1,217
Views
18
CrossRef citations to date
0
Altmetric
Special Report

SREBPs: regulators of cholesterol/lipids as therapeutic targets in metabolic disorders, cancers and viral diseases

&
Pages 27-36 | Published online: 18 Jan 2017

Reference

  • Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008.JAMA303(3), 235–241 (2010).
  • Lazo M, Clark JM. The epidemiology of nonalcoholic fatty liver disease: a global perspective.Semin.LiverDis.28(4), 339–350 (2008).
  • Guarente L. The logic linking protein acetylation and metabolism.CellMetab. 14(2), 151–153 (2011).
  • Miziorko HM. Enzymes of the mevalonate pathway of isoprenoid biosynthesis.Arch. Biochem.Biophys.505(2), 131–143 (2011).
  • Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor.Cell89(3), 331–340 (1997).
  • Osborne TF, Espenshade PJ. Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it’s been.GenesDevelop.23(22), 2578–2591 (2009).
  • Horton JD, Shimomura I, Ikemoto S, Bashmakov Y, Hammer RE. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver.J.Biol.Chem. 278(38), 36652–36660 (2003).
  • Hagen RM, Rodriguez-Cuenca S, Vidal-Puig A. An allostatic control of membrane lipid composition by SREBP1.FEBSLett.584(12), 2689–2698 (2010).
  • Walker AK, Jacobs RL, Watts JLetal. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans.Cell 147(4), 840–852 (2011).
  • Krycer JR, Sharpe LJ, Luu W, Brown AJ. The Akt–SREBP nexus: cell signaling meets lipid metaboism.TrendsEndocrinol.Metab. 21(5), 268–276 (2010).
  • Brown AJ. Viral hepatitis and fatty liver disease: how an unwelcome guest makes pate of the host.Biochem.J.416(2), E15–E17 (2008).
  • Cornier MA, Dabelea D, Hernandez TLetal. The metabolic syndrome.Endocr.Rev.29(7), 777–822 (2008).
  • Raghow R, Yellaturu C, Deng X, Park EA, Elam MB. SREBPs: the crossroads of physiological and pathological lipid homestasis.TrendsEndocrinol.Metab.19(2), 65–73 (2008).
  • Ferre P, Foufelle F. Hepatic steatosis: a role for denovo lipogenesis and the transcription factor SREBP-1c.DiabetesObes.Metab. 12(Suppl. 2), S83–S92 (2010).
  • Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network.Biochim.Biophys. Acta1813(7), 1269–1278 (2011).
  • Canto C, Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways.CellMol.LifeSci.67(20), 3407–3423 (2010).
  • Li Y, Xu S, Mihaylova MMetal. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice.Cell Metab.13(4), 376–388 (2011). Provides critical invivo evidence that the AMPK–SREBP network contributes to pathological changes in fatty liver and cardiovascular disease.
  • Tomita K, Tamiya G, Ando Setal. AICAR, an AMPK activator, has protective effects on alcohol-induced fatty livr in rats.Alcohol. Clin.Exp.Res.29(Suppl. 12), 240S–245S (2005).
  • Yang J, Craddock L, Hong S, Liu ZM. AMP-activated protein kinase suppresses LXR-dependent sterol regulatory element-binding protein-1c transcription in rat hepatoma McA-RH7777 cells.J.Cell Biochem.106(3), 414–426 (2009).
  • Zhou G, Myers R, Li Yetal. Role of AMP-activated protein kinase in mechanism of metformin action.J.Clin.Invest.108(8), 1167–1174 (2001).
  • Phielix E, Szendroedi J, Roden M. The role of metformin and thiazolidinediones in the regulation of hepatic glucose metabolism and its clinical impact.TrendsPharmacol.Sci. 32(10), 607–616 (2011).
  • Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway.Curr. Opin.CellBiol.17(6), 596–603 (2005).
  • Shaw RJ. LKB1 and AMP-activated protein kinase control of mTOR sigalling and growth.ActaPhysiol.(Oxf.)196(1), 65–80 (2009).
  • Van Veelen W, Korsse SE, Van De Laar L, Peppelenbosch MP. The long and winding road to rational treatment of cancer associated with LKB1/AMPK/TSC/mTORC1 signaling. Oncogene30(20), 2289–2303 (2011).
  • Donmez G, Guarente L. Aging and disease: connections to sirtuins.AgingCell9(2), 285–290 (2010).
  • Lomb DJ, Laurent G, Haigis MC. Sirtuins regulate key aspects of lipid metaboism. Biochim.Biophys.Acta1804(8), 1652–1657 (2010).
  • Ponugoti B, Kim DH, Xiao Zetal. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J.Biol.Chem.285(44), 33959–33970 (2010).
