881
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Ceramide as a target of chemotherapy: its role in apoptosis and autophagy

&
Pages 111-119 | Published online: 18 Jan 2017

Reference

  • Sawai H, Domae N, Okazaki T. Current status and perspectives in ceramide-targeting molecular medicine. Curr.Pharm.Des. 11(19), 2479–2487 (2005).
  • Hannun YA, Luberto C. Lipid metabolism: ceramide transfer protein adds a new 3 dimension. Curr.Biol.14(4), R163–R165 (2004).
  • Payne SG, Milstien S, Spiegel S. Sphingosine-1-phosphate: dual messenger functions. FEBS Lett.531(1), 54–57 (2002).
  • Bleicher RJ, Cabot MC. Glucosylceramide synthase and apoptosis. Biochim.Biophys.Acta 1585(2–3), 172–178 (2002).
  • Hannun YA, Obeid LM. Many ceramides. J.Biol.Chem.286(32), 27855–27862 (2011).
  • Nikolova-Karakashian MN, Rozenova KA. Ceramide in stress response. Adv.Exp.Med. Biol.688, 86–108 (2010).
  • Bedia C, Levade T, Codogno P. Regulation of autophagy by sphingolipids. AnticancerAgents Med.Chem. 11(9), 844–853 (2011).
  • Kitatani K, Idkowiak-Baldys J, Hannun YA. The sphingolipid salvage pathway in ceramide metabolism and signaling. CellSignal.20(6), 1010–1018 (2008).
  • Tchikov V, Bertsch U, Fritsch J, Edelmann B, Schutze S. Subcellular compartmentalization of TNF receptor-1 and CD95 signaling pathways. Eur.J.Cell.Biol.90(6–7), 467–475 (2011).
  • Edelmann B, Bertsch U, Tchikov Vetal. Caspase-8 and caspase-7 sequentially mediate proteolytic activation of acid sphingomyelinase in TNF-R1 receptosomes. EMBOJ.30(2), 379–394 (2011).
  • Kroemer G, Reed JC. Mitochondrial control of cell death. Nat.Med.6(5), 513–519 (2000).
  • Grassme H, Cremesti A, Kolesnick R, Gulbins E. Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene22(35), 5457–5470 (2003).
  • Perrotta C, Bizzozero L, Falcone Setal. Nitric oxide boosts chemoimmunotherapy via inhibition of acid sphingomyelinase in a mouse model of melanoma. CancerRes. 67(16), 7559–7564 (2007).
  • Perrotta C, Bizzozero L, Cazzato Detal. Syntaxin 4 is required for acid sphingomyelinase activity and apoptotic function. J.Biol.Chem.285(51), 40240–40251 (2010).
  • Horinouchi K, Erlich S, Perl DPetal. Acid sphingomyelinase deficient mice: a model of types A and B Niemann–Pick disease. Nat. Genet.10(3), 288–293 (1995).
  • Dumitru CA, Gulbins E. TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene25(41), 5612–5625 (2006).
  • Li X, Becker KA, Zhang Y. Ceramide in redox signaling and cardiovascular diseases. Cell.Physiol.Biochem.26(1), 41–48 (2010).
  • Zhang AY, Yi F, Zhang G, Gulbins E, Li PL. Lipid raft clustering and redox signaling platform formation in coronary arterial endothelial cells. Hypertension47(1), 74–80 (2006).
  • Montfort A, Martin PG, Levade T, Benoist H, Segui B. FAN (factor associated with neutral sphingomyelinase activation), a moonlighting protein in TNF-R1 signaling. J.Leukoc.Biol.88(5), 897–903 (2010).
  • Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat.Rev.Mol.Cell.Biol.9(2), 139–150 (2008). Excellent overview on sphingolipid signaling.
  • Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat.Cell. Biol.3(11), E255–E263 (2001).
  • Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J.Clin.Invest.115(10), 2656–2664 (2005).
  • Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control. Nat.Rev. Cancer5(11), 886–897 (2005).
  • Rao RP, Yuan C, Allegood JCetal. Ceramide transfer protein function is essential for normal oxidative stress response and lifespan. Proc.NatlAcad.Sci.USA104(27), 11364–11369 (2007).
  • Senkal CE, Ponnusamy S, Bielawski J, Hannun YA, Ogretmen B. Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways. FASEBJ.24(1), 296–308 (2010).
  • Chen CL, Lin CF, Chang WT, Huang WC, Teng CF, Lin YS. Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxininteracting protein-mediated pathway. Blood 111(8), 4365–4374 (2008).
  • White-Gilbertson S, Mullen T, Senkal C etal. Ceramide synthase 6 modulates TRAIL sensitivity and nuclear translocation of active caspase-3 in colon cancer cells. Oncogene 28(8), 1132–1141 (2009).
