563
Views
12
CrossRef citations to date
0
Altmetric
Reviews

The structural and functional role of myelin fast-migrating cerebrosides: pathological importance in multiple sclerosis

, &
Pages 159-179 | Published online: 18 Jan 2017

Bibliography

  • Rosetti CM, Maggio B, Oliveira RG: Theself-organization of lipids and proteins of myelin at the membrane interface. Molecular factors underlying the microheterogeneity of domain segregation. Biochim. Biophys. Acta 1778(7–8), 1665–1675 (2008)
  • Norton WT, Autilio LA: The lipid composition of purified bovine brain myelin. J. Neurochem. 13(4), 213–222 (1966)
  • Fewster ME, Hirono H, Mead JF: Lipid composition of myelin in multiple sclerosis. J. Neurol. 213(2), 119–131 (1976)
  • Dasgupta S, Levery SB, Hogan EL: 3-O-acetyl-sphingosine-series myelin glycolipids: characterization of novel 3-O-acetyl-sphingosine galactosylceramide. J. Lipid Res. 43(5), 751–761 (2002). n First description of the acetylated derivatives of galactosylceramide
  • Bennion B, Dasgupta S, Hogan EL, Levery SB: Characterization of novel myelin components 3-O-acetyl-sphingosine galactosylceramides by electrospray ionization Q-TOF MS and MS/CID-MS of Li+ adducts. J. Mass Spectrom. 42(5), 598–620 (2007)
  • Podbielska M, Dasgupta S, Levery SB et al.: Novel myelin penta- and hexa-acetylgalactosyl- ceramides: structural characterization and immunoreactivity in cerebrospinal fluid. J. Lipid Res. 51(6), 1394–1406 (2010). nn Description of the penta- and hexa-acetyl derivatives of galactosylceramide
  • Xu L, Anchordoquy TJ: Cholesterol domains in cationic lipid/DNA complexes improve transfection. Biochim. Biophys. Acta 1778(10), 2177–2181 (2008)
  • Xu Y, Ramu Y, Lu Z: Removal of phosphohead groups of membrane lipids immobilizes voltage sensors of K+ channels. Nature 451(7180), 826–829 (2008)
  • Yu RK, Ledeen RW: Gangliosides of human, bovine, and rabbit plasma. J. Lipid Res. 13(5), 680–686 (1972)
  • Wheeler D, Bandaru VV, Calabresi PA, Nath A, Haughey NJ: A defect of sphingolipid metabolism modifies the properties of normal appearing white matter in multiple sclerosis. Brain 131(Pt 11), 3092–3102 (2008)
  • Podbielska M, Hogan EL: Molecular and immunogenic features of myelin lipids: incitants or modulators of multiple sclerosis? Mult. Scler. 15(9), 1011–1029 (2009)
  • Kochetkov NK, Zhukova IG, Glukhoded IS: Sphingoplasmalogens. A new type of sphingolipids. Biochim. Biophys. Acta 70, 716–719 (1963)
  • Norton WT, Brotz M: New galactolipids of brain: a monoalkyl-monoacyl-glyceryl galactoside and cerebroside fatty acid esters. Biochem. Biophys. Res. Commun. 12, 198–203 (1963)
  • Kubota M, Taketomi T: Minor glycolipids being less polar than cerebroside in porcine spinal cord. Jpn J. Exp. Med. 44(2), 145–150 (1974)
  • Nudelman ED, Levery SB, Igarashi Y, Hakomori S: Plasmalopsychosine, a novel plasmal (fatty aldehyde) conjugate of psychosine with cyclic acetal linkage. Isolation and characterization from human brain white matter. J. Biol. Chem. 267(16), 11007–11016 (1992)
  • Levery SB, Nudelman ED, Hakomori S: Novel modification of glycosphingolipids by long-chain cyclic acetals: isolation and characterization of plasmalocerebroside from human brain. Biochemistry 31(23), 5335–5340 (1992)
  • Yachida Y, Kashiwagi M, Mikami T et al.: Stereochemical structures of synthesized and natural plasmalogalactosylceramides from equine brain. J. Lipid Res. 39(5), 1039–1045 (1998)
  • Klenk E, Lohr JP: On the ester cerebrosides of brain. Hoppe Seylers Z. Physiol. Chem. 348(12), 1712–1714 (1967)
  • Tamai Y: Further study on the faster running glycolipid in brain. Jpn J. Exp. Med. 38(1), 65–73 (1968)
  • Kishimoto Y, Wajda M, Radin NS: 6-acyl galactosyl ceramides of pig brain: structure and fatty acid composition. J. Lipid Res. 9(1), 27–33 (1968)
  • Dasgupta S, Everhart MB, Bhat NR, Hogan EL: Neutral monoglycosylceramides in rat brain: occurrence, molecular expression and developmental variation. Dev. Neurosci. 19(2), 152–161 (1997)
  • Dasgupta S, Bhat NR, Spicer SS, Hogan EL, Furuya S, Hirabayashi Y: Cell-specificexpression of neutral glycosphingolipids in vertebrate brain: immunochemical localization of 3-O-acetyl-sphingosine-series glycolipid(s) in myelin and oligodendrocytes. J. Neurosci. Res. 85(13), 2856–2862 (2007)
  • Dupree JL, Girault JA, Popko B: Axo–glial interactions regulate the localization of axonal paranodal proteins. J. Cell Biol. 147(6), 1145–1152 (1999)
