329
Views
4
CrossRef citations to date
0
Altmetric
Reviews

HDL functionality in diabetes mellitus: potential importance of glycation

&
Pages 561-578 | Published online: 18 Jan 2017

  • Vessby B, Gustafson S, Chapman MJ, Hellsing K, Lithell H. Lipoprotein composition of human suction-blister interstitial fluid. J. Lipid Res. 28(6), 629–641 (1987).
  • Mackness MI, Mackness B, Arrol S, Wood G, Bhatnagar D, Durrington PN. Presence of paraoxonase in human interstitial fluid. FEBS Lett. 416(3), 377–380 (1997).
  • Durrington PN. Hyperlipidaemia: Diagnosis and Management (3rd Edition). Hodder Arnold, London, UK (2007).
  • Di Angelantonio E, Sarwar N, Perry P et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302(18), 1993–2000 (2009).
  • Schmitz G, Bruning T, Williamson E, Nowicka G. The role of HDL in reverse cholesterol transport and its disturbances in Tangier disease and HDL deficiency with xanthomas. Eur. Heart J. 11(Suppl. E), 197–211 (1990).
  • Rosenson RS, Brewer HB Jr, Davidson WS et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125(15), 1905–1919 (2012). ▪▪ Explores cholesterol efflux pathways, the role of receptors and enzymes in reverse cholesterol transport and experimental animal models of reverse cholesterol transport.
  • Mackness MI, Abbott C, Arrol S, Durrington PN. The role of high-density lipoprotein and lipid-soluble antioxidant vitamins in inhibiting low-density lipoprotein oxidation. Biochem. J. 294(Pt 3), 829–834 (1993).
  • Navab M, Yu R, Gharavi N et al. High-density lipoprotein: antioxidant and anti-inflammatory properties. Curr. Atheroscler. Rep. 9(3), 244–248 (2007).
  • Murphy AJ, Chin-Dusting JP, Sviridov D, Woollard KJ. The anti inflammatory effects of high density lipoproteins. Curr. Med. Chem. 16(6), 667–675 (2009).
  • Patel S, Drew BG, Nakhla S et al. Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with Type 2 diabetes. J. Am. Coll. Cardiol. 53(11), 962–971 (2009).
  • Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ. Res. 98(11), 1352–1364 (2006).
  • Nofer JR, Levkau B, Wolinska I et al. Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J. Biol. Chem. 276(37), 34480–34485 (2001).
  • Kontush A, Therond P, Zerrad A et al. Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities. Arterioscler. Thromb. Vasc. Biol. 27(8), 1843–1849 (2007).
  • Ma J, Liao XL, Lou B, Wu MP. Role of apolipoprotein A-I in protecting against endotoxin toxicity. Acta Biochim. Biophys. Sin. (Shanghai) 36(6), 419–424 (2004).
  • Nofer JR, van der Giet M, Tolle M et al. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3.J. Clin. Invest. 113(4), 569–581 (2004).
  • Lesnik P, Chapman MJ. A new dimension in the vasculoprotective function of HDL: progenitor-mediated endothelium repair.Arterioscler. Thromb. Vasc. Biol. 26(5), 965–967 (2006).
  • Mineo C, Shaul PW. HDL stimulation of endothelial nitric oxide synthase: a novel mechanism of HDL action. Trends Cardiovasc. Med. 13(6), 226–231 (2003).
  • Pan B, Ren H, Ma Y et al. HDL of patients with Type 2 diabetes mellitus elevates the capability of promoting migration and invasion of breast cancer cells. Int. J. Cancer 131(1), 70–82 (2011).
  • Libby P, Miao P, Ordovas JM, Schaefer EJ. Lipoproteins increase growth of mitogenstimulated arterial smooth muscle cells.J. Cell. Physiol. 124(1), 1–8 (1985).
  • Chen JK, Hoshi H, Mcclure DB, McKeehan WL. Role of lipoproteins in growth of human adult arterial endothelial and smooth muscle cells in low lipoprotein-deficient serum. J. Cell. Physiol. 129(2), 207–214 (1986).
  • Cuthbert JA, Lipsky PE. Lipoproteins may provide fatty acids necessary for human lymphocyte proliferation by both low density lipoprotein receptor-dependent and -independent mechanisms. J. Biol. Chem. 264(23), 13468–13474 (1989).
