225
Views
49
CrossRef citations to date
0
Altmetric
Reviews

Therapeutic potential of cyclodextrins in the treatment of Niemann–Pick type C disease

Pages 289-301 | Published online: 18 Jan 2017

Bibliography

  • Vanier MT, Wenger DA, Comly ME, Rousson R, Brady RO, Pentchev PG. Niemann–Pick disease group C: clinical variability and diagnosis based on defective cholesterol esterification. A collaborative study on 70 patients. Clin. Genet. 33(5), 331–348 (1988)
  • Vanier MT. Niemann–Pick disease type C. Orphanet. J. Rare Dis 5, 16 (2010)
  • Yerushalmi B, Sokol RJ, Narkewicz MR, Smith D, Ashmead JW, Wenger DA. Niemann-pick disease type C in neonatal cholestasis at a North American center. J. Pediatr. Gastroenterol. Nutr. 35(1), 44–50 (2002)
  • Garver WS, Francis GA, Jelinek D et al. The National Niemann–Pick C1 disease database: report of clinical features and health problems. Am. J. Med. Genet. A 143A(11), 1204–1211 (2007)
  • Kelly DA, Portmann B, Mowat AP, Sherlock S, Lake BD. Niemann–Pick disease type C: diagnosis and outcome in children, with particular reference to liver disease. J. Pediatr. 123(2), 242–247 (1993)
  • Kovesi TA, Lee J, Shuckett B, Clarke JT, Callahon JW, Phillips MJ. Pulmonary infiltration in Niemann–Pick disease type C. J. Inherit. Metab. Dis. 19(6), 792–793 (1996)
  • Schofer O, Mischo B, Puschel W, Harzer K, Vanier MT. Early-lethal pulmonary form of Niemann–Pick type C disease belonging to a second, rare genetic complementation group. Eur. J. Pediatr. 157(1), 45–49 (1998)
  • Nicholson AG, Florio R, Hansell DM et al. Pulmonary involvement by Niemann–Pick disease. A report of six cases. Histopathology 48(5), 596–603 (2006)
  • Guillemot N, Troadec C, De Villemeur TB, Clement A, Fauroux B. Lung disease in Niemann–Pick disease. Pediatr. Pulmonol. 42(12), 1207–1214 (2007)
  • Bjurulf B, Spetalen S, Erichsen A, Vanier MT, Strom EH, Stromme P. Niemann–Pick disease type C2 presenting as fatal pulmonary alveolar lipoproteinosis: morphological findings in lung and nervous tissue. Med. Sci. Monit. 14(8), CS71–CS75 (2008)
  • Carstea ED, Morris JA, Coleman KG et al. Niemann–Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277(5323), 228–231 (1997).Discovery of the NPC1 gene
  • Sleat DE, Wiseman JA, El-Banna M et al. Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc. Natl Acad. Sci. USA 101(16), 5886–5891 (2004)
  • Xie C, Turley SD, Pentchev PG, Dietschy JM. Cholesterol balance and metabolism in mice with loss of function of Niemann–Pick C protein. Am. J. Physiol. 276(2 Pt 1), e336–e344 (1999)
  • Gondre-Lewis MC, McGlynn R, Walkley SU. Cholesterol accumulation in NPC1-deficient neurons is ganglioside dependent. Curr. Biol. 13(15), 1324–1329 (2003)
  • Liu Y, Wu YP, Wada R et al. Alleviation of neuronal ganglioside storage does not improve the clinical course of the Niemann–Pick C disease mouse. Hum. Mol. Genet. 9(7), 1087–1092 (2000)
  • Watanabe Y, Akaboshi S, Ishida G et al. Increased levels of GM2 ganglioside in fibroblasts from a patient with juvenile Niemann–Pick disease type C. Brain Dev. 20(2), 95–97 (1998)
  • Xie C, Turley SD, Dietschy JM. Centripetal cholesterol flow from the extrahepatic organs through the liver is normal in mice with mutated Niemann–Pick type C protein (NPC1). J. Lipid Res. 41(8), 1278–1289 (2000)
  • Cruz JC, Chang TY. Fate of endogenously synthesized cholesterol in Niemann–Pick type C1 cells. J. Biol. Chem. 275(52), 41309–41316 (2000)
  • Liu B, Xie C, Richardson JA, Turley SD, Dietschy JM. Receptor-mediated and bulk-phase endocytosis cause macrophage and cholesterol accumulation in Niemann–Pick C disease. J. Lipid Res. 48(8), 1710–1723 (2007)