  • Heinrich M, Neumeyer J, Jakob Metal. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. CellDeathDiffer.11(5), 550–563 (2004).
  • Pettus BJ, Chalfant CE, Hannun YA. Ceramide in apoptosis: an overview and current perspectives. Biochim.Biophys.Acta 1585(2–3), 114–125 (2002).
  • Lavieu G, Scarlatti F, Sala Getal. Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision? Autophagy3(1), 45–47 (2007).
  • Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90(2), 313–323 (2008).
  • Pankiv S, Clausen TH, Lamark Tetal. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J.Biol.Chem. 282(33), 24131–24145 (2007).
  • Schweers RL, Zhang J, Randall MSetal. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc.NatlAcad.Sci.USA 104(49), 19500–19505 (2007).
  • Pattingre S, Bauvy C, Carpentier S, Levade T, Levine B, Codogno P. Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy. J.Biol. Chem.284(5), 2719–2728 (2009). ▪ Clear demonstration of ceramide’s role in autophagy induction and identification of the specific pathway.
  • Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell30(6), 678–688 (2008).
  • Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy4(5), 600–606 (2008).
  • Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S. Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. CancerRes.64(12), 4286–4293 (2004).
  • Guenther GG, Peralta ER, Rosales KR, Wong SY, Siskind LJ, Edinger AL. Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc.NatlAcad.Sci. USA105(45), 17402–17407 (2008).
  • Lavieu G, Scarlatti F, Sala Getal. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J.Biol.Chem.281(13), 8518–8527 (2006). ▪ Demonstration of sphingosine kinase implication in autophagy stimulation and demonstration of the dual role of sphingosine-1-phosphate and ceramide as a rheostat.
  • Colie S, Van Veldhoven PP, Kedjouar Betal. Disruption of sphingosine 1-phosphate lyase confers resistance to chemotherapy and promotes oncogenesis through Bcl-2/Bcl-xL upregulation. CancerRes.69(24), 9346–9353 (2009).
  • Degenhardt K, Mathew R, Beaudoin Betal. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. CancerCell10(1), 51–64 (2006). ▪▪ Excellent demonstration of a potential role of autophagy in tumor suppression.
  • Edinger AL, Thompson CB. Defective autophagy leads to cancer. CancerCell4(6), 422–424 (2003).
  • Komatsu M, Waguri S, Koike Metal. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagydeficient mice. Cell131(6), 1149–1163 (2007).
  • Cuervo AM. Autophagy: in sickness and in health. TrendsCell.Biol.14(2), 70–77 (2004).
  • Lu Z, Luo RZ, Lu Yetal. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J.Clin.Invest.118(12), 3917–3929 (2008).
  • Guo JY, Chen HY, Mathew Retal. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. GenesDev. 25(5), 460–470 (2011).
  • Beljanski V, Knaak C, Smith CD. A novel sphingosine kinase inhibitor induces autophagy in tumor cells. J.Pharmacol.Exp. Ther.333(2), 454–464 (2010).
  • Salazar M, Carracedo A, Salanueva IJetal. Cannabinoid action induces autophagymediated cell death through stimulation of ER stress in human glioma cells. J.Clin. Invest.119(5), 1359–1372 (2009).
  • Ponnusamy S, Meyers-Needham M, Senkal CEetal. Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol.6(10), 1603–1624 (2010).
  • Tagaram HR, Divittore NA, Barth BMetal. Nanoliposomal ceramide prevents invivo growth of hepatocellular carcinoma. Gut 60(5), 695–701 (2011).
  • Tran MA, Smith CD, Kester M, Robertson GP. Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clin.CancerRes.14(11), 3571–3581 (2008). ▪ Presents the combination of chemotherapy and novel approaches based on nanoliposomal ceramide.
  • Jiang Y, Divittore NA, Kaiser JMetal. Combinatorial therapies improve the therapeutic efficacy of nanoliposomal ceramide for pancreatic cancer. CancerBiol. Ther.12(7), 574–585 (2011).
  • Futerman AH, Hannun YA. The complex life of simple sphingolipids. EMBORep.5(8), 777–782 (2004).
  • Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat.Rev.Cancer4(8), 604–616 (2004).
  • Vaisman A, Varchenko M, Said I, Chaney SG. Cell cycle changes associated with formation of Pt-DNA adducts in human ovarian carcinoma cells with different cisplatin sensitivity. Cytometry27(1), 54–64 (1997).
  • Eastman A. Characterization of the adducts produced in DNA by cisdiamminedichloroplatinum(II) and cis-dichloro(ethylenediamine)platinum(II). Biochemistry22(16), 3927–3933 (1983).
  • Hueber A, Welsandt G, Jordan JFetal. Characterization of CD95 ligand (CD95L)-induced apoptosis in human tenon fibroblasts. Exp.EyeRes.75(1), 1–8 (2002).