  • Suzuki K, Suzuki Y: Globoid cell leucodystrophy (Krabbe’s disease): deficiency of galactocerebroside b-galactosidase. Proc. Natl Acad. Sci. USA 66(2), 302–309 (1970)
  • Suzuki K, Suzuki Y: Galactosylceramide lipidosis: globoid cell leukodystrophy (Krabbe’s diesease). In: The Metabolic Basis of Inherited Diesease. Stabury JC, Wyngaarden JB, Fredrikson DS, Goldstein JL, Brown MS (Eds). McGraw–Hill, NY, USA, 857–880 (1983)
  • Svennerholm L, Vanier MT, Mansson JE: Krabbe disease: a galactosylsphingosine (psychosine) lipidosis. J. Lipid Res. 21(1), 53–64 (1980)
  • Kobayashi T, Shinoda H, Goto I, Yamanaka T, Suzuki Y: Globoid cell leukodystrophy is a generalized galactosylsphingosine (psychosine) storage disease. Biochem. Biophys. Res. Commun. 144(1), 41–46 (1987)
  • Suzuki K, Suzuki K: The twitcher mouse. A model of human globoid cell leukodystrophy (Krabbe’s disease). Am. J. Pathol. 111(3), 394–397 (1983)
  • Takahashi H, Igisu H, Suzuki K, Suzuki K: Murine globoid cell leukodystrophy (the twitcher mouse). The presence of characteristic inclusions in the kidney and lymph nodes. Am. J. Pathol. 112(2), 147–154 (1983)
  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG: Multiple sclerosis. N. Engl. J. Med. 343(13), 938–952 (2000)
  • Becher B, Bechmann I, Greter M: Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J. Mol. Med. 84(7), 532–543 (2006)
  • Mukherjee S, Soe TT, Maxfield FR: Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J. Cell Biol. 144(6), 1271–1284 (1999)
  • Mukherjee S, Maxfield FR: Role of membraneorganization and membrane domains inendocytic lipid trafficking. Traffic(Copenhagen, Denmark) 1(3), 203–211 (2000)
  • Sugita M, Porcelli SA, Brenner MB: Assembly and retention of CD1b heavy chains in the endoplasmic reticulum. J. Immunol. 159(5), 2358–2365 (1997)
  • Gadola SD, Zaccai NR, Harlos K et al.: Structure of human CD1b with bound ligands at 2.3 A, a maze for alkyl chains. Nat. Immunol. 3(8), 721–726 (2002)
  • Batuwangala T, Shepherd D, Gadola SD et al.: The crystal structure of human CD1b with a bound bacterial glycolipid. J. Immunol. 172(4), 2382–2388 (2004)
  • Moody DB, Ulrichs T, Muhlecker W et al.: CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404(6780), 884–888 (2000)
  • Shamshiev A, Gober HJ, Donda A, Mazorra Z, Mori L, De Libero G: Presentation of the same glycolipid by different CD1 molecules. J. Exp. Med. 195(8), 1013–1021 (2002)
  • van den Elzen P, Garg S, Leon L et al.: Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437(7060), 906–910 (2005)
  • Winau F, Schwierzeck V, Hurwitz R et al.: Saposin C is required for lipid presentation by human CD1b. Nat. Immunol. 5(2), 169–174 (2004)
  • Kang SJ, Cresswell P: Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat. Immunol. 5(2), 175–181 (2004)
  • Yuan W, Qi X, Tsang P et al.: Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. Proc. Natl Acad. Sci. USA 104(13), 5551–5556 (2007)
  • Zhou D, Cantu C 3rd, Sagiv Y et al.: Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303(5657), 523–527 (2004)
  • Bai L, Sagiv Y, Liu Y et al.: Lysosomal recycling terminates CD1d-mediated presentation of short and polyunsaturated variants of the NKT cell lipid antigen aGalCer. Proc. Natl Acad. Sci. USA 106(25), 10254–10259 (2009)
  • Steinman L: Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85(3), 299–302 (1996)
  • Engelhardt B, Ransohoff RM: The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol. 26(9), 485–495 (2005)
  • Alt C, Laschinger M, Engelhardt B: Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood–brain barrier suggests their involvement in G-proteindependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 32(8), 2133–2144 (2002)
  • Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F: Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol. 13(1), 38–51 (2003)
  • Greter M, Heppner FL, Lemos MP et al.: Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11(3), 328–334 (2005)
  • Racke MK, Scott DE, Quigley L et al.: Distinct roles for B7–1 (CD-80) and B7–2 (CD-86) in the initiation of experimental allergic encephalomyelitis. J. Clin. Invest.96(5), 2195–2203 (1995)
  • Weinberg AD, Wegmann KW, Funatake C, Whitham RH: Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J. Immunol. 162(3), 1818–1826 (1999)
  • Frohman EM, Filippi M, Stuve O et al.: Characterizing the mechanisms of progression in multiple sclerosis: evidence and new hypotheses for future directions. Arch. Neurol. 62(9), 1345–1356 (2005)