  • Soran H, Hama S, Yadav R, Durrington PN. HDL functionality. Curr. Opin. Lipidol. 23(4), 353–366 (2012).
  • Taskinen MR. Diabetic dyslipidemia: from basic research to clinical practice. Diabetologia 46(6), 733–749 (2003).
  • Drew BG, Duffy SJ, Formosa MF et al. High-density lipoprotein modulates glucose metabolism in patients with Type 2 diabetes mellitus. Circulation 119(15), 2103–2111 (2009).
  • Fryirs MA, Barter PJ, Appavoo M et al. Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler. Thromb. Vasc. Biol. 30(8), 1642–1648 (2010).
  • Barter PJ, Rye KA, Tardif JC et al. Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. Circulation 124(5), 555–562 (2011).
  • Zhong S, Sharp DS, Grove JS et al. Increased coronary heart disease in Japanese–American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J. Clin. Invest. 97(12), 2917–2923 (1996).
  • Koseki M, Matsuyama A, Nakatani K et al. Impaired insulin secretion in four Tangier disease patients with ABCA1 mutations.J. Atheroscler. Thromb. 16(3), 292–296 (2009).
  • Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D’Agostino RB Sr. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study.Arch. Intern. Med. 167(10), 1068–1074 (2007).
  • Onat A, Hergenc G, Bulur S, Ugur M, Kucukdurmaz Z, Can G. The paradox of high apolipoprotein A-I levels independently predicting incident Type-2 diabetes among Turks. Int. J. Cardiol. 142(1), 72–79 (2010).
  • Onat A, Hergenc G. Low-grade inflammation, and dysfunction of high-density lipoprotein and its apolipoproteins as a major driver of cardiometabolic risk. Metabolism 60(4), 499–512 (2011).
  • Onat A, Can G, Cicek G, Ayhan E, Dogan Y, Kaya H. Fasting, non-fasting glucose and HDL dysfunction in risk of pre-diabetes, diabetes, and coronary disease in non-diabetic adults. Acta Diabetol. doi: 10.1007/s00592-011-0313-x (2011) (Epub ahead of print).
  • Asztalos BF, Tani M, Schaefer EJ. Metabolic and functional relevance of HDL subspecies.Curr. Opin. Lipidol. 22(3), 176–185 (2011). ▪▪ Proteomic study of HDL revealed that HDL is more complex than previously thought. Its subclasses differ in physical–chemical properties, protein and lipid composition, metabolism, physiological functions and pathophysiological significance.
  • Riemens S, van Tol A, Sluiter W, Dullaart R. Elevated plasma cholesteryl ester transfer in NIDDM: relationships with apolipoprotein B-containing lipoproteins and phospholipid transfer protein. Atherosclerosis 140(1), 71–79 (1998).
  • Rashid S, Watanabe T, Sakaue T, Lewis GF. Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: the combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity.Clin. Biochem. 36(6), 421–429 (2003).
  • Adiels M, Olofsson SO, Taskinen MR, Boren J. Diabetic dyslipidemia. Curr. Opin. Lipidol. 17(3), 238–246 (2006).
  • Yost TJ, Froyd KK, Jensen DR, Eckel RH. Change in skeletal muscle lipoprotein lipase activity in response to insulin/glucose in non-insulin-dependent diabetes mellitus.Metabolism 44(6), 786–790 (1995).
  • Bhatnagar D, Durrington PN, Kumar S, Mackness MI, Dean J, Boulton AJ. Effect of treatment with a hydroxymethylglutaryl coenzyme A reductase inhibitor on fasting and postprandial plasma lipoproteins and cholesteryl ester transfer activity in patients with NIDDM. Diabetes 44(4), 460–465 (1995).
  • Bhatnagar D, Durrington PN, Kumar S, Mackness MI, Boulton AJ. Plasma lipoprotein composition and cholesteryl ester transfer from high density lipoproteins to very low density and low density lipoproteins in patients with non-insulin-dependent diabetes mellitus.Diabet. Med. 13(2), 139–144 (1996).
  • Rashid S, Barrett PH, Uffelman KD, Watanabe T, Adeli K, Lewis GF. Lipolytically modified triglyceride-enriched HDLs are rapidly cleared from the circulation.Arterioscler. Thromb. Vasc. Biol. 22(3), 483–487 (2002).
