1,908
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Regulation of lipid metabolism in breast cancer provides diagnostic and therapeutic opportunities

&
Pages 177-188 | Published online: 18 Jan 2017

References

  • 1 Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4(11), 891-899 (2004).
  • Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat. Rev. Cancer 4(7), 551-561 (2004).
  • Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7(10), 763-777 (2007).
  • Sul HS, Wang D. Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu. Rev. Nutr. 18, 331-351 (1998).
  • Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc. Natl Acad. Sci. USA 97(7), 3450-3454 (2000).
  • Foretz M, Guichard C, Ferre P, Foufelle F. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc. Natl Acad. Sci. USA 96(22), 12737-12742 (1999).
  • Kersten S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep. 2(4), 282-286 (2001).
  • Shimomura I, Hammer RE, Richardson JA et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 12(20), 3182-3194 (1998).
  • Sekiya M, Yahagi N, Matsuzaka T et al. SREBP-1-independent regulation of lipogenic gene expression in adipocytes. J. Lipid Res. 48(7), 1581-1591 (2007).
  • Milgraum LZ, Witters LA, Pasternack GR, Kuhajda FP. Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin. Cancer Res. 3(11), 2115-2120 (1997).
  • Alo PL, Visca P, Marci A, Mangoni A, Botti C, Di Tondo U. Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer 77(3), 474-482 (1996).
  • Alo PL, Visca P, Trombetta G et al. Fatty acid synthase (FAS) predictive strength in poorly differentiated early breast carcinomas. Tumori 85(1), 35-40 (1999).
  • Yang YA, Morin PJ, Han WF et al. Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp. Cell Res. 282(2), 132-137 (2003).
  • Yang YA, Han WF, Morin PJ, Chrest FJ, Pizer ES. Activation of fatty acid synthesis during neoplastic transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Exp. Cell Res. 279(1), 80-90 (2002).
  • Yoon S, Lee MY, Park SW et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. J. Biol. Chem. 282(36), 26122-26131 (2007).
  • Scaglia N, Chisholm JW, Igal RA. Inhibition of stearoylCoA desaturase-1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells: role of AMPK. PLoS ONE 4(8), e6812 (2009).
  • Luyimbazi D, Akcakanat A, McAuliffe PF et al. Rapamycin regulates stearoyl CoA desaturase 1 expression in breast cancer. Mol. Cancer Ther. 9(10), 2770-2784 (2010).
  • Moncur JT, Park JP, Memoli VA, Mohandas TK, Kinlaw WB. The 'Spot 14' gene resides on the telomeric end of the 11q13 amplicon and is expressed in lipogenic breast cancers: implications for control of tumor metabolism. Proc. Natl Acad. Sci. USA 95(12), 6989-6994 (1998).
  • Wells WA, Schwartz GN, Morganelli PM, Cole BF, Gibson JJ, Kinlaw WB. Expression of 'Spot 14' (THRSP) predicts disease free survival in invasive breast cancer: immunohistochemical analysis of a new molecular marker. Breast Cancer Res. Treat. 98(2), 231-240 (2006).
  • Martel PM, Bingham CM, McGraw CJ et al. S14 protein in breast cancer cells: direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth. Exp. Cell Res. 312(3), 278-288 (2006).
  • Colbert CL, Kim CW, Moon YA et al. Crystal structure of Spot 14, a modulator of fatty acid synthesis. Proc. Natl Acad. Sci. USA 107(44), 18820-18825 (2010).
  • Gibellini F, Smith TK. The Kennedy pathway - de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62(6), 414-428 (2010).
  • Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat. Rev. Cancer 11(12), 835-848 (2012).
  • Ramirez de Molina A, Gutierrez R, Ramos MA et al. Increased choline kinase activity in human breast carcinomas: clinical evidence for a potential novel antitumor strategy. Oncogene 21(27), 4317-4322 (2002).
  • Ramirez de Molina A, Banez-Coronel M, Gutierrez R et al. Choline kinase activation is a critical requirement for the proliferation of primary human mammary epithelial cells and breast tumor progression. Cancer Res. 64(18), 6732-6739 (2004).
  • Katz-Brull R, Lavin PT, Lenkinski RE. Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions. J. Natl Cancer Inst. 94(16), 1197-1203 (2002).
  • Contractor KB, Kenny LM, Stebbing J et al. [11C]choline positron emission tomography in estrogen receptor-positive breast cancer. Clin. Cancer Res. 15(17), 5503-5510 (2009).
  • Kenny LM, Contractor KB, Hinz R et al. Reproducibility of [11C]choline-positron emission tomography and effect of trastuzumab. Clin. Cancer Res. 16(16), 4236-4245 (2010).
