Iqbal SN, Edelman ER, Krieger M: Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature 387(6631), 414–417 (1997).
  • Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH, Rader DJ: Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 115(10), 2870–2874 (2005).
  • Van Eck M, Twisk J, Hoekstra M et al.: Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J. Biol. Chem. 278(26), 23699–23705 (2003).
  • Out R, Hoekstra M, Habets K et al.: Combined deletion of macrophage ABCA1 and ABCG1 leads to massive lipid accumulation in tissue macrophages and distinct atherosclerosis at relatively low plasma cholesterol levels. Arterioscler. Thromb. Vasc. Biol. 28(2), 258–264 (2008).
  • Yvan-Charvet L, Ranalletta M, Wang N et al.: Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J. Clin. Invest. 117(12), 3900–3908 (2007).
  • Hoeg JM, Santamarina-Fojo S, Berard AM et al.: Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc. Natl Acad. Sci. USA 93(21), 11448–11453 (1996).
  • Hovingh GK, Hutten BA, Holleboom AG et al.: Compromised LCAT function is associated with increased atherosclerosis. Circulation 112(6), 879–884 (2005).
  • Calabresi L, Baldassarre D, Castelnuovo SC et al.: Functional lecithin: cholesterol acyltransferase is not required for efficient atheroprotection in humans. Circulation 120(7), 628–635 (2009).
  • Mezdour H, Jones R, Dengremont C, Castro G, Maeda N: Hepatic lipase deficiency increases plasma cholesterol but reduces susceptibility to atherosclerosis in apolipoprotein E-deficient mice. J. Biol. Chem. 272(21), 13570–13575 (1997).
  • Karackattu SL, Trigatti B, Krieger M: Hepatic lipase deficiency delays atherosclerosis, myocardial infarction, and cardiac dysfunction and extends lifespan in SR-BI/ apolipoprotein E double knockout mice. Arterioscler. Thromb. Vasc. Biol. 26(3), 548–554 (2006).
  • Barcat D, Amadio A, Palos-Pinto A et al.: Combined hyperlipidemia/ hyperalphalipoproteinemia associated with premature spontaneous atherosclerosis in mice lacking hepatic lipase and low density lipoprotein receptor. Atherosclerosis 188(2), 347–355 (2006).
  • Ishida T, Choi S, Kundu RK et al.: Endothelial lipase is a major determinant of HDL level. J. Clin. Invest. 111(3), 347–355 (2003).
  • Badellino KO, Wolfe ML, Reilly MP, Rader DJ: Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis. PLoS Med. 3(2), E22 (2006).
  • Brown RJ, Lagor WR, Sankaranaravanan S et al.: Impact of combined deficiency of hepatic lipase and endothelial lipase on the metabolism of both high-density lipoproteins and apolipoprotein B-containing lipoproteins. Circ. Res. 107(3), 357–364 (2010).
  • Ishida T, Choi SY, Kundu RK et al.: Endothelial lipase modulates susceptibility to atherosclerosis in apolipoprotein-E-deficient mice. J. Biol. Chem. 279(43), 45085–45092 (2004).
  • Ko KW, Paul A, Ma K, Li L, Chan L: Endothelial lipase modulates HDL but has no effect on atherosclerosis development in apoE-/- and LDLR-/- mice. J. Lipid. Res. 46(12), 2586–2594 (2005).
  • Mineo C, Deguchi H, Griffin JH, Shaul PW: Endothelial and antithrombotic actions of HDL. Circ. Res. 98(11), 1352–1364 (2006).
  • Superb review of the non-reverse cholesterol transport-mediated atheroprotective effects of HDL-C – a must-read.
  • Tall AR: Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J. Intern. Med. 263(3), 256–273 (2008).
  • Nicholls SJ, Dusting GJ, Cutri B et al.: Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation 111(12), 1543–1550 (2005).
  • Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ: High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler. Thromb. Vasc. Biol. 15(11), 1987–1994 (1995).
  • Murphy AJ, Woollard KJ, Hoang A et al.: High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler. Thromb. Vasc. Biol. 28(11), 2071–2077 (2008).