  • Chekhonin VP, Semenova AV, Gurina OI, Dmitrieva TB: Myelin oligodendrogliocyte glycoprotein: the structure, functions, role in pathogenesis of demyelinating disorders. Biomed. Khim. 49(5), 411–423 (2003)
  • Quarles RH: Myelin-associated glycoprotein (MAG): past, present and beyond. J. Neurochem. 100(6), 1431–1448 (2007)
  • Jaskiewicz E: Epitopes on myelin proteins recognized by autoantibodies present in multiple sclerosis patients. Postepy Hig. Med. Dosw. (Online) 58, 472–482 (2004)
  • Johns TG, Bernard CC: The structure and function of myelin oligodendrocyte glycoprotein. J. Neurochem. 72(1), 1–9 (1999)
  • Meinl E, Hohlfeld R: Immunopathogenesis of multiple sclerosis: MBP and beyond. Clin.Exp. Immunol. 128(3), 395–397 (2002)
  • Tzakos AG, Troganis A, Theodorou V et al.: Structure and function of the myelin proteins: current status and perspectives in relation to multiple sclerosis. Curr. Med. Chem. 12(13), 1569–1587 (2005)
  • Sobel RA, Greer JM, Kuchroo VK: Minireview: autoimmune responses to myelin proteolipid protein. Neurochem. Res. 19(8), 915–921 (1994)
  • Musse AA, Harauz G: Molecular ‘negativity’ may underlie multiple sclerosis: role of the myelin basic protein family in the pathogenesis of MS. Int. Rev. Neurobiol. 79, 149–172 (2007)
  • Quarles RH: Myelin sheaths: glycoproteins involved in their formation, maintenance and degeneration. Cell. Mol. Life Sci. 59(11), 1851–1871 (2002)
  • Menge T, Lalive PH, von Budingen HC, Cree B, Hauser SL, Genain CP: Antibody responses against galactocerebroside are potential stage-specific biomarkers in multiple sclerosis. J. Allergy Clin. Immunol. 116(2), 453–459 (2005)
  • Mata S, Lolli F, Soderstrom M, Pinto F, Link H: Multiple sclerosis is associated with enhanced B cell responses to the ganglioside GD1a. Mult. Scler. 5(6), 379–388 (1999)
  • Sadatipour BT, Greer JM, Pender MP: Increased circulating antiganglioside antibodies in primary and secondary progressive multiple sclerosis. Ann. Neurol.44(6), 980–983 (1998)
  • Acarin N, Rio J, Fernandez AL et al.: Different antiganglioside antibody pattern between relapsing-remitting and progressive multiple sclerosis. Acta Neurol. Scand. 93(2–3), 99–103 (1996)
  • Ilyas AA, Chen ZW, Cook SD: Antibodies to sulfatide in cerebrospinal fluid of patients with multiple sclerosis. J. Neuroimmunol. 139(1–2), 76–80 (2003)
  • Ryberg B: Multiple specificities of antibrain antibodies in multiple sclerosis and chronic myelopathy. J. Neurol. Sci. 38(3), 357–382 (1978)
  • Sugiyama Y, Yamamoto T: Characterization of serum anti-phospholipid antibodies in patients with multiple sclerosis. Tohoku J. Exp. Med. 178(3), 203–215 (1996)
  • Kanter JL, Narayana S, Ho PP et al.: Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat. Med. 12(1), 138–143 (2006). nn Identification of lipid and oxidized lipid antigens reactive with IgG in multiple sclerosis cerebrospinal fluid
  • Zheng W, Kollmeyer J, Symolon H et al.: Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim. Biophys. Acta 1758(12), 1864–1884 (2006)
  • Taha TA, Mullen TD, Obeid LM: A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death. Biochim. Biophys. Acta 1758(12), 2027–2036 (2006)
  • Stoffel W, Bosio A: Myelin glycolipids and their functions. Curr. Opin. Neurobiol. 7(5), 654–661 (1997)
  • Schenck M, Carpinteiro A, Grassme H, Lang F, Gulbins E: Ceramide: physiological and pathophysiological aspects. Arch. Biochem. Biophys. 462(2), 171–175 (2007)
  • Obeid LM, Hannun YA: Ceramide: a stress signal and mediator of growth suppression and apoptosis. J. Cell. Biochem. 58(2), 191–198 (1995)
  • Pettus BJ, Chalfant CE, Hannun YA: Sphingolipids in inflammation: roles and implications. Curr. Mol. Med. 4(4), 405–418 (2004)
  • Merrill AH Jr, Schmelz EM, Dillehay DL et al.: Sphingolipids – the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol. Appl. Pharmacol. 142(1), 208–225 (1997)
  • Kronke M: Involvement of sphingomyelinases in TNF signaling pathways. Chem. Phys. Lipids 102(1–2), 157–166 (1999)
  • Kolesnick RN: Sphingomyelin and derivatives as cellular signals. Prog. Lipid Res. 30(1), 1–38 (1991)
  • Hannun YA, Obeid LM, Wolff RA: The novel second messenger ceramide: identification, mechanism of action, and cellular activity. Adv. Lipid Res. 25, 43–64 (1993)
  • Wirguin I, Brenner T, Steinitz M,Abramsky O: In vitro synthesis of antibodies to myelin antigens by Epstein–Barr virus-transformed B lymphocytes from patients with neurologic disorders. J. Neurol.Sci. 104(1), 92–96 (1991)
  • Richert JR, Robinson ED, Reuben‑Burnside CA et al.: Measles virus-specific human T cell clones: studies of alloreactivity and antigenic cross-reactivity. J. Neuroimmunol. 19(1–2), 59–68 (1988)