  • Oreši? M, Hänninen VA, Vidal-Puig A. Lipidomics: a new window to biomedical frontiers. Trends Biotechnol. 26(12), 647-652 (2008).
  • Hilvo M, Denkert C, Lehtinen L et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res. 71(9), 3236-3245 (2012).
  • Rezaul K, Thumar JK, Lundgren DH et al. Differential protein expression profiles in estrogen receptor-positive and -negative breast cancer tissues using label-free quantitative proteomics. Genes Cancer 1(3), 251-271 (2010).
  • Swinnen JV, Van Veldhoven PP, Timmermans L et al. Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem. Biophys. Res. Commun. 302(4), 898-903 (2003).
  • Fiorentino M, Zadra G, Palescandolo E et al. Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of beta-catenin in prostate cancer. Lab. Invest. 88(12), 1340-1348 (2008).
  • Rysman E, Brusselmans K, Scheys K et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 70(20), 8117-8126 (2010).
  • Fruhwirth GO, Hermetter A. Mediation of apoptosis by oxidized phospholipids. Subcell. Biochem. 49, 351舑367 (2008).
  • Pizer ES, Thupari J, Han WF et al. Malonylcoenzyme- A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res. 60(2), 213舑218 (2000).
  • Loftus TM, Jaworsky DE, Frehywot GL et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288(5475), 2379舑2381 (2000).
  • Kuhajda FP, Landree LE, Ronnett GV. The connections between C75 and obesity drug-target pathways. Trends Pharmacol. Sci. 26(11), 541舑544 (2005).
  • e with antitumor activity. Cancer Res. 64(6), 2070舑2075 (2004).
  • Lupu R, Menendez JA. Pharmacological inhibitors of fatty acid synthase (FASN) 舑 catalyzed endogenous fatty acid biogenesis: a new family of anti-cancer agents? Curr. Pharm. Biotechnol. 7(6), 483舑493 (2006).
  • Menendez JA, Mehmi I, Atlas E, Colomer R, Lupu R. Novel signaling molecules implicated in tumor-associated fatty acid synthasedependent breast cancer cell proliferation and survival: role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. Int. J. Oncol. 24(3), 591-608 (2004).
  • Chajès V, Cambot M, Moreau K, Lenoir GM, Joulin V. Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res. 66(10), 5287-5294 (2006).
  • Menendez JA, Vellon L, Colomer R, Lupu R. Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity. Int. J. Cancer 115(1), 19-35 (2005).
  • Menendez JA, Lupu R. RNA interferencemediated silencing of the p53 tumorsuppressor protein drastically increases apoptosis after inhibition of endogenous fatty acid metabolism in breast cancer cells. Int. J. Mol. Med. 15(1), 33-40 (2005).
  • Knowles LM, Smith JW. Genome-wide changes accompanying knockdown of fatty acid synthase in breast cancer. BMC Genomics 8, 168 (2007).
  • Menendez JA, Vellon L, Mehmi I et al. Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc. Natl Acad. Sci. USA 101(29), 10715-10720 (2004).
  • Little JL, Wheeler FB, Fels DR, Koumenis C, Kridel SJ. Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells. Cancer Res. 67(3), 1262-1269 (2007).
  • Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat. Rev. Cancer 3(8), 582-591 (2003).
  • Panupinthu N, Lee HY, Mills GB. Lysophosphatidic acid production and action: critical new players in breast cancer initiation and progression. Br. J. Cancer 102(6), 941-946 (2010).
  • Yanagida K, Masago K, Nakanishi H et al. Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA6. J. Biol. Chem. 284(26), 17731-17741 (2009).
  • Liu S, Umezu-Goto M, Murph M et al. Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 15(6), 539-550 (2009).
  • Boucharaba A, Serre CM, Gres S et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J. Clin. Invest. 114(12), 1714-1725 (2004).
  • Samadi N, Gaetano C, Goping IS, Brindley DN. Autotaxin protects MCF-7 breast cancer and MDA-MB-435 melanoma cells against Taxol-induced apoptosis. Oncogene 28(7), 1028-1039 (2009).
  • Zhang H, Xu X, Gajewiak J et al. Dual activity lysophosphatidic acid receptor pan-antagonist/autotaxin inhibitor reduces breast cancer cell migration in vitro and causes tumor regression in vivo. Cancer Res. 69(13), 5441-5449 (2009). n Interesting study describing how inhibition of lysophosphatidic acid-autotaxin signaling causes tumor regression in vivo.
  • Xu Y, Shen Z, Wiper DW et al. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA 280(8), 719-723 (1998).
  • Wang D, Dubois RN. Eicosanoids and cancer. Nat. Rev. Cancer 10(3), 181-193 (2010).