  • Walker AK, Yang F, Jiang Ketal. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/choleregulator SREBP. GenesDevelop.24(13), 1403–1417 (2010).
  • Feige JN, Lagouge M, Canto Cetal. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation.Cell Metab.8(5), 347–358 (2008).
  • Ruderman NB, Xu XJ, Nelson Letal. AMPK and SIRT1: a long-standing partnership? Am.J.Physiol.Endocrinol. Metab.298(4), E751–E760 (2010).
  • Um JH, Park SJ, Kang Hetal. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol.Diabetes59(3), 554–563 (2010).
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation.Cell144(5), 646–674 (2011).
  • Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis.Nat.Rev.Cancer7(10), 763–777 (2007).
  • Michal G. BiochemicalPathways. Wiley, NY, USA (1999).
  • Swinnen JV, Ulrix W, Heyns W, Verhoeven G. Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins.Proc.NatlAcad.Sci. USA94(24), 12975–12980 (1997).
  • Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing.Nat.Rev.Mol.CellBiol. 12(1), 21–35 (2011).
  • Markman B, Dienstmann R, Tabernero J. Targeting the PI3K/Akt/mTOR pathway – beyond rapalogs.Oncotarget1(7), 530–543 (2010).
  • Lewis CA, Griffiths B, Santos CR, Pende M, Schulze A. Regulation of the SREBP transcription factors by mTORC1.Biochem. Soc.Trans.39(2), 495–499 (2011).
  • Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream.Cell 129(7), 1261–1274 (2007).
  • Bengoechea-Alonso MT, Ericsson J. A phosphorylation cascade controls the degradation of active SREBP1.J.Biol.Chem. 284(9), 5885–5895 (2009).
  • Punga T, Bengoechea-Alonso MT, Ericsson J. Phosphorylation and ubiquitination of the transcription factor sterol regulatory element-binding protein-1 in response to DNA binding.J.Biol.Chem.281(35), 25278–25286 (2006).
  • Porstmann T, Santos CR, Griffiths Betal. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. CellMetab.8(3), 224–236 (2008). ▪ Provides an important early link between SREBPs and pathways controlling cell growth.
  • Li S, Brown MS, Goldstein JL. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis.Proc.NatlAcad.Sci.USA 107(8), 3441–3446 (2010).
  • Sharpe LJ, Brown AJ. Rapamycin downregulates LDL-receptor expression independently of SREBP-2.Biochem.Biophys. Res.Commun.373(4), 670–674 (2008).
  • Yecies JL, Zhang HH, Menon Setal. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways.CellMetab.14(1), 21–32 (2011).
  • Peterson TR, Sengupta SS, Harris TEetal. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell146(3), 408–420 (2011).
  • Guo D, Hildebrandt IJ, Prins RMetal. The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis.Proc. NatlAcad.Sci.USA106(31), 12932–12937 (2009).
  • Buchkovich NJ, Yu Y, Zampieri CA, Alwine JC. The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K–Akt–mTOR signalling pathway.Nat.Rev. Microbiol.6(4), 266–275 (2008).
  • Blanc M, Hsieh WY, Robertson KAetal. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis.PLoSBiol.9(3), E1000598 (2011).
  • Patel JH, Cobbold JF, Thomas HC, Taylor-Robinson SD. Hepatitis C and hepatic steatosis.Q JM103(5), 293–303 (2010).
  • Jackel-Cram C, Qiao L, Xiang Zetal. Hepatitis C virus genotype-3a core protein enhances sterol regulatory element-binding protein-1 activity through the phosphoinositide 3-kinase–Akt-2 pathway. J.Gen.Virol.91(Pt 6), 1388–1395 (2010).
  • Dai CY, Huang JF, Hsieh MYetal. Insulin resistance predicts response to peginterferonalpha/ribavirin combination therapy in chronic hepatitis C patients.J.Hepatol.50(4), 712–718 (2009).
  • Poustchi H, Negro F, Hui Jetal. Insulin resistance and response to therapy inients infected with chronic hepatitis C virus genotypetypes 2 and 3.J.Hepatol.48(1), 28–34 (2008).
  • Bader T, Fazili J, Madhoun Metal. Fluvastatin inhibits hepatitis C replication in humans.Am.J.Gastroenterol.103(6), 1383–1389 (2008).
  • Ikeda M, Abe K, Yamada M, Dansako H, Naka K, Kato N. Different anti-HCV profiles of statins and their potential for combination therapy with interferon.Hepatology44(1), 117–125 (2006).