  • Mameli G, Astone V, Arru G et al.: Brains and peripheral blood mononuclear cells of multiple sclerosis (MS) patients hyperexpress MS-associated retrovirus/HERV-W endogenous retrovirus, but not human herpesvirus 6. J. Gen. Virol. 88(Pt 1), 264–274 (2007)
  • Lunemann JD, Edwards N, Muraro PA et al.: Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 129(Pt 6), 1493–1506 (2006)
  • Serafini B, Rosicarelli B, Franciotta D et al.: Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain. J. Exp. Med. 204(12), 2899–2912 (2007)
  • Vartdal F, Vandvik B, Norrby E: Viral and bacterial antibody responses in multiple sclerosis. Ann. Neurol. 8(3), 248–255 (1980)
  • Vartdal F, Vandvik B: Multiple sclerosis: subclasses of intrathecally synthesized IgG and measles and varicella zoster virus IgG antibodies. Clin. Exp. Immunol. 54(3), 641–647 (1983)
  • Salmi A, Reunanen M, Ilonen J, Panelius M: Intrathecal antibody synthesis to virus antigens in multiple sclerosis. Clin. Exp. Immunol. 52(2), 241–249 (1983)
  • Burgoon MP, Williamson RA, Owens GP et al.: Cloning the antibody response in humans with inflammatory CNS disease: isolation of measles virus-specific antibodies from phage display libraries of a subacute sclerosing panencephalitis brain. J. Neuroimmunol. 94(1–2), 204–211 (1999)
  • Cremer NE, Johnson KP, Fein G, Likosky WH: Comprehensive viral immunology of multiple sclerosis. II. Analysis of serum and CSF antibodies by standard serologic methods. Arch. Neurol. 37(10), 610–615 (1980)
  • von Herrath MG, Fujinami RS, Whitton JL: Microorganisms and autoimmunity: making the barren field fertile? Nat. Rev. Microbiol. 1(2), 151–157 (2003)
  • Wucherpfennig KW: Mechanisms for the induction of autoimmunity by infectious agents. J. Clin. Invest. 108(8), 1097–1104 (2001)
  • Oldstone MB: Molecular mimicry, microbial infection, and autoimmune disease: evolution of the concept. Curr. Top. Microbiol. Immunol. 296, 1–17 (2005). n Early exposition of the possible role ofmolecular mimicry in the relationship of infection with autoimmune disease in man
  • van Noort JM, Bajramovic JJ, Plomp AC, van Stipdonk MJ: Mistaken self, a novel model that links microbial infections with myelindirected autoimmunity in multiple sclerosis. J. Neuroimmunol. 105(1), 46–57 (2000)
  • Tejada-Simon MV, Zang YC, Hong J, Rivera VM, Zhang JZ: Cross-reactivity with myelin basic protein and human herpesvirus-6 in multiple sclerosis. Ann. Neurol. 53(2), 189–197 (2003)
  • Sospedra M, Martin R: Molecular mimicry in multiple sclerosis. Autoimmunity 39(1), 3–8 (2006)
  • McCoy L, Tsunoda I, Fujinami RS: Multiplesclerosis and virus induced immune responses: autoimmunity can be primed by molecular mimicry and augmented by bystander activation. Autoimmunity 39(1), 9–19 (2006)
  • Barnett LA, Fujinami RS: Molecular mimicry: a mechanism for autoimmune injury. FASEB J. 6(3), 840–844 (1992)
  • Oldstone MB: Molecular mimicry and immune-mediated diseases. FASEB J. 12(13), 1255–1265 (1998)
  • McLean BN, Luxton RW, Thompson EJ: A study of immunoglobulin G in the cerebrospinal fluid of 1007 patients with suspected neurological disease using isoelectric focusing and the Log IgG-Index.A comparison and diagnostic applications. Brain 113(Pt 5), 1269–1289 (1990)
  • Correale J, de los Milagros Bassani Molinas M: Oligoclonal bands and antibody responses in multiple sclerosis. J. Neurol. 249(4), 375–389 (2002)
  • Antel J, Bar-Or A: Roles of immunoglobulins and B cells in multiple sclerosis: from pathogenesis to treatment. J. Neuroimmunol. 180(1–2), 3–8 (2006). n Recent review of the possible roles of B cells and immunoglobulins in multiple sclerosis
  • Melendez-Vasquez C, Redford J, Choudhary PP et al.: Immunological investigation of chronic inflammatory demyelinating polyradiculoneuropathy. J. Neuroimmunol. 73(1–2), 124–134 (1997)
  • Goodyear CS, O’Hanlon GM, Plomp JJ et al.: Monoclonal antibodies raised against Guillain–Barre syndrome-associated Campylobacter jejuni lipopolysaccharides react with neuronal gangliosides and paralyze muscle-nerve preparations. J. Clin. Invest. 104(6), 697–708 (1999)
  • Yuki N: Molecular mimicry between gangliosides and lipopolysaccharides of Campylobacter jejuni isolated from patients with Guillain–Barre syndrome and Miller Fisher syndrome. J. Infect. Dis. 176(Suppl. 2), S150–S153 (1997)
  • Yuki N, Miyatake T: Guillain–Barre syndrome and Fisher’s syndrome following Campylobacter jejuni infection. Ann. NY Acad. Sci. 845, 330–340 (1998)
