530
Views
12
CrossRef citations to date
0
Altmetric
Prespective

Macrophages, lipid metabolism and gene expression in atherogenesis: a therapeutic target of the future?

, , &
Pages 37-48 | Published online: 18 Jan 2017

References

  • Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell145(3), 341–355 (2011).
  • Mclaren JE, Michael DR, Ashlin TG, Ramji DP. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog.Lipid Res. 50(4), 331–347 (2011).
  • Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature473(7347), 317–325 (2011).
  • Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat.Rev.Immunol.10(1), 36–46 (2010).
  • Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17(11), 1410–1422 (2011).
  • Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron 37(3), 208–222 (2006).
  • Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation116(16), 1832–1844 (2007).
  • Saha P, Modarai B, Humphries Jetal. The monocyte/macrophage as a therapeutic target in atherosclerosis. Curr.Opin.Pharmacol. 9(2), 109–118 (2009).
  • Goldstein J, Ho Y, Basu S, Brown M. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc.NatlAcad.Sci.USA76(1), 333–337 (1979).
  • Aqel NM, Ball RY, Waldmann H, Mitchinson MJ. Monocytic origin of foam cells in human atherosclerotic plaques. Atherosclerosis53(3), 265–271 (1984).
  • Klurfeld DM. Identification of foam cells in human atherosclerotic lesions as macrophages using monoclonal antibodies. Arch.Pathol. Lab.Med.109(5), 445–449 (1985).
  • Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc.NatlAcad.Sci.USA 92(18), 8264–8268 (1995).
  • Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat.Immunol. 12(3), 204–212 (2011).
  • Shimada K. Immune system and atherosclerotic disease: heterogeneity of leukocyte subsets participating in the pathogenesis of atherosclerosis. Circ.J.73(6), 994–1001 (2009).
  • Gleissner CA, Shaked I, Little KM, Ley K. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J.Immunol.184(9), 4810–4818 (2010).
  • Hirose K, Iwabuchi K, Shimada Ketal. Different responses to oxidized low-density lipoproteins in human polarized macrophages. LipidsHealthDis.10, 1 (2011).
  • Woollard KJ, Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nat. Rev.Cardiol.7(2), 77–86 (2010).
  • Ikonen E. Mechanisms for cellular cholesterol transport: defects and human disease. Physiol. Rev.86(4), 1237–1261 (2006).
  • van der Velde AE. Reverse cholesterol transport: from classical view to new insights. WorldJ.Gastroenterol. 16(47), 5908–5915 (2010).
  • Plüddemann A, Neyen C, Gordon S. Macrophage scavenger receptors and host-derived ligands. Methods43(3), 207–217 (2007).
  • Moore K, Freeman M. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler.Thromb.Vasc.Biol.26(8), 1702–1711 (2006).
  • Nozaki S, Kashiwagi H, Yamashita Setal. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects. J.Clin.Invest.96(4), 1859–1865 (1995).
  • Sugano R, Yamamura T, Harada-Shiba M, Miyake Y, Yamamoto A. Uptake of oxidized low-density lipoprotein in a THP-1 cell line lacking scavenger receptor A. Atherosclerosis 158(2), 351–357 (2001).
  • Mitra S, Goyal T, Mehta JL. Oxidized LDL, LOX-1 and atherosclerosis. Cardiovasc.Drugs Ther. 25(5), 419–429 (2011).
  • Zhang L, Liu HJ, Li TJetal. Lentiviral vector-mediated siRNA knockdown of SR-PSOX inhibits foam cell formation invitro. ActaPharmacol.Sin.29(7), 847–852 (2008).
  • Smith EB, Ashall C. Low-density lipoprotein concentration in interstitial fluid from human atherosclerotic lesions. Relation to theories of endothelial damage and lipoprotein binding. Biochim.Biophys.Acta754(3), 249–257 (1983).
  • Kerr M, Teasdale R. Defining macropinocytosis. Traffic10(4), 364–371 (2009).
  • Mclaren JE, Michael DR, Guschina IA, Harwood JL, Ramji DP. Eicosapentaenoic acid and docosahexaenoic acid regulate modified LDL uptake and macropinocytosis in human macrophages. Lipids 46(11), 1053–1061 (2011).
