188
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Hepatobiliary transport in health and disease

&
Pages 189-202 | Published online: 18 Jan 2017

References

  • Hofmann AF. Overview of bile secretion. In: Handbook of Physiology. Schultz SG (Ed.). American Physiological Society, MD, USA 549–566 (1989).
  • Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol. Rev. 83(2), 633–671 (2003).
  • Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol. Rev. 62(1), 1–96 (2010).
  • Folmer DE, Elferink RP, Paulusma CC. P4 ATPases – lipid flippases and their role in disease. Biochim. Biophys. Acta 1791(7), 628–635 (2009).
  • Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. Progressive familial intrahepatic cholestasis. Orphanet J. Rare Dis. 4, 1 (2009).
  • Kidambi S, Patel SB. Sitosterolaemia: pathophysiology, clinical presentation and laboratory diagnosis. J. Clin. Pathol. 61(5), 588–594 (2008).
  • Shani M, Seligsohn U, Gilon E, Sheba C, Adam A. Dubin–Johnson syndrome in Israel. I. Clinical, laboratory, and genetic aspects of 101 cases. Q. J. Med. 39(156), 549–567 (1970).
  • Kajihara S, Hisatomi A, Mizuta T et al. A splice mutation in the human canalicular multispecific organic anion transporter gene causes Dubin–Johnson syndrome. Biochem. Biophys. Res. Commun. 253(2), 454–457 (1998).
  • Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).
  • Marschall HU, Matern H, Sjövall J, Matern S. Conjugation of bile acids. In: Bile Acids – Cholestasis – Gallstones: Advances in Basic and Clinical Bile Acid Research. Fromm H, Leuschner U (Eds). Kluwer, Dordrecht, The Netherlands, 13–22 (1996).
  • Hofmann AF. Bile acids: trying to understand their chemistry and biology with the hope of helping patients. Hepatology 49(5), 1403–1418 (2009).
  • Suchy FJ, Sippel CJ, Ananthanarayanan M. Bile acid transport across the hepatocyte canalicular membrane. FASEB J. 11(4), 199–205 (1997).
  • Dawson PA, Lan T, Rao A. Bile acid transporters. J. Lipid Res. 50(12), 2340–2357 (2009).
  • Noe J, Stieger B, Meier PJ. Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology 123(5), 1659–1666 (2002).
  • Hayashi H, Takada T, Suzuki H, Onuki R, Hofmann AF, Sugiyama Y. Transport by vesicles of glycine- and taurine-conjugated bile salts and taurolithocholate 3-sulfate: a comparison of human BSEP with rat Bsep. Biochim. Biophys. Acta 1738(1–3), 54–62 (2005).
  • Hirano M, Maeda K, Hayashi H, Kusuhara H, Sugiyama Y. Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J. Pharmacol. Exp. Ther. 314(2), 876–882 (2005).
  • Strautnieks SS, Bull LN, Knisely AS et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat. Genet. 20(3), 233–238 (1998).
  • Jansen PL, Strautnieks SS, Jacquemin E et al. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 117(6), 1370–1379 (1999).
  • Parks DJ, Blanchard SG, Bledsoe RK et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284(5418), 1365–1368 (1999).
  • Lew JL, Zhao A, Yu J et al. The farnesoid X receptor controls gene expression in a ligandand promoter-selective fashion. J. Biol. Chem. 279(10), 8856–8861 (2004).
  • Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J. Biol. Chem. 276(31), 28857–28865 (2001).
  • Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102(6), 731–744 (2000).
  • Lam P, Soroka CJ, Boyer JL. The bile salt export pump: clinical and experimental aspects of genetic and acquired cholestatic liver disease. Semin. Liver Dis. 30(2), 125–133 (2010).
  • Pawlikowska L, Strautnieks S, Jankowska I et al. Differences in presentation and progression between severe FIC1 and BSEP deficiencies. J. Hepatol. 53(1), 170–178 (2010).