  • Prendergast MM, Willison HJ, Moran AP: Human monoclonal immunoglobulin M antibodies to ganglioside GM1 show diverse cross-reactivities with lipopolysaccharides of Campylobacter jejuni strains associated with Guillain–Barre syndrome. Infect. Immun. 67(7), 3698–3701 (1999). n Good example of the support for glycolipid‑based molecular mimicry to Campylobacter jejuni bacterial infection and autoimmune disease, the Guillain–Barré syndrome, in the human peripheral nervous system
  • Sack DA, Lastovica AJ, Chang SH, Pazzaglia G: Microtiter assay for detecting Campylobacter spp. and Helicobacter pylori with surface gangliosides which bind cholera toxin. J. Clin. Microbiol. 36(7), 2043–2045 (1998)
  • Mori M, Kuwabara S, Miyake M et al.: Haemophilus influenzae has a GM1ganglioside-like structure and elicits Guillain–Barre syndrome. Neurology 52(6), 1282–1284 (1999)
  • Yu RK, Ariga T: The role of glycosphingolipids in neurological disorders. Mechanisms of immune action. Ann. NY Acad. Sci. 845, 285–306 (1998)
  • Katzenellenbogen E, Kocharova NA, Korzeniowska-Kowal A et al.: Immunochemical studies of the lipopolysaccharides of Hafnia alvei PCM 1219 and other strains with the O-antigens containing d-glucose 1-phosphate and 2-deoxy-2-[(R)-3- hydroxybutyramido]-d-glucose. Arch. Immunol. Ther. Exp. (Warsz.) 56(5), 347–352 (2008)
  • Parolis H, Parolis LA, Olivieri G: Structural studies on the Shigella-likeEscherichia coli O121 O-specific polysaccharide. Carbohydr. Res. 303(3), 319–325 (1997)
  • Ali T, Weintraub A, Widmalm G: Structural determination of the O-antigenic polysaccharide from the Shiga toxinproducing Escherichia coli O171. Carbohydr. Res. 341(11), 1878–1883 (2006)
  • Sidorczyk Z, Toukach FV, Zych K et al.: Structural and serological relatedness of the O-antigens of Proteus penneri 1 and 4 from a novel Proteus serogroup O72. Eur. J. Biochem. 269(1), 358–363 (2002)
  • Kubler-Kielb J, Vinogradov E, Chu C, Schneerson R: O-Acetylation in the O-specific polysaccharide isolated from Shigella flexneri serotype 2a. Carbohydr. Res. 342(3–4), 643–647 (2007)
  • Schroder NW, Schombel U, Heine H, Gobel UB, Zahringer U, Schumann RR: Acylated cholesteryl galactoside as a novel immunogenic motif in Borrelia burgdorferi sensu stricto. J. Biol. Chem. 278(36), 33645–33653 (2003)
  • Yildirim HH, Li J, Richards JC, Hood DW, Moxon ER, Schweda EK: Complex O-acetylation in non-typeable Haemophilus influenzae lipopolysaccharide: evidence for a novel site of O-acetylation. Carbohydr. Res. 340(17), 2598–2611 (2005)
  • MacLean LL, Webb AC, Perry MB: Structural elucidation of the O-antigenic polysaccharide from enterohemorrhagic (EHEC) Escherichia coli O48:H21. Carbohydr. Res. 341(15), 2543–2549 (2006)
  • Compston A: Complexity and heterogeneity in demyelinating disease. Brain 130(Pt 5), 1178–1180 (2007)
  • Lassmann H, Bruck W, Lucchinetti C: Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol. Med. 7(3), 115–121 (2001)
  • Walker LS, Abbas AK: The enemy within: keeping self-reactive T cells at bay in the periphery. Nat. Rev. Immunol. 2(1), 11–19 (2002)
  • Ben-Nun A, Wekerle H, Cohen IR: Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein.Nature 292(5818), 60–61 (1981)
  • Wolf SD, Dittel BN, Hardardottir F, Janeway CA Jr: Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 184(6), 2271–2278 (1996)
  • Zhang B, Yamamura T, Kondo T, Fujiwara M, Tabira T: Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J. Exp. Med. 186(10), 1677–1687 (1997)
  • Van Kaer L: Natural killer T cells as targets for immunotherapy of autoimmune diseases. Immunol. Cell Biol. 82(3), 315–322 (2004)
  • Linsen L, Somers V, Stinissen P: Immunoregulation of autoimmunity by natural killer T cells. Hum. Immunol. 66(12), 1193–1202 (2005)
  • Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L: NKT cells: what’s in a name? Nat. Rev. Immunol. 4(3), 231–237 (2004)
  • O’Keeffe J, Gately CM, Counihan T et al.: T-cells expressing natural killer (NK) receptors are altered in multiple sclerosis and responses to a-galactosylceramide are impaired. J. Neurol. Sci. 275(1–2), 22–28 (2008)
  • Doherty DG, Norris S, Madrigal-Estebas L et al.: The human liver contains multiple populations of NK cells, T cells, and CD3+CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2, and Th0 cytokine secretion patterns. J. Immunol. 163(4), 2314–2321 (1999)