  • Bezombes C, Grazide S, Garret Cetal. Rituximab antiproliferative effect in B-lymphoma cells is associated with acid-sphingomyelinase activation in raft microdomains. Blood104(4), 1166–1173 (2004).
  • Bezombes C, Laurent G, Jaffrezou JP. Implication of raft microdomains in drug induced apoptosis. Curr.Med.Chem AnticancerAgents3(4), 263–270 (2003).
  • Lacour S, Hammann A, Grazide Setal. Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. CancerRes.64(10), 3593–3598 (2004).
  • Garcia-Barros M, Paris F, Cordon-Cardo C etal. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300(5622), 1155–1159 (2003).
  • Ito H, Murakami M, Furuhata Aetal. Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF-7, induced by the anti-cancer drug, daunorubicin. Biochim.Biophys.Acta 1789(11–12), 681–690 (2009).
  • Uchida Y, Itoh M, Taguchi Yetal. Ceramide reduction and transcriptional up-regulation of glucosylceramide synthase through doxorubicin-activated Sp1 in drug-resistant HL-60/ADR cells. CancerRes.64(17), 6271–6279 (2004).
  • Dumitru CA, Carpinteiro A, Trarbach T, Hengge UR, Gulbins E. Doxorubicin enhances TRAIL-induced cell death via ceramide-enriched membrane platforms. Apoptosis12(8), 1533–1541 (2007).
  • Rath G, Schneider C, Langlois Betal. Denovo ceramide synthesis is responsible for the anti-tumor properties of camptothecin and doxorubicin in follicular thyroid carcinoma. Int.J.Biochem.Cell.Biol.41(5), 1165–1172 (2009).
  • Min J, Mesika A, Sivaguru Metal. (Dihydro) ceramide synthase 1 regulated sensitivity to cisplatin is associated with the activation of p38 mitogen-activated protein kinase and is abrogated by sphingosine kinase 1. Mol. CancerRes.5(8), 801–812 (2007).
  • Senkal CE, Ponnusamy S, Rossi MJetal. Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas. Mol.CancerTher.6(2), 712–722 (2007).
  • Morales A, Paris R, Villanueva A, Llacuna L, Garcia-Ruiz C, Fernandez-Checa JC. Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth invivo. Oncogene 26(6), 905–916 (2007).
  • Bielawska A, Bielawski J, Szulc ZMetal. Novel analogs of D-e-MAPP and B13. Part 2: signature effects on bioactive sphingolipids. Bioorg.Med.Chem.16(2), 1032–1045 (2008).
  • Bedia C, Casas J, Andrieu-Abadie N, Fabrias G, Levade T. Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine. J.Biol.Chem.286(32), 28200–28209 (2011).
  • Scarlatti F, Sala G, Ricci Cetal. Resveratrol sensitization of DU145 prostate cancer cells to ionizing radiation is associated to ceramide increase. CancerLett.253(1), 124–130 (2007).
  • Delmas D, Solary E, Latruffe N. Resveratrol, a phytochemical inducer of multiple cell death pathways: apoptosis, autophagy and mitotic catastrophe. Curr.Med.Chem.18(8), 1100–1121 (2011). ▪ Presents the role of natural compounds in signaling pathways related to cancer therapy.
  • Sanchez AM, Malagarie-Cazenave S, Olea N, Vara D, Chiloeches A, Diaz-Laviada I. Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation. Apoptosis12(11), 2013–2024 (2007).
  • Mondal S, Mandal C, Sangwan R, Chandra S. Withanolide D induces apoptosis in leukemia by targeting the activation of neutral sphingomyelinase–ceramide cascade mediated by synergistic activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Mol.Cancer9, 239 (2010).
  • Canals D, Mormeneo D, Fabrias G, Llebaria A, Casas J, Delgado A. Synthesis and biological properties of Pachastrissamine (jaspine B) and diastereoisomeric jaspines. Bioorg.Med.Chem.17(1), 235–241 (2009).
  • Ogretmen B, Hannun YA. Updates on functions of ceramide in chemotherapy-induced cell death and in multidrug resistance. DrugResist.Updat.4(6), 368–377 (2001).
  • Senchenkov A, Han TY, Wang Hetal. Enhanced ceramide generation and induction of apoptosis in human leukemia cells exposed to DT(388)-granulocyte–macrophage colony-stimulating factor (GM-CSF), a truncated diphtheria toxin fused to human GM-CSF. Blood98(6), 1927–1934 (2001).
  • Radin NS. The development of aggressive cancer: a possible role for sphingolipids. CancerInvest.20(5–6), 779–786 (2002).
  • Hinrichs JW, Klappe K, Kok JW. Rafts as missing link between multidrug resistance and sphingolipid metabolism. J.Membr.Biol. 203(2), 57–64 (2005). ▪ Comprehensive overview of the involvement of sphingolipids in cancer therapy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.