  • Infante RE, Abi-Mosleh L, Radhakrishnan A, Dale JD, Brown MS, Goldstein JL. Purified NPC1 protein. I. Binding of cholesterol and oxysterols to a 1278-amino acid membrane protein. J. Biol. Chem. 283(2), 1052–1063 (2008)
  • Infante RE, Radhakrishnan A, Abi-Mosleh L et al. Purified NPC1 protein: II. Localization of sterol binding to a 240?amino acid soluble luminal loop. J. Biol. Chem. 283(2), 1064–1075 (2008)
  • Goldstein JL, Debose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell 124(1), 35–46 (2006)
  • Repa JJ, Mangelsdorf DJ. Nuclear receptor regulation of cholesterol and bile acid metabolism. Curr. Opin Biotechnol. 10(6), 557–563 (1999)
  • Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109(9), 1125–1131 (2002)
  • Davies JP, Ioannou YA. Topological analysis of Niemann–Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element binding protein cleavage-activating protein. J. Biol. Chem. 275(32), 24367–24374 (2000)
  • Hua X, Sakai J, Brown MS, Goldstein JL. Regulated cleavage of sterol regulatory element binding proteins requires sequences on both sides of the endoplasmic reticulum membrane. J. Biol. Chem. 271(17), 10379–10384 (1996)
  • Nohturfft A, Brown MS, Goldstein JL. Sterols regulate processing of carbohydrate chains of wild-type SREBP cleavage-activating protein (SCAP), but not sterol-resistant mutants Y298C or D443N. Proc. Natl Acad. Sci. USA 95(22), 12848–12853 (1998)
  • Ohgami N, Ko DC, Thomas M, Scott MP, Chang CC, Chang TY. Binding between the Niemann–Pick C1 protein and a photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proc. Natl Acad. Sci. USA 101(34), 12473–12478 (2004)
  • Okamura N, Kiuchi S, Tamba M et al. A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol. Biochim. Biophys. Acta 1438(3), 377–387 (1999)
  • Ko DC, Binkley J, Sidow A, Scott MP. The integrity of a cholesterol-binding pocket in Niemann–Pick C2 protein is necessary to control lysosome cholesterol levels. Proc. Natl Acad. Sci. USA 100(5), 2518–2525 (2003)
  • Friedland N, Liou HL, Lobel P, Stock AM. Structure of a cholesterol-binding protein deficient in Niemann–Pick type C2 disease. Proc. Natl Acad. Sci. USA 100(5), 2512–2517 (2003)
  • Cheruku SR, Xu Z, Dutia R, Lobel P, Storch J. Mechanism of cholesterol transfer from the Niemann–Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport. J. Biol. Chem. 281(42), 31594–31604 (2006)
  • Deffieu MS, Pfeffer SR. Niemann–Pick type C 1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding. Proc. Natl Acad. Sci. USA 108(47), 18932–18936 (2011)
  • Xu S, Benoff B, Liou HL, Lobel P, Stock AM. Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann–Pick type C2 disease. J. Biol. Chem. 282(32), 23525–23531 (2007)
  • Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc. Natl Acad. Sci. USA 105(40), 15287–15292 (2008)
  • Kwon HJ, Abi-Mosleh L, Wang ML et al. Structure of N?terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137(7), 1213–1224 (2009). n Summation of the elegant studies performed by this laboratory on the functions of NPC1 and NPC2
  • Liscum L, Ruggiero RM, Faust JR. The intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann–Pick type C fibroblasts. J. Cell Biol. 108(5), 1625–1636 (1989)
  • Wojtanik KM, Liscum L. The transport of low density lipoprotein-derived cholesterol to the plasma membrane is defective in NPC1 cells. J. Biol. Chem. 278(17), 14850–14856 (2003)
  • Pentchev PG, Comly ME, Kruth HS et al. A defect in cholesterol esterification in Niemann–Pick disease (type C) patients. Proc. Natl Acad. Sci. USA 82(23), 8247–8251 (1985)