  • Rashid S, Trinh DK, Uffelman KD, Cohn JS, Rader DJ, Lewis GF. Expression of human hepatic lipase in the rabbit model preferentially enhances the clearance of triglyceride-enriched versus native high-density lipoprotein apolipoprotein A-I.Circulation 107(24), 3066–3072 (2003).
  • Baynes C, Henderson AD, Anyaoku V et al. The role of insulin insensitivity and hepatic lipase in the dyslipidemia of Type 2 diabetes.Diabet. Med. 8(6), 560–566 (1991).
  • Bagdade JD, Knight-Gibson C, Simpson N, Gerkin R, Alaupovic P, Reardon C. CETP-mediated cholesteryl ester enrichment of apoB subclasses in Type 1 diabetes. Eur. J. Clin. Invest. 42(7), 709–716 (2011). ▪ Study of the transfer of cholesteryl ester from HDL to apoB subclasses in Type 1 diabetes showed that athough the concentration of triglyceride-rich lipoprotein subclass are normal, patients with Type 1 diabetes have a form of atherogenic dyslipidemia in which subpopulations of triglyceride-rich lipoprotein are qualitatively altered and dysfunctional.
  • Kumon Y, Suehiro T, Itahara T, Ikeda Y, Hashimoto K. Serum amyloid A protein in patients with non-insulin-dependent diabetes mellitus. Clin. Biochem. 27(6), 469–473 (1994).
  • Urieli-Shoval S, Linke RP, Matzner Y. Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr. Opin Hematol. 7(1), 64–69 (2000).
  • Mackness B, Durrington PN, Abuashia B, Boulton AJ, Mackness MI. Low paraoxonase activity in Type II diabetes mellitus complicated by retinopathy. Clin. Sci. (Lond.) 98(3), 355–363 (2000).
  • Mackness B, Durrington PN, Boulton AJ, Hine D, Mackness MI. Serum paraoxonase activity in patients with Type 1 diabetes compared with healthy controls. Eur. J. Clin. Invest. 32(4), 259–264 (2002).
  • Mackness B, Mackness MI, Arrol S et al. Serum paraoxonase (PON1) 55 and 192 polymorphism and paraoxonase activity and concentration in non-insulin dependent diabetes mellitus. Atherosclerosis 139(2), 341–349 (1998).
  • Zhou H, Tan KC, Shiu SW, Wong Y. Increased serum advanced glycation end products are associated with impairment in HDL antioxidative capacity in diabetic nephropathy. Nephrol. Dial. Transplant. 23(3), 927–933 (2008).
  • Hoang A, Murphy AJ, Coughlan MT et al. Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties.Diabetologia 50(8), 1770–1779 (2007).
  • Durrington PN. Serum high density lipoprotein cholesterol in diabetes mellitus: an analysis of factors which influence its concentration. Clin. Chim. Acta 104(1), 11–23 (1980).
  • Durrington PN. Serum high density lipoprotein cholesterol subfractions in Type I (insulin-dependent) diabetes mellitus. Clin. Chim. Acta 120(1), 21–28 (1982).
  • Winocour PH, Durrington PN, Bhatnagar D et al. A cross-sectional evaluation of cardiovascular risk factors in coronary heart disease associated with Type 1 (insulin-dependent) diabetes mellitus. Diabetes Res. Clin. Pract. 18(3), 173–184 (1992).
  • Abbott CA, Mackness MI, Kumar S, Boulton AJ, Durrington PN. Serum paraoxonase activity, concentration, and phenotype distribution in diabetes mellitus and its relationship to serum lipids and lipoproteins. Arterioscler. Thromb. Vasc. Biol. 15(11), 1812–1818 (1995).
  • Persegol L, Foissac M, Lagrost L et al. HDL particles from Type 1 diabetic patients are unable to reverse the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia 50(11), 2384–2387 (2007).
  • Hedrick CC, Thorpe SR, Fu MX et al. Glycation impairs high-density lipoprotein function. Diabetologia 43(3), 312–320 (2000).
  • Passarelli M, Shimabukuro AF, Catanozi S et al. Diminished rate of mouse peritoneal macrophage cholesterol efflux is not related to the degree of HDL glycation in diabetes mellitus. Clin. Chim. Acta 301(1–2), 119–134 (2000).