  • Yuhanna IS, Zhu Y, Cox BE et al.: Highdensity lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat. Med. 7(7), 853–857 (2001).
  • Nofer JR, van der Giet M, Tolle M et al.: HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J. Clin. Invest. 113(4), 569–581 (2004). n HDL-C per se induces endothelial nitric oxide synthase (via sphingosine-1-phosphate), thus possessing vasorelaxing activities.
  • Seetharam D, Mineo C, Gormley AK et al.: High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I. Circ. Res. 98(1), 63–72 (2006).
  • Sugano M, Tsuchida K, Makino N: High-density lipoproteins protect endothelial cells from tumor necrosis factor-a-induced apoptosis. Biochem. Biophys. Res. Commun. 272(3), 872–876 (2000).
  • Suc I, Escargueil-Blanc I, Troly M, Salvayre R, Negre-Salvayre A: HDL and apoA prevent cell death of endothelial cells induced by oxidized LDL. Arterioscler. Thromb. Vasc. Biol. 17(10), 2158–2166 (1997).
  • Yvan-Charvet L, Pagler TA, Seimon TA et al.: ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ. Res. 106(12), 1861–1869 (2010).
  • Kontush A, Therond P, Zerrad A et al.: Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities. Arterioscler. Thromb. Vasc. Biol. 27(8), 1843–1849 (2007).
  • Navab M, Hama SY, Cooke CJ et al.: Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. J. Lipid Res. 41(9), 1481–1494 (2000).
  • Tward A, Xia YR, Wang XP et al.: Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation 106(4), 484–490 (2002).
  • Deguchi H, Pecheniuk NM, Elias DJ, Averell PM, Griffin JH: High-density lipoprotein deficiency and dyslipoproteinemia associated with venous thrombosis in men. Circulation 112(6), 893–899 (2005).
  • Li D, Weng S, Yang B et al.: Inhibition of arterial thrombus formation by apoA1Milano. Arterioscler. Thromb. Vasc. Biol. 19(2), 378–383 (1999).
  • Griffin JH, Kojima K, Banka CL, Curtiss LK, Fernandez JA: High-density lipoprotein enhancement of anticoagulant activities of plasma protein S and activated protein C. J. Clin. Invest. 103(2), 219–227 (1999).
  • Calkin AC, Drew BG, Ono A et al.: Reconstituted high-density lipoprotein attenuates platelet function in individuals with Type 2 diabetes mellitus by promoting cholesterol efflux. Circulation 120(21), 2095–2104 (2009). n Another example of the non-reverse cholesterol transport-mediated atheroprotective effects of HDL-C and HDL-C function. This article focuses on the antiaggregant effects of reconstituted HDL-C in platelets from diabetic patients.
  • Calabresi L, Rossoni G, Gomaraschi M, Sisto F, Berti F, Franceschini G: High-density lipoproteins protect isolated rat hearts from ischemia-reperfusion injury by reducing cardiac tumor necrosis factor-a content and enhancing prostaglandin release. Circ. Res. 92(3), 330–337 (2003).
  • Rossoni G, Gomaraschi M, Berti F, Sirtori CR, Franceschini G, Calabresi L: Synthetic high-density lipoproteins exert cardioprotective effects in myocardial ischemia/reperfusion injury. J. Pharmacol. Exp. Ther. 308(1), 79–84 (2004).
  • Marchesi M, Booth EA, Rossoni G et al.: Apolipoprotein A-IMilano/POPC complex attenuates post-ischemic ventricular dysfunction in the isolated rabbit heart. Atherosclerosis 197(2), 572–578 (2008).
  • Ansell BJ, Navab M, Hama S et al.: Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 108(22), 2751–2756 (2003). n Clearly establishes the differences between quality and quantity of HDL-C. HDL-C from coronary artery disease patients has reduced anti-inflammatory effects compared with HDL-C from healthy volunteers, even at higher concentrations.
  • Van Lenten BJ, Wagner AC, Nayak DP, Hama S, Navab M, Fogelman AM: High-density lipoprotein loses its antiinflammatory properties during acute influenza a infection. Circulation 103(18), 2283–2288 (2001). n Another article about functionality of HDL-C being hampered after inflammation (influenza infection).