  • Parrett M, Harris R, Joarder F, Ross M, Clausen K, Robertson F. Cyclooxygenase-2 gene expression in human breast cancer. Int. J. Oncol. 10(3), 503-507 (1997).
  • Hwang D, Scollard D, Byrne J, Levine E. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J. Natl Cancer Inst. 90(6), 455-460 (1998).
  • Zhao X, Goswami M, Pokhriyal N et al. Cyclooxygenase-2 expression during immortalization and breast cancer progression. Cancer Res. 68(2), 467-475 (2008).
  • Agrawal A, Fentiman IS. NSAIDs and breast cancer: a possible prevention and treatment strategy. Int. J. Clin. Pract. 62(3), 444-449 (2008).
  • Zhou J, Suzuki T, Kovacic A et al. Interactions between prostaglandin E(2), liver receptor homologue-1, and aromatase in breast cancer. Cancer Res. 65(2), 657-663 (2005).
  • Pan MR, Hou MF, Chang HC, Hung WC. Cyclooxygenase-2 up-regulates CCR7 via EP2/EP4 receptor signaling pathways to enhance lymphatic invasion of breast cancer cells. J. Biol. Chem. 283(17), 11155-11163 (2008).
  • Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 67(9), 4507-4513 (2007).
  • Chang SH, Liu CH, Conway R et al. Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc. Natl Acad. Sci. USA 101(2), 591-596 (2004).
  • Kamiyama M, Pozzi A, Yang L, DeBusk LM, Breyer RM, Lin PC. EP2, a receptor for PGE2, regulates tumor angiogenesis through direct effects on endothelial cell motility and survival. Oncogene 25(53), 7019-7028 (2006).
  • Wolf I, O'Kelly J, Rubinek T et al. 15-hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res. 66, 7818-7823 (2006).
  • Lehtinen L, Vainio P, Wikman H et al. 15-hydroxyprostaglandin dehydrogenase associates with poor prognosis in breast cancer, induces epithelial-mesenchymal transition, and promotes cell migration in cultured breast cancer cells. J. Pathol. 226(4), 674-686 (2012).
  • Pidgeon GP, Lysaght J, Krishnamoorthy S et al. Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev. 26(3-4), 503-524 (2007).
  • Subbarayan V, Xu XC, Kim J et al. Inverse relationship between 15-lipoxygenase-2 and PPAR-gamma gene expression in normal epithelia compared with tumor epithelia. Neoplasia 7(3), 280-293 (2005).
  • Jiang WG, Watkins G, Douglas-Jones A, Mansel RE. Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins Leukot. Essent. Fatty Acids 74(4), 235-245 (2006).
  • Jiang WG, Douglas-Jones AG, Mansel RE. Aberrant expression of 5-lipoxygenaseactivating protein (5-LOXAP) has prognostic and survival significance in patients with breast cancer. Prostaglandins Leukot. Essent. Fatty Acids 74(2), 125-134 (2006).
  • Tong WG, Ding XZ, Adrian TE. The mechanisms of lipoxygenase inhibitor-induced apoptosis in human breast cancer cells. Biochem. Biophys. Res. Commun. 296(4), 942-948 (2002).
  • Nony PA, Kennett SB, Glasgow WC, Olden K, Roberts JD. 15(S)-lipoxygenase-2 mediates arachidonic acid-stimulated adhesion of human breast carcinoma cells through the activation of TAK1, MKK6, and p38 MAPK. J. Biol. Chem. 280(36), 31413-31419 (2005).
  • Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 21(6), 495-505 (2002).
  • Rose DP, Connolly JM, Rayburn J, Coleman M. Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. J. Natl Cancer Inst. 87(8), 587-592 (1995).
  • Bagga D, Capone S, Wang HJ et al. Dietary modulation of omega-3/omega-6 polyunsaturated fatty acid ratios in patients with breast cancer. J. Natl Cancer Inst. 89(15), 1123-1131 (1997).
  • Maillard V, Bougnoux P, Ferrari P et al. N-3 and N-6 fatty acids in breast adipose tissue and relative risk of breast cancer in a case-control study in Tours, France. Int. J. Cancer 98(1), 78-83 (2002).
  • Ryland LK, Fox TE, Liu X, Loughran TP, Kester M. Dysregulation of sphingolipid metabolism in cancer. Cancer Biol. Ther. 11(2), 138-149 (2012).
  • Cuvillier O, Pirianov G, Kleuser B et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1- phosphate. Nature 381(6585), 800-803 (1996).
  • Bieberich E, Hu B, Silva J et al. Synthesis and characterization of novel ceramide analogs for induction of apoptosis in human cancer cells. Cancer Lett. 181(1), 55-64 (2002).