  • Kontush A, Chapman MJ. Why is HDL functionally deficient in Type 2 diabetes? Curr. Diab. Rep. 8(1), 51–59 (2008). ▪ Explores the functional defeciency of HDL in Type 2 diabetes together with therapeutic options for correcting HDL functional deficiency by normalizing hypertriglyceridemia.
  • Persegol L, Verges B, Foissac M, Gambert P, Duvillard L. Inability of HDL from Type 2 diabetic patients to counteract the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia 49(6), 1380–1386 (2006).
  • Persegol L, Verges B, Gambert P, Duvillard L. Inability of HDL from abdominally obese subjects to counteract the inhibitory effect of oxidized LDL on vasorelaxation. J. Lipid Res. 48(6), 1396–1401 (2007).
  • Tan KC. Reverse cholesterol transport in Type 2 diabetes mellitus. Diabetes Obes. Metab. 11(6), 534–543 (2009).
  • Forcheron F, Cachefo A, Thevenon S, Pinteur C, Beylot M. Mechanisms of the triglyceride- and cholesterol-lowering effect of fenofibrate in hyperlipidemic Type 2 diabetic patients. Diabetes 51(12), 3486–3491 (2002).
  • Zhou H, Tan KC, Shiu SW, Wong Y. Determinants of leukocyte adenosine triphosphate-binding cassette transporter G1 gene expression in Type 2 diabetes mellitus.Metabolism 57(8), 1135–1140 (2008).
  • Mauldin JP, Nagelin MH, Wojcik AJ et al. Reduced expression of ATP-binding cassette transporter G1 increases cholesterol accumulation in macrophages of patients with Type 2 diabetes mellitus. Circulation 117(21), 2785–2792 (2008).
  • Albrecht C, Simon-Vermot I, Elliott JI, Higgins CF, Johnston DG, Valabhji J. Leukocyte ABCA1 gene expression is associated with fasting glucose concentration in normoglycemic men. Metabolism 53(1), 17–21 (2004).
  • Passarelli M, Tang C, McDonald TO et al. Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes 54(7), 2198–2205 (2005).
  • Isoda K, Folco EJ, Shimizu K, Libby P. AGE-BSA decreases ABCG1 expression and reduces macrophage cholesterol efflux to HDL. Atherosclerosis 192(2), 298–304 (2007).
  • Ohgami N, Nagai R, Miyazaki A et al. Scavenger receptor class B Type I-mediated reverse cholesterol transport is inhibited by advanced glycation end products. J. Biol. Chem. 276(16), 13348–13355 (2001).
  • Uehara Y, Engel T, Li Z et al. Polyunsaturated fatty acids and acetoacetate downregulate the expression of the ATP-binding cassette transporter A1.Diabetes 51(10), 2922–2928 (2002).
  • Mauldin JP, Srinivasan S, Mulya A et al. Reduction in ABCG1 in Type 2 diabetic mice increases macrophage foam cell formation. J. Biol. Chem. 281(30), 21216–21224 (2006).
  • Fournier N, Myara I, Atger V, Moatti N. Reactivity of lecithin-cholesterol acyl transferase (LCAT) towards glycated high-density lipoproteins (HDL). Clin. Chim. Acta 234(1–2), 47–61 (1995).
  • Lemkadem B, Loiseau D, Larcher G, Malthiery Y, Foussard F. Effect of the nonenzymatic glycosylation of high density lipoprotein-3 on the cholesterol ester transfer protein activity. Lipids 34(12), 1281–1286 (1999).
  • Passarelli M, Catanozi S, Nakandakare ER et al. Plasma lipoproteins from patients with poorly controlled diabetes mellitus and “in vitro” glycation of lipoproteins enhance the transfer rate of cholesteryl ester from HDL to apo-B-containing lipoproteins.Diabetologia 40(9), 1085–1093 (1997).
  • Chang CK, Tso TK, Snook JT, Huang YS, Lozano RA, Zipf WB. Cholesteryl ester transfer and cholesterol esterification in Type 1 diabetes: relationships with plasma glucose. Acta Diabetol. 38(1), 37–42 (2001).
  • Ritter MC, Bagdade JD. Contribution of glycaemic control, endogenous lipoproteins and cholesteryl ester transfer protein to accelerated cholesteryl ester transfer in IDDM.Eur. J. Clin. Invest. 24(9), 607–614 (1994).