  • Morotti RA, Suchy FJ, Magid MS. Progressive familial intrahepatic cholestasis (PFIC) type 1, 2, and 3: a review of the liver pathology findings. Semin. Liver Dis. 31(1), 3–10 (2012).
  • Strautnieks SS, Byrne JA, Pawlikowska L et al. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology 134(4), 1203–1214 (2008).
  • van Mil SW, van der Woerd WL, van der Brugge G et al. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology 127(2), 379–384 (2004).
  • Stieger B. Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metab. Rev. 42(3), 437–445 (2010).
  • Kennedy EP, Weiss SB. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 222(1), 193–214 (1956).
  • Vance DE, Ridgway ND. The methylation of phosphatidylethanolamine. Prog. Lipid Res. 27(1), 61–79 (1988).
  • Portal I, Clerc T, Sbarra V et al. Importance of high-density lipoproteinphosphatidylcholine in secretion of phospholipid and cholesterol in bile. Am. J. Physiol. 264(6 Pt 1), G1052–6 (1993).
  • Minahk C, Kim KW, Nelson R, Trigatti B, Lehner R, Vance DE. Conversion of low density lipoprotein-associated phosphatidylcholine to triacylglycerol by primary hepatocytes. J. Biol. Chem. 283(10), 6449–6458 (2008).
  • Oude Elferink RP, Paulusma CC. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch. 453(5), 601–610 (2007).
  • Gros P, Raymond M, Bell J, Housman D. Cloning and characterization of a second member of the mouse Mdr gene family. Mol. Cell. Biol. 8(7), 2770–2778 (1988).
  • Smit JJ, Schinkel AH, Oude Elferink RP et al. Homozygous disruption of the murine Mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75(3), 451–462 (1993).
  • Smith AJ, de Vree JM, Ottenhoff R, Oude Elferink RP, Schinkel AH, Borst P. Hepatocyte-specific expression of the human MDR3 P-glycoprotein gene restores the biliary phosphatidylcholine excretion absent in Mdr2 (-/-) mice. Hepatology 28(2), 530–536 (1998).
  • Morita SY, Kobayashi A, Takanezawa Y et al. Bile salt-dependent efflux of cellular phospholipids mediated by ATP binding cassette protein B4. Hepatology 46(1), 188–199 (2007).
  • Ikebuchi Y, Takada T, Ito K et al. Receptor for activated C-kinase 1 regulates the cellular localization and function of ABCB4. Hepatol. Res. 39(11), 1091–1107 (2009).
  • Groen A, Romero MR, Kunne C et al. Complementary functions of the flippase ATP8B1 and the floppase ABCB4 in maintaining canalicular membrane integrity. Gastroenterology 141(5), 1927–37.e1–4 (2012).
  • Lincke CR, Smit JJ, van der Velde-Koerts T, Borst P. Structure of the human MDR3 gene and physical mapping of the human MDR locus. J. Biol. Chem. 266(8), 5303–5310 (1991).
  • Smit JJ, Schinkel AH, Mol CA et al. Tissue distribution of the human MDR3 P-glycoprotein. Lab. Invest. 71(5), 638–649 (1994).
  • Huang L, Zhao A, Lew JL et al. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J. Biol. Chem. 278(51), 51085–51090 (2003).
  • Gonzales E, Davit-Spraul A, Baussan C, Buffet C, Maurice M, Jacquemin E. Liver diseases related to MDR3 (ABCB4) gene deficiency. Front. Biosci. 14, 4242–4256 (2009).
  • Holthuis JC, Levine TP. Lipid traffic: floppy drives and a superhighway. Nat. Rev. Mol. Cell Biol. 6(3), 209–220 (2005).
  • Oude Elferink RP, Paulusma CC, Groen AK. Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology 130(3), 908–925 (2006).
  • Vance JE, Steenbergen R. Metabolism and functions of phosphatidylserine. Prog. Lipid Res. 44(4), 207–234 (2005).
  • Bergo MO, Gavino BJ, Steenbergen R et al. Defining the importance of phosphatidylserine synthase 2 in mice. J. Biol. Chem. 277(49), 47701–47708 (2002).