  • Anzinger JJ, Chang J, Xu Qetal. Native low-density lipoprotein uptake by macrophage colony-stimulating factor-differentiated human macrophages is mediated by macropinocytosis and micropinocytosis. Arterioscler.Thromb.Vasc.Biol.30(10), 2022–2031 (2010). Review article outlining the recent advances in experimental and clinical atherosclerotic research and the future prospects of cardiovascular disease therapies. Describes how macropinocytosis, a receptor-independent mechanism, can facilitate the uptake of LDL by macrophages and contribute to foam cell formation.
  • Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler.Thromb.Vasc.Biol.30(2), 139–143 (2010).
  • Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell.Metab.7(5), 365–375 (2008).
  • Bodzioch M, Orso E, Klucken Jetal. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat.Genet.22(4), 347–351 (1999).
  • Mukhamedova N, D’Souza W, Low H, Kesani R, Chimini G, Sviridov D. Global functional knockdown of ATP binding cassette transporter A1 stimulates development of atherosclerosis in apoE K/O mice. Biochem.Biophys.Res.Commun. 412(3), 446–449 (2011).
  • Sankaranarayanan S, Oram JF, Asztalos BF etal. Effects of acceptor composition and mechanism of ABCG1-mediated cellular free cholesterol efflux. J.LipidRes.50(2), 275–284 (2009).
  • Greenow K, Pearce NJ, Ramji DP. The key role of apolipoprotein E in atherosclerosis. J.Mol.Med.(Berl.)83(5), 329–342 (2005).
  • Lucic D, Huang ZH, Gu de S, Altenburg MK, Maeda N, Mazzone T. Regulation of macrophage ApoE secretion and sterol efflux by the LDL receptor. J.LipidRes.48(2), 366–372 (2007).
  • Lin CY, Lucas M, Mazzone T. Endogenous ApoE expression modulates HDL3 binding to macrophages. J.LipidRes.39(2), 293–301 (1998).
  • Linton MF, Atkinson JB, Fazio S. Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation. Science 267(5200), 1034–1037 (1995).
  • Fazio S, Babaev VR, Murray ABetal. Increased atherosclerosis in mice reconstituted with apolipoprotein E null macrophages. Proc.NatlAcad.Sci.USA94(9), 4647–4652 (1997).
  • Ji Y, Jian B, Wang Netal. Scavenger receptor BI promotes high density lipoproteinmediated cellular cholesterol efflux. J.Biol. Chem.272(34), 20982–20985 (1997).
  • de la Llera-Moya M, Rothblat GH, Connelly MAetal. Scavenger receptor BI (SR-BI) mediates free cholesterol flux independently of HDL tethering to the cell surface. J.Lipid Res.40(3), 575–580 (1999).
  • Zhang W, Yancey PG, Su YRetal. Inactivation of macrophage scavenger receptor class B type I promotes atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation108(18), 2258–2263 (2003).
  • Covey SD, Krieger M, Wang W, Penman M, Trigatti BL. Scavenger receptor class B type I-mediated protection against atherosclerosis in LDL receptor-negative mice involves its expression in bone marrow-derived cells. Arterioscler.Thromb.Vasc.Biol. 23(9), 1589–1594 (2003).
  • Hoekstra M, Van Berkel TJ, Van Eck M. Scavenger receptor BI: a multi-purpose player in cholesterol and steroid metabolism. World J.Gastroenterol.16(47), 5916–5924 (2010).
  • Chinetti-Gbaguidi G, Staels B. Lipid ligand-activated transcription factors regulating lipid storage and release in human macrophages. Biochim.Biophys.Acta1791(6), 486–493 (2009).
  • Sekiya M, Osuga J, Igarashi M, Okazaki H, Ishibashi S. The role of neutral cholesterol ester hydrolysis in macrophage foam cells. J.Atheroscler.Thromb.18(5), 359–364 (2011).
  • McLaren J, Calder C, McSharry Betal. The TNF-like protein 1A-death receptor 3 pathway promotes macrophage foam cell formation invitro. J.Immunol.184(10), 5827–5834 (2010).
  • McLaren JE, Michael DR, Salter RCetal. IL-33 reduces macrophage foam cell formation. J.Immunol.185(2), 1222–1229 (2010).
  • Klingenberg R, Hansson GK. Treating inflammation in atherosclerotic cardiovascular disease: emerging therapies. Eur.HeartJ.30(23), 2838–2844 (2009).