  • Cooper AD. Hepatic uptake of chylomicron remnants. J. Lipid Res. 38(11), 2173–2192 (1997).
  • Li L, Thompson PA, Kitchens RL. Infection induces a positive acute phase apolipoprotein E response from a negative acute phase gene: role of hepatic LDL receptors. J. Lipid Res. 49(8), 1782–1793 (2008).
  • Shuvaev VV, Fujii J, Kawasaki Y et al. Glycation of apolipoprotein E impairs its binding to heparin: identification of the major glycation site. Biochim. Biophys. Acta 1454(3), 296–308 (1999).
  • Sorrentino SA, Besler C, Rohrer L et al. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with Type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation 121(1), 110–122 (2010).
  • Mastorikou M, Mackness B, Liu Y, Mackness M. Glycation of paraoxonase-1 inhibits its activity and impairs the ability of high-density lipoprotein to metabolize membrane lipid hydroperoxides. Diabet. Med. 25(9), 1049–1055 (2008).
  • Liu D, Ji L, Zhang D et al. Nonenzymatic glycation of high-density lipoprotein impairs its anti-inflammatory effects in innate immunity. Diabetes Metab. Res. Rev. 28(2), 186–195 (2012).
  • Nieuwdorp M, Vergeer M, Bisoendial RJ et al. Reconstituted HDL infusion restores endothelial function in patients with Type 2 diabetes mellitus. Diabetologia 51(6), 1081–1084 (2008).
  • Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric 89 oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus.J. Am. Coll. Cardiol. 27(3), 567–574 (1996).
  • Bosevski M, Borozanov V, Peovska I, Georgievska-Ismail L. Endothelial dysfunction correlates with plasma fibrinogen and HDL cholesterol in Type 2 diabetic patients with coronary artery disease. Bratisl. Lek. Listy 108(7), 297–300 (2007).
  • Giovannucci E, Harlan DM, Archer MC et al. Diabetes and cancer: a consensus report.Diabetes Care 33(7), 1674–1685 (2010).
  • Yang X, So WY, Ma RC et al. Low HDL cholesterol, metformin use, and cancer risk in Type 2 diabetes: the Hong Kong Diabetes Registry. Diabetes Care 34(2), 375–380 (2011).
  • Pan B, Ren H, He Y et al. HDL of patients with Type 2 diabetes mellitus elevates the capability of promoting breast cancer metastasis. Clin. Cancer Res. 18(5), 1246–1256 (2012).
  • Lopez-Saez JB, Martinez-Rubio JA, Alvarez MM et al. Metabolic profile of breast cancer in a population of women in southern Spain.Open Clin. Cancer J. 2, 1–6 (2008).
  • Younis N, Sharma R, Soran H, Charlton-Menys V, Elseweidy M, Durrington PN. Glycation as an atherogenic modification of LDL. Curr. Opin. Lipidol. 19(4), 378–384 (2008).
  • Younis N, Charlton-Menys V, Sharma R, Soran H, Durrington PN. Glycation of LDL in non-diabetic people: small dense LDL is preferentially glycated both in vivo and in vitro. Atherosclerosis 202(1), 162–168 (2009).
  • Younis NN, Soran H, Sharma R et al. Small-dense LDL and LDL glycation in metabolic syndrome and in statin-treated and non-statin-treated Type 2 diabetes. Diab. Vasc. Dis. Res. 7(4), 289–295 (2010).
  • Rabbani N, Chittari MV, Bodmer CW, Zehnder D, Ceriello A, Thornalley PJ. Increased glycation and oxidative damage to apolipoprotein B100 of LDL cholesterol in patients with Type 2 diabetes and effect of metformin. Diabetes 59(4), 1038–1045 (2010).
  • Rabbani N, Godfrey L, Xue M et al. Glycation of LDL by methylglyoxal increases arterial atherogenicity: a possible contributor to increased risk of cardiovascular disease in diabetes. Diabetes 60(7), 1973–1980 (2011).
  • Sima AV, Botez GM, Stancu CS, Manea A, Raicu M, Simionescu M. Effect of irreversibly glycated LDL in human vascular smooth muscle cells: lipid loading, oxidative and inflammatory stress. J. Cell. Mol. Med. 14(12), 2790–2802 (2010).