  • Adler M, Matloff JL, Boxer AS etal. In chronic hepatitis C (HCV), pretreatment with thiazolidinediones (TZDs) or metformin decreases insulin resistance (IR) and HCV viral load and increases early virologic response (EVR). Hepatology 48, 1156A–1156A (2008).
  • Romero-Gomez M, Diago M, Andrade RJ etal. Treatment of insulin resistance with metformin in naïve genotype 1 chronic hepatitis C patients receiving peginterferon alfa-2a plus ribavirin.Hepatology50(6), 1702–1708 (2009).
  • Goldstein JL, Debose-Boyd RA, Brown MS. Protein sensors for membrane sterols.Cell 124(1), 35–46 (2006). ▪▪ Summarizes the mechanistic details of SREBP processing.
  • Motamed M, Zhang Y, Wang MLetal. Identification of luminal loop 1 of SCAP protein as the sterol sensor that maintains cholesterol homeostasis.J.Biol.Chem. 286(20), 18002–18012 (2011).
  • Yang T, Espenshade PJ, Wright MEetal. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER.Cell110(4), 489–500 (2002).
  • Grand-Perret T, Bouillot A, Perrot A, Commans S, Walker M, Issandou M. SCAP ligands are potent new lipid-lowering drugs. Nat.Med.7(12), 1332–1338 (2001).
  • Zhang J, Dudley-Rucker N, Crowley JRetal. The steroidal analog GW707 activates the SREBP pathway throug disruption of intracellular cholesterol trafficking.J.Lipid Res.45(2), 223–231 (2004).
  • Repa JJ, Liang G, Ou Jetal. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRbeta and LXRalpha.Genes Develop.14(22), 2819–2830 (2000).
  • Kamisuki S, Mao Q, Abu-Elheiga Letal. A small molecule that blocks fat synthesis by inhibiting the activation of SREBP.Chem. Biol.16(8), 882–892 (2009).
  • Tang JJ, Li JG, Qi Wetal. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. CellMetab.13(1), 44–56 (2011). ▪▪ Shows the effectiveness of small-molecule inhibitors of SREBP processing in mitigating SREBP function invivo.
  • Guan M, Fousek K, Jiang Cetal. Nelfinavir induces liposarcoma apoptosis through inhibition of regulated intramembrane proteolysis of SREBP-1 and ATF6.Clin. CancerRes.17(7), 1796–1806 (2011).
  • Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver.J.Clin.Invest.109(9), 1125–1131 (2002).
  • Gerin I, Clerbaux LA, Haumont Oetal. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation.J.Biol.Chem.285(44), 33652–33661 (2010). ▪▪ Along with [69–72], uncovered a novel relationship between an miRNA embedded in the SREBP loci and control of cholesterol homeostasis.
  • Horie T, Ono K, Horiguchi Metal. MicroRNA-33 encoded by an intron sterol regulatory element-binding protein 2 (Srebp2) regulates HDL invivo.Proc.NatlAcad.Sci. USA107(40), 17321–17326 (2010). ▪▪ Along with [68–70,72], uncovered a novel relationship between an miRNA embedded in the SREBP loci and control of cholesterol homeostasis.
  • Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters.Proc.NatlAcad.Sci. USA107(27), 12228–12232 (2010).
  • Najafi-Shoushtari SH, Kristo F, Li Yetal. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science328(5985), 1566–1569 (2010). ▪▪Along with [68–71], uncovered a novel relationship between an miRNA embedded in the SREBP loci and control of cholesterol homeostasis.
  • Rayner KJ, Suarez Y, Davalos A et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328(5985), 1570–1573 (2010). ▪▪ Along with [68–71], uncovered a novel relationship between an miRNA embedded in the SREBP loci and control of cholesterol homeostasis. Along with [68,70–72], uncovered a novel relationship between an miRNA embedded in the SREBP loci and control of cholesterol homeostasis.
  • Rayner KJ, Sheedy FJ, Esau CCetal. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis.J.Clin.Inves.121(7), 2921–2931 (2011).
  • Davalos A, Goedeke L, Smibert Petal. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc.NatlAcad.Sci.USA108(22), 9232–9237 (2011).
  • Rottiers V, Najafi-Shoushtari SH, Kristo F etal. MicroRNAs in metabolism and metabolic diseases. ColdSpringHarb.Symp. Quant.Biol. doi: 10.1101/sqb.2011.76.011049 (2011) (Epub ahead of print).
  • Elmen J, Lindow M, Schutz Setal. LNA-mediated microRNA silencing in non-human primates.Nature452(7189), 896–899 (2008).
  • Elmen J, Lindow M, Silahtaroglu Aetal. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver.NucleicAcidRes. 36(4), 1153–1162 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.