  • Koga M, Kai H, Yasukawa Hetal. Inhibition of progression and stabilization of plaques by postnatal interferon-gamma function blocking in ApoE-knockout mice. Circ.Res. 101(4), 348–356 (2007).
  • Abbate A, Salloum FN, Vecile Eetal. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation117(20), 2670–2683 (2008).
  • Olofsson PS, Sheikine Y, Jatta Ketal. A functional interleukin-1 receptor antagonist polymorphism influences atherosclerosis development. The interleukin-1beta:interleukin-1 receptor antagonist balance in atherosclerosis. Circ.J.73(8), 1531–1536 (2009).
  • Atzeni F, Turiel M, Caporali Retal. The effect of pharmacological therapy on the cardiovascular system of patients with systemic rheumatic diseases. Autoimmun.Rev. 9(12), 835–839 (2010).
  • Buch MH, Emery P. New therapies in the management of rheumatoid arthritis. Curr. Opin.Rheumatol.23(3), 245–251 (2011).
  • Chen S, Shimada K, Zhang W, Huang G, Crother TR, Arditi M. IL-17A is proatherogenic in high-fat diet-induced and Chlamydiapneumoniae infection-accelerated atherosclerosis in mice. J.Immunol.185(9), 5619–5627 (2010).
  • Dretzke J, Edlin R, Round Jetal. A systematic review and economic evaluation of the use of tumour necrosis factor-alpha (TNF-a) inhibitors, adalimumab and infliximab, for Crohn’s disease. Health Technol.Assess.15(6), 1–244 (2011).
  • Kerekes G, Soltész P, Dér Hetal. Effects of biologics on vascular function and atherosclerosis associated with rheumatoid arthritis. Ann.NYAcad.Sci.1173, 814–821 (2009).
  • Rigamonti E, Chinetti-Gbaguidi G, Staels B. Regulation of macrophage functions by PPAR-alpha, PPAR-gamma, and LXRs in mice and men. Arterioscler.Thromb.Vasc. Biol.28(6), 1050–1059 (2008).
  • Szanto A, Roszer T. Nuclear receptors in macrophages: a link between metabolism and inflammation. FEBSLett.582(1), 106–116 (2008).
  • Bouhlel MA, Staels B, Chinetti-Gbaguidi G. Peroxisome proliferator-activated receptors – from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease. J.Intern.Med.263(1), 28–42 (2008).
  • Calkin AC, Tontonoz P. Liver X receptor signaling pathways and atherosclerosis. Arterioscler.Thromb.Vasc.Biol.30(8), 1513–1518 (2010).
  • Sivagnanam G. Rosiglitazone and macular edema. CMAJ175(3), 276 (2006).
  • Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N.Engl.J.Med. 356(24), 2457–2471 (2007).
  • Im SS, Osborne TF. Liver X receptors in atherosclerosis and inflammation. Circ.Res. 108(8), 996–1001 (2011).
  • Li N, Salter RC, Ramji DP. Molecular mechanisms underlying the inhibition of IFN-gamma-induced, STAT1-mediated gene transcription in human macrophages by simvastatin and agonists of PPARs and LXRs. J.Cell.Biochem. 112(2), 675–683 (2011).
  • Lobatto ME, Fuster V, Fayad ZA, Mulder WJ. Perspectives and opportunities for Important study showing the anti-foam cell properties of IL-33 in human macrophages, therefore highlighting it as a promising future therapeutic target. Review describing how nanoparticles may be used to deliver drugs directly and specifically to target cells during atherosclerotic therapies. nanomedicine in the management of atherosclerosis. Nat.Rev.DrugDiscov. 10(11), 835–852 (2011).
  • Sadeghi MM, Glover DK, Lanza GM, Fayad ZA, Johnson LL. Imaging atherosclerosis and vulnerable plaque. J.Nucl.Med. 51(Suppl. 1), S51–S65 (2010).
  • Charo IF, Taub R. Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nat.Rev.DrugDiscov. 10(5), 365–376 (2011).
  • Bench TJ, Jeremias A, Brown DL. Matrix metalloproteinase inhibition with tetracyclines for the treatment of coronary artery disease. Pharmacol.Res. 64(6), 561–566 (2011).
  • Corson MA. Darapladib: an emerging therapy for atherosclerosis. Ther.Adv. Cardiovasc.Dis.4(4), 241–248 (2010).