  • Pentchev PG, Gal AE, Boothe AD, Fouks J, Omodeo-Sale F, Brady RO. A lysosomal storage disorder in mice characterized by the accumulation of several sphingolipids. Birth Defects Orig. Artic. Ser. 16(1), 225–230 (1980)
  • Pentchev PG, Gal AE, Booth AD et al. A lysosomal storage disorder in mice characterized by a dual deficiency of sphingomyelinase and glucocerebrosidase. Biochim. Biophys. Acta 619(3), 669–679 (1980)
  • Morris MD, Bhuvaneswaran C, Shio H, Fowler S. Lysosome lipid storage disorder in NCTR-BALB/c mice. I. Description of the disease and genetics. Am. J. Pathol. 108(2), 140–149 (1982)
  • Shio H, Fowler S, Bhuvaneswaran C, Morris MD. Lysosome lipid storage disorder in NCTR-BALB/c mice. II. Morphologic and cytochemical studies. Am. J. Pathol. 108(2), 150–159 (1982)
  • Bhuvaneswaran C, Morris MD, Shio H, Fowler S. Lysosome lipid storage disorder in NCTR-BALB/c mice. III. Isolation and analysis of storage inclusions from liver. Am. J. Pathol. 108(2), 160–170 (1982)
  • Loftus SK, Morris JA, Carstea ED et al. Murine model of Niemann–Pick C disease: mutation in a cholesterol homeostasis gene. Science 277(5323), 232–235 (1997)
  • Xie C, Turley SD, Dietschy JM. Cholesterol accumulation in tissues of the Niemann–Pick type C mouse is determined by the rate of lipoprotein-cholesterol uptake through the coated-pit pathway in each organ. Proc. Natl Acad. Sci. USA 96(21), 11992–11997 (1999)
  • Beltroy EP, Richardson JA, Horton JD, Turley SD, Dietschy JM. Cholesterol accumulation and liver cell death in mice with Niemann–Pick type C disease. Hepatology 42(4), 886–893 (2005)
  • Liu B, Turley SD, Burns DK, Miller AM, Repa JJ, Dietschy JM. Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1-/- mouse. Proc. Natl Acad. Sci. USA 106(7), 2377–2382 (2009). nn First paper reporting the ability of cyclodextrin to reverse the cholesterol transport defect in Niemann–Pick type C disease
  • Liu B, Ramirez CM, Miller AM, Repa JJ, Turley SD, Dietschy JM. Cyclodextrin overcomes the transport defect in nearly every organ of NPC1 mice leading to excretion of sequestered cholesterol as bile acid. J. Lipid Res. 51(5), 933–944 (2010)
  • Xie C, Burns DK, Turley SD, Dietschy JM. Cholesterol is sequestered in the brains of mice with Niemann–Pick type C disease but turnover is increased. J. Neuropathol. Exp. Neurol. 59(12), 1106–1117 (2000)
  • Sawamura N, Gong JS, Garver WS et al. Site-specific phosphorylation of tau accompanied by activation of mitogenactivated protein kinase (MAPK) in brains of Niemann–Pick type C mice. J. Biol. Chem. 276(13), 10314–10319 (2001)
  • Xie X, Brown MS, Shelton JM, Richardson JA, Goldstein JL, Liang G. Amino acid substitution in NPC1 that abolishes cholesterol binding reproduces phenotype of complete NPC1 deficiency in mice. Proc. Natl Acad. Sci. USA 108(37), 15330–15335 (2011)
  • Maue RA, Burgess RW, Wang B et al. A novel mouse model of Niemann–Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations. Hum. Mol. Genet. 21(4), 730–750 (2012)
  • Naureckiene S, Sleat DE, Lackland H et al. Identification of HE1 as the second gene of Niemann–Pick C disease. Science 290(5500), 2298–2301 (2000)
  • Ramirez CM, Liu B, Aqul A et al. Quantitative role of LAL, NPC2, and NPC1 in lysosomal cholesterol processing defined by genetic and pharmacological manipulations. J. Lipid Res. 52(4), 688–698 (2011)
  • Lowenthal AC, Cummings JF, Wenger DA, Thrall MA, Wood PA, De Lahunta A. Feline sphingolipidosis resembling Niemann–Pick disease type C. Acta Neuropathol. 81(2), 189–197 (1990)
  • Brown DE, Thrall MA, Walkley SU et al. Feline Niemann–Pick disease type C. Am. J. Pathol. 144(6), 1412–1415 (1994)
  • Ward S, O'Donnell P, Fernandez S, Vite CH. 2-hydroxypropyl-beta-cyclodextrin raises hearing threshold in normal cats and in cats with Niemann–Pick type C disease. Pediatr. Res. 68(1), 52–56 (2010)