  • Van Lenten BJ, Hama SY, de Beer FC et al.: Anti-inflammatory HDL becomes proinflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J. Clin. Invest. 96(6), 2758–2767 (1995).
  • Smith JD: Dysfunctional HDL as a diagnostic and therapeutic target. Arterioscler. Thromb. Vasc. Biol. 30(2), 151–155 (2010).
  • Zheng L, Nukuna B, Brennan ML et al.: Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest. 114(4), 529–541 (2004).
  • Shao B, Cavigiolio G, Brot N, Oda MN, Heinecke JW: Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Proc. Natl Acad. Sci. USA 105(34), 12224–12229 (2008).
  • Shao B, Pennathur S, Pagani I et al.: Modifying apolipoprotein A-I by malondialdehyde, but not by an array of other reactive carbonyls, blocks cholesterol efflux by the ABCA1 pathway. J. Biol. Chem. 285(24), 18473–18484 (2010).
  • Vaisar T, Pennathur S, Green PS et al.: Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest. 117(3), 746–756 (2007).
  • Hoang A, Murphy AJ, Coughlan MT et al.: Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties. Diabetologia 50(8), 1770–1779 (2007).
  • Nobecourt E, Tabet F, Lambert G et al.: Nonenzymatic glycation impairs the antiinflammatory properties of apolipoprotein A-I. Arterioscler. Thromb. Vasc. Biol. 30(4), 766–772 (2010).
  • Sorrentino SA, Besler C, Rohrer L et al.: Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with Type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation 121(1), 110–122 (2010).
  • Lewis GF, Rader DJ: New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res. 96(12), 1221–1232 (2005).
  • Greene DJ, Skeggs JW, Morton RE: Elevated triglyceride content diminishes the capacity of high density lipoprotein to deliver cholesteryl esters via the scavenger receptor class B type I (SR-BI). J. Biol. Chem. 276(7), 4804–4811 (2001).
  • Ibanez B, Vilahur G, Cimmino G et al.: Rapid change in plaque size, composition, and molecular footprint after recombinant apolipoprotein A-IMilano (ETC-216) administration: magnetic resonance imaging study in an experimental model of atherosclerosis. J. Am. Coll. Cardiol. 51(11), 1104–1109 (2008). n ApoA-IMilano infusions causes plaque regression and stabilization in a rabbit model of atherosclerosis.
  • Cimmino G, Ibanez B, Vilahur G et al.: Up-regulation of reverse cholesterol transport key players and rescue from global inflammation by apoA-IMilano. J. Cell. Mol. Med. 13(9B), 3226–3235 (2009).
  • Khera AV, Cuchel M, de la Llera-Moya M et al.: Cholesterol efflux capacity, highdensity lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364(2), 127–135 (2011).
  • Duncan JJ, Gordon NF, Scott CB: Women walking for health and fitness. How much is enough? JAMA 266(23), 3295–3299 (1991).
  • Kraus WE, Houmard JA, Duscha BD et al.: Effects of the amount and intensity of exercise on plasma lipoproteins. N. Engl. J. Med. 347(19), 1483–1492 (2002).
  • King AC, Haskell WL, Young DR, Oka RK, Stefanick ML: Long-term effects of varying intensities and formats of physical activity on participation rates, fitness, and lipoproteins in men and women aged 50 to 65 years. Circulation 91(10), 2596–2604 (1995).
  • Kodama S, Tanaka S, Saito K et al.: Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch. Intern. Med. 167(10), 999–1008 (2007).
  • Hartung GH, Foreyt JP, Mitchell RE, Vlasek I, Gotto AM Jr: Relation of diet to high-density-lipoprotein cholesterol in middle-aged marathon runners, joggers, and inactive men. N. Engl. J. Med. 302(7), 357–361 (1980).
  • Roberts CK, Ng C, Hama S, Eliseo AJ, Barnard RJ: Effect of a short-term diet and exercise intervention on inflammatory/ anti-inflammatory properties of HDL in overweight/obese men with cardiovascular risk factors. J. Appl. Physiol. 101(6), 1727–1732 (2006).