  • Snyder MR, Nakajima T, Leibson PJ, Weyand CM, Goronzy JJ: Stimulatory killer Ig-like receptors modulate T cell activation through DAP12-dependent and DAP12-independent mechanisms. J. Immunol. 173(6), 3725–3731 (2004)
  • Kronenberg M: Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2005)
  • Carding SR, Egan PJ: gd T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2(5), 336–345 (2002)
  • Zajonc DM, Elsliger MA, Teyton L, Wilson IA: Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 A. Nat. Immunol. 4(8), 808–815 (2003)
  • Zajonc DM, Crispin MD, Bowden TA et al.: Molecular mechanism of lipopeptide presentation by CD1a. Immunity 22(2), 209–219 (2005)
  • Zajonc DM, Cantu C 3rd, Mattner J et al.: Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat. Immunol. 6(8), 810–818 (2005)
  • Koch M, Stronge VS, Shepherd D et al.: The crystal structure of human CD1d with and without a-galactosylceramide. Nat. Immunol. 6(8), 819–826 (2005)
  • Giabbai B, Sidobre S, Crispin MD et al.: Crystal structure of mouse CD1d bound to the self ligand phosphatidylcholine: a molecular basis for NKT cell activation. J. Immunol. 175(2), 977–984 (2005)
  • Moody DB, Zajonc DM, Wilson IA: Anatomy of CD1-lipid antigen complexes. Nat. Rev. Immunol. 5(5), 387–399 (2005)
  • Miyamoto K, Miyake S, Yamamura T: A synthetic glycolipid prevents autoimmuneencephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413(6855),531–534 (2001)
  • Parekh VV, Singh AK, Wilson MT et al.: Quantitative and qualitative differences in the in vivo response of NKT cells to distinct a- and b-anomeric glycolipids. J. Immunol. 173(6), 3693–3706 (2004)
  • Ortaldo JR, Young HA, Winkler-Pickett RT, Bere EW Jr, Murphy WJ, Wiltrout RH: Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by theuse of distinct TCR-binding ceramides. J. Immunol. 172(2), 943–953 (2004)
  • Godfrey DI, Kronenberg M: Going both ways: immune regulation via CD1ddependent NKT cells. J. Clin. Invest. 114(10), 1379–1388 (2004). n Recent review of the role of glycolipidreactive invariant natural killer T cells in the regulation of immune responsiveness
  • Wilson SB, Delovitch TL: Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat. Rev. Immunol. 3(3), 211–222 (2003)
  • Illes Z, Kondo T, Newcombe J, Oka N, Tabira T, Yamamura T: Differential expression of NK T cell V a 24J a Q invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J. Immunol. 164(8), 4375–4381 (2000)
  • Demoulins T, Gachelin G, Bequet D, Dormont D: A biased Va24+ T-cell repertoire leads to circulating NKT-cell defects in a multiple sclerosis patient at the onset of his disease. Immunol. Lett. 90(2–3), 223–228 (2003)
  • Araki M, Kondo T, Gumperz JE, Brenner MB, Miyake S, Yamamura T: Th2bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int. Immunol. 15(2), 279–288 (2003)
  • D’Andrea A, Goux D, De Lalla C et al.: Neonatal invariant Va24+ NKT lymphocytes are activated memory cells. Eur. J. Immunol. 30(6), 1544–1550 (2000)
  • van Der Vliet HJ, Nishi N, de Gruijl TD et al.: Human natural killer T cells acquire a memory-activated phenotype before birth. Blood 95(7), 2440–2442 (2000)
  • Miyake S, Yamamura T: Therapeutic potential of glycolipid ligands for natural killer (NK) T cells in the suppression of autoimmune diseases. Curr. Drug Targets Immune Endocr. Metabol. Disord. 5(3), 315–322 (2005)
  • Mars LT, Gautron AS, Novak J et al.: Invariant NKT cells regulate experimental autoimmune encephalomyelitis and infiltrate the central nervous system in a CD1d-independent manner. J. Immunol. 181(4), 2321–2329 (2008)
  • Winkler-Pickett R, Young HA, Cherry JM et al.: In vivo regulation of experimental autoimmune encephalomyelitis by NK cells: alteration of primary adaptive responses. J. Immunol. 180(7), 4495–4506 (2008)
  • Singh AK, Wilson MT, Hong S et al.: Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 194(12), 1801–1811 (2001)
  • Pal E, Tabira T, Kawano T, Taniguchi M, Miyake S, Yamamura T: Costimulationdependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of V a 14 NK T cells. J. Immunol. 166(1), 662–668 (2001)
  • Jahng AW, Maricic I, Pedersen B et al.: Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med. 194(12), 1789–1799 (2001)
  • Furlan R, Bergami A, Cantarella D et al.: Activation of invariant NKT cells by aGalCeradministration protects mice from MOG35– 55-induced EAE: critical roles for administration route and IFN-g. Eur. J. Immunol. 33(7), 1830–1838 (2003)
  • Kinjo Y, Wu D, Kim G et al.: Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434(7032), 520–525 (2005)
  • Kinjo Y, Tupin E, Wu D et al.: Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7(9), 978–986 (2006)