  • Sanguinetti SM, Schreier LE, Elbert A, Fasulo V, Ferrari N, Wikinski RL. Detection of structural alterations in LDL isolated from Type 2 diabetic patients: application of the fructosamine assay to evaluate the extent of LDL glycation. Atherosclerosis 143(1), 213–215 (1999).
  • Pettersson C, Karlsson H, Stahlman M et al. LDL-associated apolipoprotein J and lysozyme are associated with atherogenic properties of LDL found in Type 2 diabetes and the metabolic syndrome. J. Intern. Med. 269(3), 306–321 (2011).
  • Younis NN, Soran H, Sharma R, Charlton-Menys V, Durrington PN. Lipoprotein glycation in atherogenesis. Clin. Lipidol. 4(6), 781–790 (2009).
  • Curtiss LK, Witztum JL. Plasma apolipoproteins AI, AII, B, CI, and E are glucosylated in hyperglycemic diabetic subjects. Diabetes 34(5), 452–461 (1985).
  • Calvo C, Ponsin G, Berthezene F. Characterization of the non enzymatic glycation of high density lipoprotein in diabetic patients. Diabetes Metab. 14(3), 264–269 (1988).
  • Calvo C, Talussot C, Ponsin G, Berthezene F. Non enzymatic glycation of apolipoprotein A-I. Effects on its self-association and lipid binding properties.Biochem. Biophys. Res. Commun. 153(3), 1060–1067 (1988).
  • Calvo C, Verdugo C. Association in vivo of glycated apolipoprotein A-I with high density lipoproteins. Eur. J. Clin. Chem. Clin. Biochem. 30(1), 3–5 (1992).
  • de Boer JF, Annema W, Schreurs M et al. Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice. J. Lipid Res. 53(3), 348–357 (2012).
  • Ren S, Shen GX. Impact of antioxidants and HDL on glycated LDL-induced generation of fibrinolytic regulators from vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 20(6), 1688–1693 (2000).
  • Matsuki K, Tamasawa N, Yamashita M et al. Metformin restores impaired HDL-mediated cholesterol efflux due to glycation.Atherosclerosis 206(2), 434–438 (2009). ▪ Revealed the ability of an oral hypoglycemic drug (metformin) to improve cholesterol efflux by glycated HDL.
  • Rashduni DL, Rifici VA, Schneider SH, Khachadurian AK. Glycation of high-density lipoprotein does not increase its susceptibility to oxidation or diminish its cholesterol efflux capacity. Metabolism 48(2), 139–143 (1999).
  • Ferretti G, Bacchetti T, Marchionni C, Caldarelli L, Curatola G. Effect of glycation of high density lipoproteins on their physicochemical properties and on paraoxonase activity. Acta Diabetol. 38(4), 163–169 (2001).
  • Matsunaga T, Iguchi K, Nakajima T et al. Glycated high-density lipoprotein induces apoptosis of endothelial cells via a mitochondrial dysfunction. Biochem. Biophys. Res. Commun. 287(3), 714–720 (2001).
  • Nobecourt E, Davies MJ, Brown BE et al. The impact of glycation on apolipoprotein A-I structure and its ability to activate lecithin:cholesterol acyltransferase.Diabetologia 50(3), 643–653 (2007).
  • Lapolla A, Brioschi M, Banfi C et al. Nonenzymatically glycated lipoprotein ApoA-I in plasma of diabetic and nephropathic patients. Ann. N. Y. Acad. Sci. 1126, 295–299 (2008).
  • Suzukawa M, Ishikawa T, Yoshida H, Nakamura H. Effect of in-vivo supplementation with low-dose vitamin E on susceptibility of low-density lipoprotein and high-density lipoprotein to oxidative modification. J. Am. Coll. Nutr. 14(1), 46–52 (1995).
  • Younis NN, Soran H, Charlton-Menys V et al. High density lipoprotein impedes glycation of low density lipoprotein. Diab. Vasc. Dis. Res. doi: 10.1177/1479164112454309 (2012) (Epub ahead of print). ▪▪ First report of antiglycative effect of HDL on LDL that is partially dependant on the presence of PON-1.