  • Arikketh D, Nelson R, Vance JE. Defining the importance of phosphatidylserine synthase-1 (PSS1): unexpected viability of PSS1-deficient mice. J. Biol. Chem. 283(19), 12888–12897 (2008).
  • Klomp LW, Vargas JC, van Mil SW et al. Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology 40(1), 27–38 (2004).
  • Paulusma CC, Oude Elferink RP. The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease. Biochim. Biophys. Acta 1741(1–2), 11–24 (2005).
  • Bull LN, van Eijk MJ, Pawlikowska L et al. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat. Genet. 18(3), 219–224 (1998).
  • Paulusma CC, Folmer DE, Ho-Mok KS et al. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology 47(1), 268–278 (2008).
  • Bryde S, Hennrich H, Verhulst PM, Devaux PF, Lenoir G, Holthuis JC. CDC50 proteins are critical components of the human class-1 P4-ATPase transport machinery. J. Biol. Chem. 285(52), 40562–40572 (2010).
  • Paulusma CC, Groen A, Kunne C et al. Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport. Hepatology 44(1), 195–204 (2006).
  • Cai SY, Gautam S, Nguyen T, Soroka CJ, Rahner C, Boyer JL. ATP8B1 deficiency disrupts the bile canalicular membrane bilayer structure in hepatocytes, but FXR expression and activity are maintained. Gastroenterology 136(3), 1060–1069 (2009).
  • Clayton RJ, Iber FL, Ruebner BH, McKusick VA. Byler disease. Fatal familial intrahepatic cholestasis in an Amish kindred. Am. J. Dis. Child. 117(1), 112–124 (1969).
  • Klomp LW, Bull LN, Knisely AS et al. A missense mutation in FIC1 is associated with Greenland familial cholestasis. Hepatology 32(6), 1337–1341 (2000).
  • Paulusma CC, Elferink RP, Jansen PL. Progressive familial intrahepatic cholestasis type 1. Semin. Liver Dis. 30(2), 117–124 (2010).
  • Folmer DE, van der Mark VA, Ho-Mok KS, Oude Elferink RP, Paulusma CC. Differential effects of progressive familial intrahepatic cholestasis type 1 and benign recurrent intrahepatic cholestasis type 1 mutations on canalicular localization of ATP8B1. Hepatology 50(5), 1597–1605 (2009).
  • Bull LN, Carlton VE, Stricker NL et al. Genetic and morphological findings in progressive familial intrahepatic cholestasis (Byler disease [PFIC-1] and Byler syndrome): evidence for heterogeneity. Hepatology 26(1), 155–164 (1997).
  • Mullenbach R, Bennett A, Tetlow N et al. ATP8B1 mutations in British cases with intrahepatic cholestasis of pregnancy. Gut 54(6), 829–834 (2005).
  • Painter JN, Savander M, Ropponen A et al. Sequence variation in the ATP8B1 gene and intrahepatic cholestasis of pregnancy. Eur. J. Hum. Genet. 13(4), 435–439 (2005).
  • Paulusma CC, de Waart DR, Kunne C, Mok KS, Elferink RP. Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content. J. Biol. Chem. 284(15), 9947–9954 (2009).
  • Stapelbroek JM, vanErpecum KJ, Klomp LW, Houwen RH. Liver disease associated with canalicular transport defects: current and future therapies. J. Hepatol. 52(2), 258–271 (2010).
  • Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu. Rev. Cell Dev. Biol. 16, 459–481 (2000).
  • Botham KM, Bravo E. The role of lipoprotein cholesterol in biliary steroid secretion. Studies with in vivo experimental models. Prog. Lipid Res. 34(1), 71–97 (1995).
  • Schwartz CC, Halloran LG, Vlahcevic ZR, Gregory DH, Swell L. Preferential utilization of free cholesterol from high-density lipoproteins for biliary cholesterol secretion in man. Science 200(4337), 62–64 (1978).