  • Zhou D, Mattner J, Cantu C 3rd et al.: Lysosomal glycosphingolipid recognition by NKT cells. Science 306(5702), 1786–1789 (2004)
  • Jahng A, Maricic I, Aguilera C, Cardell S,Halder RC, Kumar V: Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med. 199(7), 947–957 (2004)
  • Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB: Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med. 198(1), 173–181 (2003)
  • Shamshiev A, Donda A, Carena I, Mori L, Kappos L, De Libero G: Self glycolipids as T-cell autoantigens. Eur. J. Immunol. 29(5), 1667–1675 (1999)
  • Shamshiev A, Donda A, Prigozy TI et al.: The ab T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. Immunity 13(2), 255–264 (2000)
  • Zajonc DM, Maricic I, Wu D et al.: Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J. Exp. Med. 202(11), 1517–1526 (2005)
  • Gumperz JE, Roy C, Makowska A et al.: Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12(2), 211–221 (2000)
  • Sospedra M, Martin R: Immunology of multiple sclerosis. Annu. Rev. Immunol. 23,683–747 (2005)
  • Prat A, Antel J: Pathogenesis of multiple sclerosis. Curr. Opin. Neurol. 18(3), 225–230 (2005)
  • Battistini L, Fischer FR, Raine CS, Brosnan CF: CD1b is expressed in multiple sclerosis lesions. J. Neuroimmunol. 67(2),145–151 (1996)
  • De Libero G, Macdonald HR, Dellabona P: T cell recognition of lipids: quo vadis? Nat. Immunol. 8(3), 223–227 (2007)
  • Yu KO, Im JS, Molano A et al.: Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of a-galactosylceramides. Proc. Natl Acad. Sci. USA 102(9), 3383–3388 (2005)
  • Halder RC, Jahng A, Maricic I, Kumar V: Mini review: immune response to myelin-derived sulfatide and CNS-demyelination. Neurochem. Res. 32(2), 257–262 (2007)
  • Kolodny E, De Gasper R, GamaSosa MA, Weinreb HJ, Herbert J: Antisulfatide immunoglobulin G is elevated in the serum of multiple sclerosis patients. Ann. Neurol. 38, 340 (1995)
  • Kirschning E, Rutter G, Uhlig H, Dernick R: A sulfatide-reactive human monoclonal antibody obtained from a multiple sclerosis patient selectively binds to the surface of oligodendrocytes. J. Neuroimmunol. 56(2), 191–200 (1995)
  • Dyer CA, Benjamins JA: Galactocerebroside and sulfatide independently mediate Ca2+ responses in oligodendrocytes. J. Neurosci. Res. 30(4), 699–711 (1991)
  • Rosenbluth J, Moon D: Dysmyelination induced in vitro by IgM antisulfatide and antigalactocerebroside monoclonal antibodies. J. Neurosci. Res. 71(1), 104–109 (2003)
  • Bansal R, Pfeiffer SE: Reversible inhibition of oligodendrocyte progenitor differentiation by a monoclonal antibody against surface galactolipids. Proc. Natl Acad. Sci. USA 86(16), 6181–6185 (1989)
  • Dupree JL, Coetzee T, Suzuki K, Popko B: Myelin abnormalities in mice deficient in galactocerebroside and sulfatide. J. Neurocytol. 27(9), 649–659 (1998)
  • Marcus J, Popko B: Galactolipids are molecular determinants of myelin development and axo-glial organization. Biochim. Biophys. Acta 1573(3), 406–413 (2002)
  • Ishibashi T, Dupree JL, Ikenaka K et al.: A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J. Neurosci. 22(15),6507–6514 (2002)
  • Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, Dupree JL: Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53(4), 372–381 (2006)
  • Jeon SB, Yoon HJ, Park SH, Kim IH,Park EJ: Sulfatide, a major lipid component of myelin sheath, activates inflammatory responses as an endogenous stimulator in brain-resident immune cells. J. Immunol. 181(11), 8077–8087 (2008)
  • Stevens A, Weller M, Wietholter H: CSF and serum ganglioside antibody patterns in MS. Acta Neurol. Scand. 86(5), 485–489 (1992)
  • Pender MP, Csurhes PA, Wolfe NP et al.: Increased circulating T cell reactivity to GM3 and GQ1b gangliosides in primary progressive multiple sclerosis. J. Clin. Neurosci. 10(1), 63–66 (2003)
  • Valentino P, Labate A, Nistico R et al.: Anti-GM1 antibodies are not associated with cerebral atrophy in patients with multiple sclerosis. Mult. Scler. 15(1), 114–115 (2009)
  • Giovannoni G, Morris PR, Keir G: Circulating antiganglioside antibodies are not associated with the development of progressive disease or cerebral atrophy in patients with multiple sclerosis. Ann. Neurol. 47(5), 684–685 (2000)
  • Ruf P, Jager M, Ellwart J, Wosch S, Kusterer E, Lindhofer H: Two new trifunctional antibodies for the therapy of human malignant melanoma. Int. J. Cancer 108(5), 725–732 (2004)