  • Ferretti G, Bacchetti T, Marchionni C, Dousset N. Effect of non-enzymatic glycation on aluminium-induced lipid peroxidation of human high density lipoproteins (HDL).Nutr. Metab. Cardiovasc. Dis. 14(6), 358–365 (2004).
  • Bots ML, Visseren FL, Evans GW et al. Torcetrapib and carotid intima-media thickness in mixed dyslipidemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet 370(9582), 153–160 (2007).
  • Briel M, Ferreira-Gonzalez I, You JJ et al. Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ 338, b92 (2009).
  • Onat A, Can G, Ayhan E, Kaya Z, Hergenc G. Impaired protection against diabetes and coronary heart disease by high-density lipoproteins in Turks.Metabolism 58(10), 1393–1399 (2009).
  • Barter PJ, Rye KA. Cholesteryl ester transfer protein (CETP) inhibition as a strategy to reduce cardiovascular risk. J. Lipid Res. 53(9), 1755–1766 (2012).
  • Corsetti JP, Bakker SJ, Sparks CE, Dullaart RP. Apolipoprotein A-II influences apolipoprotein E-linked cardiovascular disease risk in women with high levels of HDL cholesterol and C-reactive protein. PLoS ONE 7(6), e39110 (2012).
  • Voight BF, Peloso GM, Orho-Melander M et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380(9841), 572–580 (2012).
  • Yvan-Charvet L, Kling J, Pagler T et al. Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein after treatment with niacin or anacetrapib. Arterioscler. Thromb. Vasc. Biol. 30(7), 1430–1438 (2010).
  • Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98(19), 2088–2093 (1998).
  • Paragh G, Seres I, Harangi M et al. The effect of micronised fenofibrate on paraoxonase activity in patients with coronary heart disease. Diabetes Metab. 29(6), 613–618 (2003).
  • Durrington PN, Mackness MI, Bhatnagar D et al. Effects of two different fibric acid derivatives on lipoproteins, cholesteryl ester transfer, fibrinogen, plasminogen activator inhibitor and paraoxonase activity in Type IIb hyperlipoproteinaemia.Atherosclerosis 138(1), 217–225 (1998).
  • Rotllan N, Llaverias G, Julve J et al. Differential effects of gemfibrozil and fenofibrate on reverse cholesterol transport from macrophages to feces in vivo. Biochim. Biophys. Acta 1811(2), 104–110 (2011).
  • Phuntuwate W, Suthisisang C, Koanantakul B, Chaloeiphap P, Mackness B, Mackness M. Effect of fenofibrate therapy on paraoxonase1 status in patients with low HDL-C levels. Atherosclerosis 196(1), 122–128 (2008).
  • Tsimihodimos V, Kakafika A, Tambaki AP et al. Fenofibrate induces HDL-associated PAF-AH but attenuates enzyme activity associated with apoB-containing lipoproteins. J. Lipid Res. 44(5), 927–934 (2003).
  • Yesilbursa D, Serdar A, Saltan Y et al. The effect of fenofibrate on serum paraoxonase activity and inflammatory markers in patients with combined hyperlipidemia.Kardiol. Pol. 62(6), 526–530 (2005).
  • Jonker JT, Wang Y, de Haan W et al. Pioglitazone decreases plasma cholesteryl ester transfer protein mass, associated with a decrease in hepatic triglyceride content, in patients with Type 2 diabetes. Diabetes Care 33(7), 1625–1628 (2010).
  • Chappuis B, Braun M, Stettler C et al. Differential effect of pioglitazone (PGZ) and rosiglitazone (RGZ) on postprandial glucose and lipid metabolism in patients with Type 2 diabetes mellitus: a prospective, randomized crossover study. Diabetes Metab. Res. Rev. 23(5), 392–399 (2007).
  • Charlton-Menys V, Betteridge DJ, Colhoun H et al. Apolipoproteins, cardiovascular risk and statin response in Type 2 diabetes: the Collaborative Atorvastatin Diabetes Study (CARDS).Diabetologia 52(2), 218–225 (2009).
  • Guan JZ, Tamasawa N, Murakami H et al. HMG-CoA reductase inhibitor, simvastatin improves reverse cholesterol transport in Type 2 diabetic patients with hyperlipidemia.J. Atheroscler. Thromb. 15(1), 20–25 (2008).