  • Hillebrant CG, Nyberg B, Einarsson K, Eriksson M. The effect of plasma low density lipoprotein apheresis on the hepatic secretion of biliary lipids in humans. Gut 41(5), 700–704 (1997).
  • Salen G, Shefer S, Nguyen L, Ness GC, Tint GS, Shore V. Sitosterolemia. J. Lipid Res. 33(7), 945–955 (1992).
  • Heinemann T, Axtmann G, von Bergmann K. Comparison of intestinal absorption of cholesterol with different plant sterols in man. Eur. J. Clin. Invest. 23(12), 827–831 (1993).
  • Bosner MS, Lange LG, Stenson WF, Ostlund RE Jr. Percent cholesterol absorption in normal women and men quantified with dual stable isotopic tracers and negative ion mass spectrometry. J. Lipid Res. 40(2), 302–308 (1999).
  • Patel SB, Salen G, Hidaka H et al. Mapping a gene involved in regulating dietary cholesterol absorption. The sitosterolemia locus is found at chromosome 2p21. J. Clin. Invest. 102(5), 1041–1044 (1998).
  • Berge KE, Tian H, Graf GA et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290(5497), 1771–1775 (2000).
  • Lee MH, Lu K, Hazard S et al. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat. Genet. 27(1), 79–83 (2001).
  • Lu K, Lee MH, Hazard S et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am. J. Hum. Genet. 69(2), 278–290 (2001).
  • Graf GA, Yu L, Li WP et al. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J. Biol. Chem. 278(48), 48275–48282 (2003).
  • Klett EL, Lee MH, Adams DB, Chavin KD, Patel SB. Localization of ABCG5 and ABCG8 proteins in human liver, gall bladder and intestine. BMC Gastroenterol. 4, 21 (2004).
  • Kosters A, Kunne C, Looije N, Patel SB, Oude Elferink RP, Groen AK. The mechanism of ABCG5/ABCG8 in biliary cholesterol secretion in mice. J. Lipid Res. 47(9), 1959–1966 (2006).
  • Small DM. Role of ABC transporters in secretion of cholesterol from liver into bile. Proc. Natl Acad. Sci. USA 100(1), 4–6 (2003).
  • Bhattacharyya AK, Connor WE. Betasitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J. Clin. Invest. 53(4), 1033–1043 (1974).
  • Lutjohann D, Bjorkhem I, Beil UF, von Bergmann K. Sterol absorption and sterol balance in phytosterolemia evaluated by deuterium-labeled sterols: effect of sitostanol treatment. J. Lipid Res. 36(8), 1763–1773 (1995).
  • Miettinen TA, Klett EL, Gylling H, Isoniemi H, Patel SB. Liver transplantation in a patient with sitosterolemia and cirrhosis. Gastroenterology 130(2), 542–547 (2006).
  • Tsubakio-Yamamoto K, Nishida M, Nakagawa-Toyama Y, Masuda D, Ohama T, Yamashita S. Current therapy for patients with sitosterolemia–effect of ezetimibe on plant sterol metabolism. J. Atheroscler. Thromb. 17(9), 891–900 (2010).
  • Salen G, Starc T, Sisk CM, Patel SB. Intestinal cholesterol absorption inhibitor ezetimibe added to cholestyramine for sitosterolemia and xanthomatosis. Gastroenterology 130(6), 1853–1857 (2006).
  • Lutjohann D, von Bergmann K, Sirah W et al. Long-term efficacy and safety of ezetimibe 10 mg in patients with homozygous sitosterolemia: a 2-year, open-label extension study. Int. J. Clin. Pract. 62(10), 1499–1510 (2008).
  • Altmann SW, Davis HR Jr, Zhu LJ et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303(5661), 1201–1204 (2004).
  • Davis HR Jr, Zhu LJ, Hoos LM et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J. Biol. Chem. 279(32), 33586–33592 (2004).
  • Garcia-Calvo M, Lisnock J, Bull HG et al. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc. Natl Acad. Sci. USA 102(23), 8132–8137 (2005).