  • White H, Held C, Stewart Retal. Study design and rationale for the clinical outcomes of the STABILITY Trial (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) comparing darapladib versus placebo in patients with coronary heart disease. Am.HeartJ.160(4), 655–661 (2010).
  • Croons V, Martinet W, de Meyer GR. Selective removal of macrophages in atherosclerotic plaques as a pharmacological approach for plaque stabilization: benefits versus potential complications. Curr.Vasc. Pharmacol.8(4), 495–508 (2010).
  • Evans M, Roberts A, Davies S, Rees A. Medical lipid-regulating therapy: current evidence, ongoing trials and future developments. Drugs64(11), 1181–1196 (2004).
  • Jain MK, Ridker PM. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat.Rev.DrugDiscov.4(12), 977–987 (2005).
  • Hofnagel O, Luechtenborg B, Weissen-Plenz G, Robenek H. Statins and foam cell formation: impact on LDL oxidation and uptake of oxidized lipoproteins via scavenger receptors. Biochim.Biophys.Acta1771(9), 1117–1124 (2007).
  • Mizuno Y, Jacob RF, Mason RP. Inflammation and the development of atherosclerosis. J.Atheroscler.Thromb.18(5), 351–358 (2011).
  • Nachtigal P, Pospisilova N, Jamborova G etal. Atorvastatin has hypolipidemic and anti-inflammatory effects in apoE/LDL receptor-double-knockout mice. LifeSci. 82(13–14), 708–717 (2008).
  • Quist-Paulsen P. Statins and inflammation: an update. Curr.Opin.Cardiol.25(4), 399–405 (2010).
  • Libby P, Okamoto Y, Rocha VZ, Folco E. Inflammation in atherosclerosis: transition from theory to practice. Circ.J.74(2), 213–220 (2010).
  • Taylor F, Ward K, Moore THetal. Statins for the primary prevention of cardiovascular disease. CochraneDatabaseSyst.Rev. 1, CD004816 (2011).
  • Getz GS, Wool GD, Reardon CA. HDL apolipoprotein-related peptides in the treatment of atherosclerosis and other inflammatory disorders. Curr.Pharm.Des. 16(28), 3173–3184 (2010).
  • Haas MJ, Mooradian AD. Therapeutic interventions to enhance apolipoprotein A-Imediated cardioprotection. Drugs70(7), 805–821 (2010).
  • Tardif JC, Gregoire J, L’allier PLetal. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA297(15), 1675–1682 (2007).
  • Meyer P, Nigam A, Marcil M, Tardif JC. The therapeutic potential of high-density lipoprotein mimetic agents in coronary artery disease. Curr.Atheroscler.Rep.11(5), 329–333 (2009).
  • Bloedon LT, Dunbar R, Duffy Detal. Safety, pharmacokinetics, and pharmacodynamics of oral ApoA-I mimetic peptide D-4F in high-risk cardiovascular patients. J.LipidRes. 49(6), 1344–1352 (2008). Interesting study providing evidence that single doses of the ApoA-I mimetic, D-4F, improves the anti-inflammatory actions of HDL in high-cardiovascular-risk patients, thus providing a rationale for further multiple-dose studies in humans.
  • Martin K, O’Sullivan JF, Caplice NM. New therapeutic potential of microRNA treatment to target vulnerable atherosclerotic lesions and plaque rupture. Curr.Opin.Cardiol. 26(6), 569–575 (2011).
  • Haver VG, Slart RH, Zeebregts CJ, Peppelenbosch MP, Tio RA. Rupture of vulnerable atherosclerotic plaques: microRNAs conducting the orchestra? Trends Cardiovasc.Med.20(2), 65–71 (2010).
  • Huang RS, Hu GQ, Lin B, Lin ZY, Sun CC. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J.Investig.Med. 58(8), 961–967 (2010).
  • Rayner KJ, Esau CC, Hussain FNetal. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature478(7369), 404–407 (2011). Exciting new evidence showing that the inhibition of miR-33a/b, using modified antisense miRNA oligonucleotides, can raise HDL levels in a model that is highly relevant to humans.
  • Vickers KC, Remaley AT. MicroRNAs in atherosclerosis and lipoprotein metabolism. Curr.Opin.Endocrinol.DiabetesObes.17(2), 150–155 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.