  • Dallinga-Thie GM, van Tol A, Dullaart RP. Plasma pre beta-HDL formation is decreased by atorvastatin treatment in Type 2 diabetes mellitus: role of phospholipid transfer protein.Biochim. Biophys. Acta 1791(8), 714–718 (2009).
  • Caslake MJ, Stewart G, Day SP et al. Phenotype-dependent and -independent actions of rosuvastatin on atherogenic lipoprotein subfractions in hyperlipidaemia.Atherosclerosis 171(2), 245–253 (2003).
  • Abdin AA, Hassanien MA, Ibrahim EA, El-Noeman Sel D. Modulating effect of atorvastatin on paraoxonase 1 activity in Type 2 diabetic Egyptian patients with or without nephropathy. J. Diabetes Complications 24(5), 325–333 (2010).
  • Manfredini V, Biancini GB, Vanzin CS et al. Simvastatin treatment prevents oxidative damage to DNA in whole blood leukocytes of dyslipidemic Type 2 diabetic patients. Cell Biochem. Funct. 28(5), 360–366 (2010).
  • Harangi M, Seres I, Varga Z et al. Atorvastatin effect on high-density lipoprotein-associated paraoxonase activity and oxidative DNA damage. Eur. J. Clin. Pharmacol. 60(10), 685–691 (2004).
  • Kural BV, Orem C, Uydu HA, Alver A, Orem A. The effects of lipid-lowering therapy on paraoxonase activities and their relationships with the oxidant-antioxidant system in patients with dyslipidemia. Coron. Artery Dis. 15(5), 277–283 (2004).
  • Paragh G, Torocsik D, Seres I et al. Effect of short term treatment with simvastatin and atorvastatin on lipids and paraoxonase activity in patients with hyperlipoproteinaemia. Curr. Med. Res. Opin. 20(8), 1321–1327 (2004).
  • Sardo MA, Campo S, Bonaiuto M et al. Antioxidant effect of atorvastatin is independent of PON1 gene T(-107)C, Q192R and L55M polymorphisms in hypercholesterolaemic patients. Curr. Med. Res. Opin. 21(5), 777–784 (2005).
  • Kim YD, Park KG, Lee YS et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 57(2), 306–314 (2008).
  • Romero IL, McCormick A, McEwen KA et al. Relationship of Type II diabetes and metformin use to ovarian cancer progression, survival, and chemosensitivity. Obstet. Gynecol. 119(1), 61–67 (2012).
  • Durrington PN. Cholesteryl ester transfere protein (CETP) inhibitors. Lipids (2012) (In Press).
  • Kuivenhoven JA, De Grooth GJ, Kawamura H et al. Effectiveness of inhibition of cholesteryl ester transfer protein by JTT-705 in combination with pravastatin in Type II dyslipidemia. Am. J. Cardiol. 95(9), 1085–1088 (2005).
  • Brousseau ME, Schaefer EJ, Wolfe ML et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N. Engl. J. Med. 350(15), 1505–1515 (2004).
  • Schaefer EJ, Asztalos BF. Cholesteryl ester transfer protein inhibition, high-density lipoprotein metabolism and heart disease risk reduction. Curr. Opin. Lipidol. 17(4), 394–398 (2006).
  • Cao G, Beyer TP, Zhang Y et al. Evacetrapib is a novel, potent, and selective inhibitor of cholesteryl ester transfer protein that elevates HDL cholesterol without inducing aldosterone or increasing blood pressure.J. Lipid Res. 52(12), 2169–2176 (2011).
  • Nicholls SJ, Brewer HB, Kastelein JJ et al. Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol: a randomized controlled trial.JAMA 306(19), 2099–2109 (2011).
  • Tardif JC, Gregoire J, L’allier PL et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 297(15), 1675–1682 (2007).
  • van Oostrom O, Nieuwdorp M, Westerweel PE et al. Reconstituted HDL increases circulating endothelial progenitor cells in patients with Type 2 diabetes. Arterioscler. Thromb. Vasc. Biol. 27(8), 1864–1865 (2007).
  • Hoang A, Drew BG, Low H et al. Mechanism of cholesterol efflux in humans after infusion of reconstituted high-density lipoprotein. Eur. Heart J. 33(5), 657–665 (2011).
  • Gordon DJ, Probstfield JL, Garrison RJ et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79(1), 8–15 (1989).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.