  • Crawford KW, Bittman R, Chun J, Byun HS, Bowen WD. Novel ceramide analogues display selective cytotoxicity in drug-resistant breast tumor cell lines compared with normal breast epithelial cells. Cell. Mol. Biol. (Noisy-le-grand) 49(7), 1017-1023 (2003).
  • Stover TC, Sharma A, Robertson GP, Kester M. Systemic delivery of liposomal shortchain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Clin. Cancer Res. 11(9), 3465-3474 (2005).
  • Schiffmann S, Sandner J, Birod K et al. Ceramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis 30(5), 745-752 (2009).
  • Ruckhaberle E, Rody A, Engels K et al. Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res. Treat. 112(1), 41-52 (2008).
  • Liu H, Toman RE, Goparaju SK et al. Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J. Biol. Chem. 278(41), 40330-40336 (2003).
  • Maceyka M, Sankala H, Hait NC et al. SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J. Biol. Chem. 280(44), 37118-37129 (2005).
  • Weigert A, Schiffmann S, Sekar D et al. Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an antiinflammatory phenotype. Int. J. Cancer 125(9), 2114-2121 (2009).
  • Hait NC, Bellamy A, Milstien S, Kordula T, Spiegel S. Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. J. Biol. Chem. 282(16), 12058-12065 (2007).
  • Pyne NJ, Pyne S. Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer 10(7), 489-503 (2010).
  • Schwalm S, Doll F, Romer I, Bubnova S, Pfeilschifter J, Huwiler A. Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells. Biochem. Biophys. Res. Commun. 368(4), 1020-1025 (2008).
  • Ader I, Brizuela L, Bouquerel P, Malavaud B, Cuvillier O. Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Res. 68(20), 8635-8642 (2008).
  • Anelli V, Gault CR, Cheng AB, Obeid LM. Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. J. Biol. Chem. 283(6), 3365-3375 (2008).
  • Licht T, Tsirulnikov L, Reuveni H, Yarnitzky T, Ben-Sasson SA. Induction of proangiogenic signaling by a synthetic peptide derived from the second intracellular loop of S1P3 (EDG3). Blood 102(6), 2099-2107 (2003).
  • Visentin B, Vekich JA, Sibbald BJ et al. Validation of an anti-sphingosine-1- phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9(3), 225-238 (2006).
  • Sukocheva O, Wadham C, Holmes A et al. Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J. Cell Biol. 173(2), 301-310 (2006).
  • Sukocheva O, Wang L, Verrier E, Vadas MA, Xia P. Restoring endocrine response in breast cancer cells by inhibition of the sphingosine kinase-1 signaling pathway. Endocrinology 150(10), 4484-4492 (2009).
  • Watson C, Long JS, Orange C et al. High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptorpositive breast cancer patients. Am J. Pathol. 177(5), 2205-2215 (2010).
  • Hait NC, Allegood J, Maceyka M et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325(5945), 1254-1257 (2009).
  • Tan RX, Chen JH. The cerebrosides. Nat. Prod. Rep. 20(5), 509-534 (2003).
  • Liu YY, Han TY, Giuliano AE, Cabot MC. Ceramide glycosylation potentiates cellular multidrug resistance. FASEB J. 15(3), 719-730 (2001).
  • Morjani H, Aouali N, Belhoussine R, Veldman RJ, Levade T, Manfait M. Elevation of glucosylceramide in multidrug-resistant cancer cells and accumulation in cytoplasmic droplets. Int. J. Cancer 94(2), 157-165 (2001).
  • Ruckhaberle E, Karn T, Hanker L et al. Prognostic relevance of glucosylceramide synthase (GCS) expression in breast cancer. J. Cancer Res. Clin. Oncol. 135(1), 81-90 (2009).
  • Gouaze V, Liu YY, Prickett CS, Yu JY, Giuliano AE, Cabot MC. Glucosylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs. Cancer Res. 65(9), 3861-3867 (2005).
  • Yu RK, Tsai YT, Ariga T, Yanagisawa M. Structures, biosynthesis, and functions of gangliosides - an overview. J. Oleo. Sci. 60(10), 537-544 (2012).
  • Birkle S, Zeng G, Gao L, Yu RK, Aubry J. Role of tumor-associated gangliosides in cancer progression. Biochimie 85(3-4), 455-463 (2003).
  • Marquina G, Waki H, Fernandez LE et al. Gangliosides expressed in human breast cancer. Cancer Res. 56(22), 5165-5171 (1996).
  • Fernandez LE, Gabri MR, Guthmann MD et al. NGcGM3 ganglioside: a privileged target for cancer vaccines. Clin. Dev. Immunol. 2010, 814397 (2010).
  • Hirsch HA, Iliopoulos D, Joshi A et al. A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell 17(4), 348-361 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.