  • Wood PD, Stefanick ML, Williams PT, Haskell WL: The effects on plasma lipoproteins of a prudent weight-reducing diet, with or without exercise, in overweight men and women. N. Engl. J. Med. 325(7), 461–466 (1991).
  • Dattilo AM, Kris-Etherton PM: Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am. J. Clin. Nutr. 56(2), 320–328 (1992).
  • Schwartz RS, Brunzell JD: Increase of adipose tissue lipoprotein lipase activity with weight loss. J. Clin. Invest. 67(5), 1425–1430 (1981).
  • Weisweiler P: Plasma lipoproteins and lipase and lecithin:cholesterol acyltransferase activities in obese subjects before and after weight reduction. J. Clin. Endocrinol. Metab. 65(5), 969–973 (1987).
  • Craig WY, Palomaki GE, Haddow JE: Cigarette smoking and serum lipid and lipoprotein concentrations: an analysis of published data. BMJ 298(6676), 784–788 (1989).
  • Dullaart RP, Hoogenberg K, Dikkeschei BD, van Tol A: Higher plasma lipid transfer protein activities and unfavorable lipoprotein changes in cigarette-smoking men. Arterioscler. Thromb. 14(10), 1581–1585 (1994).
  • Garrison RJ, Kannel WB, Feinleib M, Castelli WP, McNamara PM, Padgett SJ: Cigarette smoking and HDL cholesterol: the Framingham offspring study. Atherosclerosis 30(1), 17–25 (1978).
  • Richard F, Marecaux N, Dallongeville J et al.: Effect of smoking cessation on lipoprotein A-I and lipoprotein A-I:A-II levels. Metabolism 46(6), 711–715 (1997).
  • Moffatt RJ: Effects of cessation of smoking on serum lipids and high density lipoproteincholesterol. Atherosclerosis 74(1–2), 85–89 (1988).
  • Stubbe I, Eskilsson J, Nilsson-Ehle P: High-density lipoprotein concentrations increase after stopping smoking. BMJ (Clin. Res. Ed.) 284(6328), 1511–1513 (1982).
  • Maeda K, Noguchi Y, Fukui T: The effects of cessation from cigarette smoking on the lipid and lipoprotein profiles: a meta-analysis. Prev. Med. 37(4), 283–290 (2003).
  • Gaziano JM, Buring JE, Breslow JL et al.: Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction. N. Engl. J. Med. 329(25), 1829–1834 (1993).
  • Valmadrid CT, Klein R, Moss SE, Klein BE, Cruickshanks KJ: Alcohol intake and the risk of coronary heart disease mortality in persons with older-onset diabetes mellitus. JAMA 282(3), 239–246 (1999).
  • Mukamal KJ, Conigrave KM, Mittleman MA et al.: Roles of drinking pattern and type of alcohol consumed in coronary heart disease in men. N. Engl. J. Med. 348(2), 109–118 (2003).
  • Costanzo S, Di Castelnuovo A, Donati MB, Iacoviello L, de Gaetano G: Alcohol consumption and mortality in patients with cardiovascular disease: a meta-analysis. J. Am. Coll. Cardiol. 55(13), 1339–1347 (2010).
  • Mukamal KJ, Chen CM, Rao SR, Breslow RA: Alcohol consumption and cardiovascular mortality among U.S. adults, 1987 to 2002. J. Am. Coll. Cardiol. 55(13), 1328–1335 (2010).
  • Klatsky AL, Friedman GD, Siegelaub AB: Alcohol and mortality. A ten?year Kaiser- Permanente experience. Ann. Intern. Med. 95(2), 139–145 (1981).
  • Kromhout D, Bosschieter EB, de Lezenne Coulander C: The inverse relation between fish consumption and 20?year mortality from coronary heart disease. N. Engl. J. Med. 312(19), 1205–1209 (1985).
  • Kushi LH, Lew RA, Stare FJ et al.: Diet and 20?year mortality from coronary heart disease. The Ireland–Boston Diet–Heart Study. N. Engl. J. Med. 312(13), 811–818 (1985).
