1,208
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Cancer biomarkers and mass spectrometry-based analyses of phospholipids in body fluids

, , &
Pages 137-150 | Published online: 18 Jan 2017

References

  • Wenk MR. The emerging field of lipidomics. Nat. Rev. Drug Discov. 4(7), 594–610 (2005).
  • Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J. Lipid Res. 44(6), 1071–1079 (2003).
  • Schiller J, Suss R, Fuchs B, Muller M, Zschornig O, Arnold K. MALDI-TOF MS in lipidomics. Front. Biosci. 12, 2568–2579 (2007).
  • Kuliszkiewicz-Janus M, Tuz MA, Kielbinski M, Jazwiec B, Niedoba J, Baczynski S. 31P MRS analysis of the phospholipid composition of the peripheral blood mononuclear cells (PBMC) and bone marrow mononuclear cells (BMMC) of patients with acute leukemia (AL). Cell. Mol. Biol. Lett. 14(1), 35–45 (2009).
  • Ekroos K, Ejsing CS, Bahr U, Karas M, Simons K, Shevchenko A. Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J. Lipid Res. 44, 2181–2192 (2003).
  • Thomas MC, Mitchell TW, Harman DG, Deeley JM, Nealon JR, Blanksby SJ. Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions. Anal. Chem. 80, 303–311 (2008).
  • Fang X, Gaudette D, Furui T et al. Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer. Ann. NY Acad. Sci. 905, 188–208 (2000).
  • Escriba PV, Gonzalez-Ros JM, Goni FM et al. Membranes: a meeting point for lipids, proteins and therapies. J. Cell. Mol. Med. 12(3), 829–875 (2008).
  • Podo F, Canevari S, Canese R, Pisanu ME, Ricci A, Iorio E. Tumor phospholipid metabolism. Proc. Intl Soc. Mag. Reson. Med. 19, 1–10 (2011).
  • Glunde K, Jie C, Bhujwalla ZM. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res. 64(12), 4270–4276 (2004).
  • Plathow C, Weber WA. Tumor cell metabolism imaging. J. Nucl. Med. 49, S43–S63 (2008).
  • Banez-Coronel M, Ramirez de MA, Rodriguez-Gonzalez A et al. Choline kinase alpha depletion selectively kills tumoral cells. Curr. Cancer Drug Targets 8(8), 709–719 (2008).
  • Medes G, Thomas A, Weinhouse S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res. 13, 27–29 (1953).
  • Maier T, Jenni S, Ban N. Architecture of mammalian fatty acid synthase at 4.5 Å resolution. Science 311, 1258–1262 (2006).
  • Kuhajda FP. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res. 66(12), 5977–5980 (2006).
  • Ye X. Lysophospholipid signaling in the function and pathology of the reproductive system. Hum. Reprod. Update 14(5), 519–536 (2008).
  • Dong J, Cai X, Zhao L et al. Lysophosphatidylcholine biomarkers of lung cancer detected by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Chem. Res. Chin. Univ. 27, 750–755 (2011).
  • Taylor LA, Arends J, Hodina AK, Unger C, Massing U. Plasma lyso-phosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status. Lipids Health Dis. 6, 17 (2007).
  • Smicun Y, Gil O, Devine K, Fishman DA. S1P and LPA have an attachment-dependent regulatory effect on invasion of epithelial ovarian cancer cells. Gynecol. Oncol. 107(2), 298–309 (2007).
  • Jeong KJ, Park SY, Cho KH et al. The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion. Oncogene 31(39), 4279–4289 (2012).
  • Tanyi J, Rigo J. [Lysophosphatidic acid as a potential target for treatment and molecular diagnosis of epithelial ovarian cancers]. Orv. Hetil. 150(24), 1109–1118 (2009).
  • Sedlakova I, Vavrova J, Tosner J, Hanousek L. Lysophosphatidic acid (LPA) - a perspective marker in ovarian cancer. Tumour Biol. 32(2), 311-316 (2011).
  • Wolf C, Quinn PJ. Lipidomics: practical aspects and applications. Prog. Lipid Res. 47(1), 15-36 (2008). ▪ Practical steps of lipid storage, separation, detection and identification by liquid chromatography-mass spectrometry (MS).
  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926), 64-71 (1989).
  • Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151-153 (1988).
  • Cho A, Normile D. Nobel Prize in Chemistry. Mastering macromolecules. Science 298(5593), 527-528 (2002).
  • Han X, Gross RW. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc. Natl Acad. Sci. USA 91(22), 10635-10639 (1994).