  • Vite CH, Ding W, Bryan C et al. Clinical, electrophysiological, and serum biochemical measures of progressive neurological and hepatic dysfunction in feline Niemann–Pick type C disease. Pediatr. Res. 64(5), 544–549 (2008)
  • Repa JJ, Li H, Frank-Cannon TC et al. Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J. Neurosci. 27(52), 14470–14480 (2007)
  • Patterson MC, Di Bisceglie AM, Higgins JJ et al. The effect of cholesterol-lowering agents on hepatic and plasma cholesterol in Niemann–Pick disease type C. Neurology 43(1), 61–64 (1993)
  • Somers KL, Brown DE, Fulton R et al. Effects of dietary cholesterol restriction in a feline model of Niemann–Pick type C disease. J. Inherit. Metab. Dis. 24(4), 427–436 (2001)
  • Erickson RP, Garver WS, Camargo F, Hossain GS, Heidenreich RA. Pharmacological and genetic modifications of somatic cholesterol do not substantially alter the course of CNS disease in Niemann–Pick C mice. J. Inherit. Metab. Dis. 23(1), 54–62 (2000)
  • Alvarez AR, Klein A, Castro J et al. Imatinib therapy blocks cerebellar apoptosis and improves neurological symptoms in a mouse model of Niemann–Pick type C disease. FASEB J. 22(10), 3617–3627 (2008)
  • Lloyd-Evans E, Morgan AJ, He X et al. Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat. Med. 14(11), 1247–1255 (2008)
  • Borbon IA, Hillman Z, Duran E Jr, Kiela PR, Frautschy SA, Erickson RP. Lack of efficacy of curcumin on neurodegeneration in the mouse model of Niemann–Pick C1. Pharmacol. Biochem. Behav. 101(1), 125–131 (2012)
  • Vanier MT. Lipid changes in Niemann–Pick disease type C brain: personal experience and review of the literature. Neurochem. Res. 24(4), 481–489 (1999)
  • Zervas M, Somers KL, Thrall MA, Walkley SU. Critical role for glycosphingolipids in Niemann–Pick disease type C. Curr. Biol. 11(16), 1283–1287 (2001)
  • Li H, Turley SD, Liu B, Repa JJ, Dietschy JM. GM2/GD2 and GM3 gangliosides have no effect on cellular cholesterol pools or turnover in normal or NPC1 mice. J. Lipid Res. 49(8), 1816–1828 (2008)
  • Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE. Miglustat for treatment of Niemann–Pick C disease: a randomised controlled study. Lancet Neurol. 6(9), 765–772 (2007)
  • Wraith JE, Vecchio D, Jacklin E et al. Miglustat in adult and juvenile patients with Niemann–Pick disease type C: long-term data from a clinical trial. Mol. Genet. Metab. 99(4), 351–357 (2010)
  • Pineda M, Wraith JE, Mengel E et al. Miglustat in patients with Niemann–Pick disease Type C (NP-C): a multicenter observational retrospective cohort study. Mol. Genet. Metab. 98(3), 243–249 (2009)
  • Griffin LD, Gong W, Verot L, Mellon SH. Niemann–Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat. Med. 10(7), 704–711 (2004)
  • Langmade SJ, Gale SE, Frolov A et al. Pregnane X receptor (PXR) activation: a mechanism for neuroprotection in a mouse model of Niemann–Pick C disease. Proc. Natl Acad. Sci. USA 103(37), 13807–13812 (2006)
  • Ahmad I, Lope-Piedrafita S, Bi X et al. Allopregnanolone treatment, both as a single injection or repetitively, delays demyelination and enhances survival of Niemann–Pick C mice. J. Neurosci. Res 82(6), 811–821 (2005)
  • Liu B, Li H, Repa JJ, Turley SD, Dietschy JM. Genetic variations and treatments that affect the lifespan of the NPC1 mouse. J. Lipid Res. 49(3), 663–669 (2008)
  • Davidson CD, Ali NF, Micsenyi MC et al. Chronic cyclodextrin treatment of murine Niemann–Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS ONE 4(9), e6951 (2009). n First report of the benefits of serial administration of cyclodextrin in Npc1 and Npc2 mice