  • Nicholls SJ, Lundman P, Harmer JA et al.: Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J. Am. Coll. Cardiol. 48(4), 715–720 (2006).
  • Frost G, Leeds AA, Dore CJ, Madeiros S, Brading S, Dornhorst A: Glycaemic index as a determinant of serum HDL-cholesterol concentration. Lancet 353(9158), 1045–1048 (1999).
  • Ford ES, Liu S: Glycemic index and serum high-density lipoprotein cholesterol concentration among US adults. Arch. Intern. Med. 161(4), 572–576 (2001).
  • Mosdol A, Witte DR, Frost G, Marmot MG, Brunner EJ: Dietary glycemic index and glycemic load are associated with highdensity- lipoprotein cholesterol at baseline but not with increased risk of diabetes in the Whitehall II study. Am. J. Clin. Nutr. 86(4), 988–994 (2007).
  • Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344(8934), 1383–1389 (1994).
  • Gotto AM Jr, Boccuzzi SJ, Cook JR et al.: Effect of lovastatin on cardiovascular resource utilization and costs in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). AFCAPS/TexCAPS Research Group. Am. J. Cardiol. 86(11), 1176–1181 (2000).
  • Shepherd J, Cobbe SM, Ford I et al.: Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N. Engl. J. Med. 333(20), 1301–1307 (1995).
  • Barter PJ, Brandrup-Wognsen G, Palmer MK, Nicholls SJ: Effect of statins on HDL-C: a complex process unrelated to changes in LDL-C: analysis of the VOYAGER Database. J. Lipid Res. 51(6), 1546–1553 (2010).
  • Jones PH, Davidson MH, Stein EA et al.: Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* Trial). Am. J. Cardiol. 92(2), 152–160 (2003).
  • Schaefer JR, Schweer H, Ikewaki K et al.: Metabolic basis of high density lipoproteins and apolipoprotein A-I increase by HMG?CoA reductase inhibition in healthy subjects and a patient with coronary artery disease. Atherosclerosis 144(1), 177–184 (1999).
  • Chapman MJ, Le Goff W, Guerin M, Kontush A: Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Eur. Heart J. 31(2), 149–164 (2010). n Good review regarding CETP activity.
  • Badim‘n JJ, Santos-Gallego CG, Badimon L: Importance of HDL cholesterol in atherothrombosis: how did we get here? Where are we going? Rev. Esp. Cardiol. 63(Suppl. 2), 20–35 (2010).
  • Tunaru S, Kero J, Schaub A et al.: PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat. Med. 9(3), 352–355 (2003).
  • Cheng K, Wu TJ, Wu KK et al.: Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc. Natl Acad. Sci. USA 103(17), 6682–6687 (2006).
  • Paolini JF, Mitchel YB, Reyes R et al.: Effects of laropiprant on nicotinic acid-induced flushing in patients with dyslipidemia. Am. J. Cardiol. 101(5), 625–630 (2008).
  • Elam MB, Hunninghake DB, Davis KB et al.: Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the ADMIT study: a randomized trial. Arterial Disease Multiple Intervention Trial. JAMA 284(10), 1263–1270 (2000).
  • Grundy SM, Vega GL, McGovern ME et al.: Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia associated with Type 2 diabetes: results of the assessment of diabetes control and evaluation of the efficacy of niaspan trial. Arch. Intern. Med. 162(14), 1568–1576 (2002).
  • Buse JB, Ginsberg HN, Bakris GL et al.: Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation 115(1), 114–126 (2007).
  • Backes JM, Gibson CA, Ruisinger JF, Moriarty PM: Fibrates: what have we learned in the past 40 years? Pharmacotherapy 27(3), 412–424 (2007).
  • Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC: Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98(19), 2088–2093 (1998).
  • Manninen V, Tenkanen L, Koskinen P et al.: Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment. Circulation 85(1), 37–45 (1992).