  • Davies JP, Scott C, Oishi K, Liapis A, Ioannou YA. Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J. Biol. Chem. 280(13), 12710–12720 (2005).
  • Temel RE, Tang W, Ma Y et al. Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J. Clin. Invest. 117(7), 1968–1978 (2007).
  • Kamisako T, Leier I, Cui Y et al. Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. Hepatology 30(2), 485–490 (1999).
  • Taniguchi K, Wada M, Kohno K et al. A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res. 56(18), 4124–4129 (1996).
  • Toh S, Wada M, Uchiumi T et al. Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the ATP-binding-cassette region in Dubin–Johnson syndrome. Am. J. Hum. Genet. 64(3), 739–746 (1999).
  • Tsujii H, Konig J, Rost D, Stockel B, Leuschner U, Keppler D. Exon–intron organization of the human multidrugresistance protein 2 (MRP2) gene mutated in Dubin–Johnson syndrome. Gastroenterology 117(3), 653–660 (1999).
  • Jemnitz K, Heredi-Szabo K, Janossy J, Ioja E, Vereczkey L, Krajcsi P. ABCC2/Abcc2: a multispecific transporter with dominant excretory functions. Drug Metab. Rev. 42(3), 402–436 (2010).
  • Schaub TP, Kartenbeck J, Konig J et al. Expression of the MRP2 gene-encoded conjugate export pump in human kidney proximal tubules and in renal cell carcinoma. J. Am. Soc. Nephrol. 10(6), 1159–1169 (1999).
  • Fromm MF, Kauffmann HM, Fritz P et al. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am. J. Pathol. 157(5), 1575–1580 (2000).
  • Nies AT, Konig J, Pfannschmidt M, Klar E, Hofmann WJ, Keppler D. Expression of the multidrug resistance proteins MRP2 and MRP3 in human hepatocellular carcinoma. Int. J. Cancer 94(4), 492–499 (2001).
  • Sandusky GE, Mintze KS, Pratt SE, Dantzig AH. Expression of multidrug resistanceassociated protein 2 (MRP2) in normal human tissues and carcinomas using tissue microarrays. Histopathology 41(1), 65–74 (2002).
  • Dubin IN, Johnson FB. Chronic idiopathic jaundice with unidentified pigment in liver cells; a new clinicopathologic entity with a report of 12 cases. Medicine (Baltimore) 33(3), 155–197 (1954).
  • Rastogi A, Krishnani N, Pandey R. Dubin–Johnson syndrome – a clinicopathologic study of twenty cases. Indian J. Pathol. Microbiol. 49(4), 500–504 (2006).
  • Donner MG, Keppler D. Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology 34(2), 351–359 (2001).
  • Nisa AU, Ahmad Z. Dubin–Johnson syndrome. J. Coll. Physicians Surg. Pak. 18(3), 188–189 (2008).
  • Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch. 453(5), 643–659 (2007).
  • Welch EM, Barton ER, Zhuo J et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 447(7140), 87–91 (2007).
  • van der Velden LM, Stapelbroek JM, Krieger E et al. Folding defects in P-type ATP 8B1 associated with hereditary cholestasis are ameliorated by 4-phenylbutyrate. Hepatology 51(1), 286–296 (2010).
  • Hayashi H, Sugiyama Y. 4-phenylbutyrate enhances the cell surface expression and the transport capacity of wild-type and mutated bile salt export pumps. Hepatology 45(6), 1506–1516 (2007).
  • Collin J, Lako M. Concise review: putting a finger on stem cell biology: zinc finger nuclease-driven targeted genetic editing in human pluripotent stem cells. Stem Cells 29(7), 1021–1033 (2012).
  • Miller JC, Tan S, Qiao G et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29(2), 143–148 (2012).
  • Ellis BL, Hirsch ML, Porter SN, Samulski RJ, Porteus MH. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs. Gene Ther. doi:10.1038/gt.2012.211 (2012) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.