  • Camargo F, Erickson RP, Garver WS et al. Cyclodextrins in the treatment of a mouse model of Niemann–Pick C disease. Life Sci. 70(2), 131–142 (2001)
  • Thompson DO. Cyclodextrins – enabling excipients: their present and future use in pharmaceuticals. Crit. Rev. Ther. Drug Carrier Syst. 14(1), 1–104 (1997)
  • Pitha J, Irie T, Sklar PB, Nye JS. Drug solubilizers to aid pharmacologists: amorphous cyclodextrin derivatives. Life Sci. 43(6), 493–502 (1988)
  • Frank DW, Gray JE, Weaver RN. Cyclodextrin nephrosis in the rat. Am. J. Pathol. 83(2), 367–382 (1976)
  • Irie T, Otagiri M, Sunada M et al. Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro. J. Pharmacobiodyn. 5(9), 741–744 (1982)
  • Gould S, Scott RC. 2-Hydroxypropyl-betacyclodextrin (HP-beta-CD): a toxicology review. Food Chem. Toxicol. 43(10), 1451–1459 (2005)
  • Irie T, Fukunaga K, Pitha J. Hydroxypropylcyclodextrins in parenteral use. I: Lipid dissolution and effects on lipid transfers in vitro. J. Pharm. Sci. 81(6), 521–523 (1992)
  • Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J. Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur. J. Biochem. 186(1–2), 17–22 (1989)
  • Christian AE, Haynes MP, Phillips MC, Rothblat GH. Use of cyclodextrins for manipulating cellular cholesterol content. J. Lipid Res. 38(11), 2264–2272 (1997)
  • Atger VM, de la Llera Moya M, Stoudt GW, Rodrigueza WV, Phillips MC, Rothblat GH. Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells. J. Clin. Invest. 99(4), 773–780 (1997)
  • McCauliff LA, Xu Z, Storch J. Sterol transfer between cyclodextrin and membranes: similar but not identical mechanism to NPC2-mediated cholesterol transfer. Biochemistry 50(34), 7341–7349 (2011)
  • Ramirez CM, Liu B, Taylor AM et al. Weekly cyclodextrin administration normalizes cholesterol metabolism in nearly every organ of the niemann-pick type C1 mouse and markedly prolongs life. Pediatr. Res. 68(4), 309–315 (2010)
  • Muralidhar A, Borbon IA, Esharif DM et al. Pulmonary function and pathology in hydroxypropyl-beta-cyclodextin-treated and untreated Npc1-/- mice. Mol. Genet. Metab. 103(2), 142–147 (2011)
  • Rosenbaum AI, Zhang G, Warren JD, Maxfield FR. Endocytosis of betacyclodextrins is responsible for cholesterol reduction in Niemann–Pick type C mutant cells. Proc. Natl Acad. Sci. USA 107(12), 5477–5482 (2010)
  • Abi-Mosleh L, Infante RE, Radhakrishnan A, Goldstein JL, Brown MS. Cyclodextrin overcomes deficient lysosome-to-endoplasmic reticulum transport of cholesterol in Niemann–Pick type C cells. Proc. Natl Acad. Sci. USA 106(46), 19316–19321 (2009)
  • Rajewski RA, Traiger G, Bresnahan J, Jaberaboansari P, Stella VJ, Thompson DO. Preliminary safety evaluation of parenterally administered sulfoalkyl ether beta?cyclodextrin derivatives. J. Pharm. Sci. 84(8), 927–932 (1995)
  • Xu Z, Farver W, Kodukula S, Storch J. Regulation of sterol transport between membranes and NPC2. Biochemistry 47(42), 11134–11143 (2008)
  • Frijlink HW, Visser J, Hefting NR, Oosting R, Meijer DK, Lerk CF. The pharmacokinetics of beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin in the rat. Pharm. Res. 7(12), 1248–1252 (1990)
  • Aqul A, Liu B, Ramirez CM et al. Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment. J. Neurosci. 31(25), 9404–9413 (2011). nn Complete prevention of neurodegeneration with delivery of cyclodextrin directly into the CNS of Npc1 mice
  • Peake KB, Vance JE. Normalization of cholesterol homeostasis by 2-hydroxypropylbeta- cyclodextrin in neurons and glia from Niemann–Pick C1-deficient mice. J. Biol. Chem. 287(12), 9290–9298 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.