  • Nyman JA, Martinson MS, Nelson D et al.: Cost-effectiveness of gemfibrozil for coronary heart disease patients with low levels of high-density lipoprotein cholesterol: the Department of Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial. Arch. Intern. Med. 162(2), 177–182 (2002).
  • Birjmohun RS, Hutten BA, Kastelein JJ, Stroes ES: Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials. J. Am. Coll. Cardiol. 45(2), 185–197 (2005).
  • Scott R, O’Brien R, Fulcher G et al.: Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with Type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care 32(3), 493–498 (2009).
  • Ginsberg HN, Elam MB, Lovato LC et al.: Effects of combination lipid therapy in Type 2 diabetes mellitus. N. Engl. J. Med. 362(17), 1563–1574 (2010).
  • Jun M, Foote C, Lv J et al.: Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 375(9729), 1875–1884 (2010).
  • Chinetti G, Lestavel S, Bocher V et al.: PPAR-a and PPAR-g activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat. Med. 7(1), 53–58 (2001).
  • Chiquette E, Ramirez G, Defronzo R: A meta-analysis comparing the effect of thiazolidinediones on cardiovascular risk factors. Arch. Intern. Med. 164(19), 2097–2104 (2004).
  • Lincoff AM, Wolski K, Nicholls SJ, Nissen SE: Pioglitazone and risk of cardiovascular events in patients with Type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 298(10), 1180–1188 (2007).
  • Nissen SE, Wolski K: Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356(24), 2457–2471 (2007). n The whistle-blower meta-analysis proving that rosiglitazone increases CV risk.
  • Graham DJ, Ouellet-Hellstrom R, MaCurdy TE et al.: Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA 304(4), 411–418 (2010).
  • Lipscombe LL, Gomes T, Levesque LE, Hux JE, Juurlink DN, Alter DA: Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. JAMA 298(22), 2634–2643 (2007).
  • Singh S, Loke YK, Furberg CD: Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA 298(10), 1189–1195 (2007).
  • Inazu A, Brown ML, Hesler CB et al.: Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N. Engl. J. Med. 323(18), 1234–1238 (1990).
  • Brousseau ME, Schaefer EJ, Wolfe ML et al.: Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N. Engl. J. Med. 350(15), 1505–1515 (2004).
  • Sofat R, Hingorani AD, Smeeth L et al.: Separating the mechanism-based and off-target actions of cholesteryl ester transfer protein inhibitors with CETP gene polymorphisms. Circulation 121(1), 52–62 (2010). 194 de Grooth GJ, Kuivenhoven JA, Stalenhoef AF et al.: Efficacy and safety of a novel cholesteryl ester transfer protein inhibitor, JTT-705, in humans: a randomized Phase II dose-response study. Circulation 105(18), 2159–2165 (2002).
  • Kuivenhoven JA, de Grooth GJ, Kawamura H et al.: Effectiveness of inhibition of cholesteryl ester transfer protein by JTT-705 in combination with pravastatin in type II dyslipidemia. Am. J. Cardiol. 95(9), 1085–1088 (2005).
  • Stein EA, Roth EM, Rhyne JM, Burgess T, Kallend D, Robinson JG: Safety and tolerability of dalcetrapib (RO4607381/ JTT-705): results from a 48?week trial. Eur. Heart J. 31(4), 480–488 (2010).
  • Krishna R, Anderson MS, Bergman AJ et al.: Effect of the cholesteryl ester transfer protein inhibitor, anacetrapib, on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals: two double-blind, randomised placebo-controlled Phase I studies. Lancet 370(9603), 1907–1914 (2007).
  • Bloomfield D, Carlson GL, Sapre A et al.: Efficacy and safety of the cholesteryl ester transfer protein inhibitor anacetrapib as monotherapy and coadministered with atorvastatin in dyslipidemic patients. Am. Heart J. 157(2), 352–360.e2 (2009).
  • Cannon CP, Shah S, Dansky HM et al.: Safety of anacetrapib in patients with or at high risk for coronary heart disease. N. Engl. J. Med. 363(25), 2406–2415 (2010). n Anacetrapib appears to be a promising CETP inhibitor, being both effective (138% increase in HDL-C levels, primary end point) and safe (no excess in morbidity and mortality, prespecified secondary end points).
