304
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Gaucher’;s disease in the lipidomics era

Pages 431-441 | Published online: 18 Jan 2017

References

  • Beutler E, Grabowski GA. Gaucher disease. In: TheMetabolicandMolecularBasisof InheritedDisease. Scriver CR, Beaudet AL, Sly WS, Valle D (Eds). McGraw­Hill, NY, USA, 3635–3668 (2001). ▪ Seminal chapter describing the molecular and metabolic aspects of Gaucher’s disease.
  • Kattlove HE, Williams JC, Gaynor E, Spivack M, Bradley RM, Brady RO. Gaucher cells in chronic myelocytic leukemia: an acquired abnormality. Blood 33, 379–390 (1969).
  • Grabowski GA. Phenotype, diagnosis, and treatment of Gaucher’s disease. Lancet 372, 1263–1271 (2008).
  • Futerman AH, van Meer G. The cell biology of lysosomal storage disorders. Nat.Rev.Mol. CellBiol. 5, 554–565 (2004).
  • Mistry PK, Liu J, Yang Metal. Glucocerebrosidase gene­deficient mouse recapitulates Gaucher disease displaying cellular and molecular dysregulation beyond the macrophage. Proc.NatlAcad.Sci.USA 107, 19473–19478 (2010).
  • Cox TM. Gaucher disease: understanding the molecular pathogenesis of the sphingolipidoses. J. Inherit.Metab.Dis. 24(Suppl. 2) 106–121 (2001).
  • Halter D, Neumann S, van Dijik SMetal. Pre­ and post­Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J.CellBiol. 179, 101–115 (2007).
  • Simons K, Sampaio JL. Membrane organization and lipid rafts. ColdSpring Harb.Perspect.Biol. 3(10), a004697 (2011). ▪ Review of membrane microdomains.
  • Sprong H, Degroote S, Claessens Jetal. Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J.CellBiol. 155, 369–380 (2001).
  • Levental I, Grzybek M, Simons K. Raft domains of variable properties and compositions in plasma membrane vesicles. Proc.NatlAcad.Sci.USA 108, 11411–11416 (2011).
  • van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat.Rev.Mol.CellBiol. 9, 112–124 (2008).
  • Kolter T, Sandhoff K. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu.Rev.CellDev.Biol. 21, 81–103 (2005). ▪ Review of lysosomal degradation of sphingolipids.
  • de Duve C, Wattiaux R. Functions of lysosomes. Annu.Rev.Physiol. 28, 435–492 (1966).
  • Vellodi A. Lysosomal storage disorders. Br. J. Haem. 128, 413–431 (2004).
  • Sandhoff K, Kolter T, Harzer K. Sphingolipid activator proteins. In: TheMetabolicand MolecularBasisofInheritedDisease. Scriver CR, Beaudet AL, Sly WS, Valle D (Eds). McGraw­Hill, NY, USA, 3371–3388 (2001).
  • Folch J, Lee M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J.Biol.Chem. 226, 497–509 (1957). ▪ Basic principle of lipid extraction from biological samples.
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can.J. Biochem.Physiol. 37, 911–917 (1959).
  • Aubry L, Klein G. Purification techniques of sub­cellular compartments for analytical and preparative purposes. MethodsMol.Biol. 346, 171–185 (2006).
  • Hancock JF. Lipid rafts: contentious only from simplistic standpoints. Nat.Rev.Mol.CellBiol. 7, 456–462 (2006).
  • Lisanti MP, Tang ZL, Scherer PE, Sargiacomo M. Caveolae purification and glycosylphosphatidylinositol­linked protein sorting in polarized epithelia. MethodsEnzymol. 250, 655–688 (1995).
  • Shaw AS. Lipid rafts: now you see them, now you don’t. Nat.Immunol. 7, 1139–1142 (2006).
  • Waugh MG, Chu KME, Clayton EL, Minogue S, Hsuan JJ. Detergent­free isolation and characterisation of cholesterol­rich membrane domains from trans­Golgi network vesicles. J.LipidRes. 52, 582–589 (2011). ▪ Benchmark for methodology for lipid raft isolation.
  • Lingwood D, Simons K. Lipid rafts as a membrane­organizing principle. Science 327, 46–50 (2010). ▪▪ Summary of literature supporting the existence of lipid rafts in membranes.
  • Ejsing CS, Sampaio JL, Surendranath Vetal. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. NatlAcad.Sci.USA 106, 2136–2141 (2009).
  • Jiang X, Cheng H, Yang K, Gross RW, Han X. Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low­ abundance regime of cellular sphingolipids. Anal.Biochem. 371, 135–145 (2007).
  • Stahlman M, Ejsing CS, Tarasov K, Perman J, Boren J, Ekroos K. High­throughput shotgun lipidomics by quadrupole time­of­flight mass spectrometry. J.Chromatogr.BAnalyt.Technol. Biomed.LifeSci. 877, 2664–2672 (2009).
  • Harkewicz R, Dennis EA. Applications of mass spectrometry to lipids and membranes. Annu.Rev.Biochem. 80, 301–325 (2011).