  • Bjartmar C, Kinkel RP, Kidd G, Rudick RA, Trapp BD: Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology 57(7), 1248–1252 (2001)
  • Bjartmar C, Trapp BD: Axonal degeneration and progressive neurologic disability in multiple sclerosis. Neurotox. Res. 5(1–2), 157–164 (2003)
  • Zaprianova E, Deleva D, Ilinov P et al.: Serum ganglioside patterns in multiple sclerosis. Neurochem. Res. 26(2), 95–100 (2001)
  • Roussel V, Yi F, Jauberteau MO et al.: Prevalence and clinical significance of anti-phospholipid antibodies in multiple sclerosis: a study of 89 patients. J. Autoimmun. 14(3), 259–265 (2000)
  • Cordoliani MA, Michon-Pasturel U, Rerat K et al.: Multiple sclerosis and antiphospholipid antibodies: study of 62 consecutive patients. Rev. Med. Interne 19(9), 635–639 (1998)
  • D’Olhaberriague L, Levine SR, Salowich‑Palm L et al.: Specificity, isotype, and titer distribution of anticardiolipin antibodies in CNS diseases. Neurology 51(5), 1376–1380 (1998)
  • Tourbah A, Clapin A, Gout O et al.: Systemic autoimmune features and multiple sclerosis: a 5‑year follow-up study. Arch. Neurol. 55(4), 517–521 (1998)
  • Lolli F, Mata S, Baruffi MC, Amaducci L:Cerebrospinal fluid anti-cardiolipinantibodies in neurological diseases. ClinImmunol. Immunopathol. 59(2), 314–321(1991)
  • Chaleomchan W, Hemachudha T, Sakulramrung R, Deesomchok U:Anticardiolipin antibodies in patients with rabies vaccination induced neurological complications and other neurological diseases. J. Neurol. Sci. 96(2–3), 143–151 (1990)
  • Marchiori PE, Dos Reis M, Quevedo ME et al.: Cerebrospinal fluid and serum antiphospholipid antibodies in multiple sclerosis, Guillain–Barre syndrome and systemic lupus erythematosus. Arq. Neuropsiquiatr. 48(4), 465–468 (1990)
  • Karussis D, Leker RR, Ashkenazi A, Abramsky O: A subgroup of multiple sclerosis patients with anticardiolipin antibodies and unusual clinical manifestations: do they represent a new nosological entity? Ann. Neurol. 44(4), 629–634 (1998)
  • Tartaglia MC, Narayanan S, De Stefano N et al.: Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis. J. Neurol. 249(10), 1382–1390 (2002)
  • Qin J, Goswami R, Balabanov R, Dawson G: Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple sclerosis brain. J. Neurosci. Res. 85(5), 977–984 (2007)
  • Woodruff RH, Franklin RJ: Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: a comparative study. Glia 25(3), 216–228 (1999)
  • Villar LM, Sadaba MC, Roldan E et al.: Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS. J. Clin. Invest. 115(1), 187–194 (2005). 200 O’Keeffe J, Doherty DG, Kenna T et al.: Diverse populations of T cells with NK cell receptors accumulate in the human intestine in health and in colorectal cancer. Eur. J. Immunol. 34(8), 2110–2119 (2004)
  • Kenna T, Golden-Mason L, Porcelli SA et al.: NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J. Immunol. 171(4), 1775–1779 (2003)
  • O’Keeffe J, Gately CM, Counihan T et al.: T-cells expressing natural killer (NK) receptors are altered in multiple sclerosis and responses to a-galactosylceramide are impaired.
  • J. Neurol. Sci. 275(1–2), 22–28 (2008)
  • Pittet MJ, Speiser DE, Valmori D, Cerottini JC, Romero P: Cutting edge: cytolytic effector function in human circulating CD8+ T cells closely correlates with CD56 surface expression. J. Immunol. 164(3), 1148–1152 (2000)
  • Loza MJ, Metelitsa LS, Perussia B: NKT and T cells: coordinate regulation of NK-like phenotype and cytokine production. Eur. J. Immunol. 32(12), 3453–3462 (2002)
  • Exley M, Porcelli S, Furman M, Garcia J, Balk S: CD161 (NKR-P1A) costimulation of CD1d-dependent activation of human T cells expressing invariant V a 24 J a Q T cell receptor a chains. J. Exp. Med. 188(5), 867–876 (1998)
  • Poggi A, Costa P, Zocchi MR, Moretta L: Phenotypic and functional analysis of CD4+ NKRP1A+ human T lymphocytes. Direct evidence that the NKRP1A molecule is involved in transendothelial migration. Eur. J. Immunol. 27(9), 2345–2350 (1997)
  • Moser JM, Gibbs J, Jensen PE, Lukacher AE: CD94–NKG2A receptors regulate antiviral CD8+ T cell responses. Nat. Immunol. 3(2), 189–195 (2002)
  • Lee N, Llano M, Carretero M et al.: HLA-E is a major ligand for the natural killer inhibitoryreceptor CD94/NKG2A. Proc. Natl Acad. Sci. USA 95(9), 5199–5204 (1998)
  • Bauer S, Groh V, Wu J et al.: Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285(5428), 727–729 (1999)
  • Van Kaer L: a-galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat. Rev. Immunol. 5(1), 31–42 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.