  • Franceschini G, Sirtori CR, Capurso A 2nd, Weisgraber KH, Mahley RW: A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J. Clin. Invest. 66(5), 892–900 (1980).
  • Sirtori CR, Calabresi L, Franceschini G et al.: Cardiovascular status of carriers of the apolipoprotein A-IMilano mutant: the Limone sul Garda study. Circulation 103(15), 1949–1954 (2001).
  • Shah PK, Nilsson J, Kaul S et al.: Effects of recombinant apolipoprotein A-IMilano on aortic atherosclerosis in apolipoprotein E-deficient mice. Circulation 97(8), 780–785 (1998).
  • Kaul S, Rukshin V, Santos R et al.: Intramural delivery of recombinant apolipoprotein A-IMilano/phospholipid complex (ETC-216) inhibits in-stent stenosis in porcine coronary arteries. Circulation 107(20), 2551–2554 (2003).
  • Kaul S, Coin B, Hedayiti A et al.: Rapid reversal of endothelial dysfunction in hypercholesterolemic apolipoprotein E-null mice by recombinant apolipoprotein A-IMilano-phospholipid complex. J. Am. Coll. Cardiol. 44(6), 1311–1319 (2004).
  • Nicholls SJ, Tuzcu EM, Sipahi I et al.: Relationship between atheroma regression and change in lumen size after infusion of apolipoprotein A-IMilano. J. Am. Coll. Cardiol. 47(5), 992–997 (2006).
  • Bailey D, Jahagirdar R, Gordon A et al.: RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J. Am. Coll. Cardiol. 55(23), 2580–2589 (2010). n Discusses RVX?208, a promising new therapy and a novel compound that increases apoA-I synthesis.
  • McNeill E: RVX-208, a stimulator of apolipoprotein AI gene expression for the treatment of cardiovascular diseases. Curr. Opin. Investig. Drugs 11(3), 357–364 (2010).
  • Nicholls SJ BC, Kastelein JJ, Taylor AJ, Gordon A, Johansson J, Nissen SE: Results of the first major clinical trial of an oral agent inducing apo A1 synthesis: A New Approach to HDL Raising and CV Risk Modification (ASSERT). Presented at: American Heart Association 2010 Scientific Sessions. Chicago, IL, USA, 13–17 November 2010.
  • Eriksson M, Carlson LA, Miettinen TA, Angelin B: Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A-I. Potential reverse cholesterol transport in humans. Circulation 100(6), 594–598 (1999).
  • Garber DW, Datta G, Chaddha M et al.: A new synthetic class A amphipathic peptide analogue protects mice from diet-induced atherosclerosis. J. Lipid Res. 42(4), 545–552 (2001).
  • Navab M, Anantharamaiah GM, Hama S et al.: Oral administration of an apo A-I mimetic peptide synthesized from d-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation 105(3), 290–292 (2002).
  • Bloedon LT, Dunbar R, Duffy D et al.: Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide d-4F in high-risk cardiovascular patients. J. Lipid Res. 49(6), 1344–1352 (2008).
  • Miller NE, Thelle DS, Forde OH, Mjos OD: The Tromsø heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study. Lancet 1(8019), 965–968 (1977).
  • Multiple risk factor intervention trial. Risk factor changes and mortality results. Multiple Risk Factor Intervention Trial Research Group. JAMA 248(12), 1465–1477 (1982).
  • Lipid Research Clinics Program. JAMA 252(18), 2545–2548 (1984).
  • Sharrett AR, Ballantyne CM, Coady SA et al.: Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: the Atherosclerosis Risk In Communities (ARIC) study. Circulation 104(10), 1108–1113 (2001).
  • Sibley C, Gottlieb I, Cox C et al.: Comparative Effect of Statins vs Niacin on MRI Measured Regression of Carotid Atherosclerosis in a Randomized Clinical Trial: The NIA Plaque Study. Circulation 120, S376 (2009).
  • Chan DC, Watts GF: Apolipoproteins as markers and managers of coronary risk. QJM 99(5), 277–287 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.