  • Farwanah H, Kolter T, Sandhoff K. Mass spectrometric analysis of neutral sphingolipids: methods applications and limitations. Biochim.Biophys.Acta 1811, 854–860 (2011). ▪ Overview of the use of mass spectrometry to understand lipid biology. ▪ Methodology for mass spectrometric measurement of lipids.
  • Merrill AH Jr, Sullards MC, Allegood JC, Kelly S, Wang E. Sphingolipidomics: high­throughput, structure specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods36, 207–224 (2005).
  • Shaner RL, Allegood JC, Park Hetal. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J.LipidRes. 50, 1692–1707 (2009).
  • Wallace A, Millar A, Langridge J. New structural insights from high­efficiency ion mobility and tandem mass spectrometry. Nat. Methods AN12–AN13 (2007).
  • Shvartsburg AA, Isaac G, Leveque N, Smith RD, Metz TO. Separation and classification of lipids using differential ion mobility spectrometry. J.Am.Soc.MassSpectrom. 22, 1146–1155 (2011).
  • Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localisation of peptides and proteins using MALDI­TOF MS. Anal.Chem. 69, 4751–4760 (1997).
  • Roy MC, Nakanishi H, Takahashi Ketal. Salamander retina phospholipids and their localization by MALDI imaging mass spectrometry at cellular size resolution. J.LipidRes. 52, 463–470 (2011).
  • Chen Y, Allegood J, Lui Yetal. Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay–Sachs/Sandhoff disease. Anal.Chem. 80, 2780–2788 (2008).
  • Snel MF, Fuller M. High spatial resolution matrix­assisted laser desorption ionisation imaging analysis of glucosylceramide in spleen sections from a mouse model of Gaucher disease. Anal.Chem. 82, 3664–3670 (2010). ▪ First report of matrix-assisted laser desorption/ionization imaging for glucosylceramide in spleen.
  • Gornati R, Berra B, Montorfano Getal. Glycolipid analysis of different tissues and cerebrospinal fluid in type II Gaucher disease. J.Inherit.Metab.Dis. 25, 47–55 (2002).
  • Fuller M, Rozaklis T, Lovejoy M, Zarrinkalam K, Hopwood JJ, Meikle PJ. Glucosylceramide accumulation is not confined to the lysosome in fibroblasts from patients with Gaucher disease. Mol.Genet. Metab. 93, 437–443 (2008).
  • Hein LK, Meikle PJ, Hopwood JJ, Fuller M. Secondary sphingolipid accumulation in a macrophage model of Gaucher disease. Mol. Genet.Metab. 92, 336–345 (2007).
  • Walkley SU, Vanier MT. Secondary lipid accumulation in lysosomal disease. Biochim. Biophys.Acta 1793, 726–736 (2009).
  • Kacher Y, Futerman AH. Genetic diseases of sphingolipid metabolism: pathological mechanisms and therapeutic options. FEBS Lett. 580, 5510–5517 (2006).
  • Hein LK, Duplock S, Hopwood JJ, Fuller M. Lipid composition of microdomains is altered in a cell model of Gaucher disease. J.Lipid Res. 49, 1725–1734 (2008).
  • Simons K, Gruenberg J. Jamming the endosomal system: lipid rafts and lysosomal storage diseases. TrendsCell.Biol. 10, 459–462 (2000).
  • Nilsson O, Mansson JE, Dreborg Setal. Increased cerebroside concentration in plasma and erythrocytes in Gaucher disease: significant differences between type I and type III. Clin.Genet. 22, 274–279 (1982).
  • Aerts JM, van Breemen MJ, Bussink APetal. Biomarkers for lysosomal storage disorders: identification and application as exemplified by chitotriosidase in Gaucher disease. Acta Paediatr.Suppl. 97, 7–14 (2008).
  • Pavlova EV, Deegan PB, Tindall Jetal. Potential biomarkers of osteonecrosis in Gaucher disease. BloodCellsMol.Dis. 46, 27–33 (2011).
  • Meikle PJ, Whitfield PD, Rozaklis Tetal. Plasma lipids are altered in Gaucher disease: Biochemical markers to evaluate therapeutic intervention. BloodCellsMol.Dis. 40, 420–427 (2008).
  • Dekker N, van Dussen L, Hollak CEMetal. Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response. Blood 118, e118–e127 (2011).
  • Stein P, Yang R, Liu J, Pastores GM, Mistry PK. Evaluation of high density lipoprotein as a circulating biomarker of Gaucher disease activity. J.Inherit.Metab.Dis. 34, 429–437 (2011).
  • Jung HR, Sylvänne T, Koistinen KM, Tarasov K, Kauhanen D, Ekroos K. High throughput quantitative molecular lipidomics. Biochim. Biophys.Acta 1811, 925–934 (2011).
  • Sinclair GB, Jevon G, Colobong KE, Randall DR, Choy FYM, Clarke LA. Generation of a conditional knockout of murine glucocerebrosidase: utility for the study of Gaucher disease. Mol.Genet.Metab.90, 148–156 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.