  • Han X, Gross RW. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. 24(3), 367-412 (2005).
  • Leskinen H, Suomela JP, Kallio H. Quantification of triacylglycerol regioisomers in oils and fat using different mass spectrometric and liquid chromatographic methods. Rapid Commun. Mass Spectrom. 21(14), 2361-2373 (2007).
  • Honda A, Yamashita K, Miyazaki H et al. Highly sensitive analysis of sterol profiles in human serum by LC-ESI-MS/MS. J. Lipid Res. 49(9), 2063-2073 (2008).
  • Beckedorf AI, Schaffer C, Messner P, Peter-Katalinic J. Mapping and sequencing of cardiolipins from Geobacillus stearothermophilus NRS 2004/3a by positive and negative ion nanoESI-QTOF-MS and MS/MS. J. Mass Spectrom. 37(10), 1086-1094 (2002).
  • Fridriksson EK, Shipkova PA, Sheets ED, Holowka D, Baird B, McLafferty FW. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 38(25), 8056–8063 (1999).
  • Pulfer M, Murphy RC. Electrospray mass spectrometry of phospholipids. Mass Spectrom. Rev. 22(5), 332–364 (2003). ▪▪ Very detailed information on the preparation and identification of different classes of phospholipids.
  • Hsu FF, Turk J. Structural characterization of unsaturated glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 19(11), 1681–1691 (2008).
  • Lee JY, Min HK, Moon MH. Simultaneous profiling of lysophospholipids and phospholipids from human plasma by nanoflow liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 400(9), 2953–2961 (2011).
  • Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl Acad. Sci. USA 94(6), 2339–2344 (1997). ▪▪ Very instructive paper on the identification and quantification of phospholipids in unprocessed total lipid extracts.
  • Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J. Lipid Res. 42(4), 663–672 (2001).
  • Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60(20), 2299–2301 (1988).
  • Jackson SN, Murray KK. Infrared matrix-assisted laser desorption/ionization of polycyclic aromatic hydrocarbons with a sulfolane matrix. Rapid Commun. Mass Spectrom. 15(16), 1448–1452 (2001).
  • Karas M, Gluckmann M, Schafer J. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J. Mass Spectrom. 35(1), 1–12 (2000).
  • Hillenkamp F, Peter-Katalinic J. MALDI MS – a practical guide to instrumentation, methods and application. In: Cell and Molecular Biology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 11–14 (2007).
  • Teuber K, Schiller J, Jakop U et al. MALDI-TOF mass spectrometry as a simple tool to determine the phospholipid/glycolipid composition of sperm: pheasant spermatozoa as one selected example. Anim. Reprod. Sci. 123(3–4), 270–278 (2011).
  • Wallace WE, Arnould MA, Knochemuss R. 2,5-dihydroxybenzoic acid: laser desorption/ionization as a function of elevated temperature. Int. J. Mass Spectrom. 242, 13–22 (2005).
  • Fuchs B, Schiller J, Wagner U, Hantzschel H, Arnold K. The phosphatidylcholine/ lysophosphatidylcholine ratio in human plasma is an indicator of the severity of rheumatoid arthritis: investigations by 31 P NMR and MALDI-TOF MS. Clin. Biochem. 38(10), 925–933 (2005).
  • Stubiger G, Belgacem O, Rehulka P, Bicker W, Binder BR, Bochkov V. Analysis of oxidized phospholipids by MALDI mass spectrometry using 6-aza-2-thiothymine together with matrix additives and disposable target surfaces. Anal. Chem. 82(13), 5502–5510 (2010).
  • Stubiger G, Belgacem O. Analysis of lipids using 2,4,6-trihydroxyacetophenone as a matrix for MALDI mass spectrometry. Anal. Chem. 79(8), 3206–3213 (2007).
  • Estrada R, Yappert MC. Alternative approaches for the detection of various phospholipid classes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom. 39(4), 412–422 (2004).
  • Sun G, Yang K, Zhao Z, Guan S, Han X, Gross RW. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte–matrix interactions. Anal. Chem. 80(19), 7576–7585 (2008).
  • Flemmig J, Spalteholz H, Schubert K, Meier S, Arnhold J. Modification of phosphatidylserine by hypochlorous acid. Chem. Phys. Lipids 161(1), 44–50 (2009).
  • Benard S, Arnhold J, Lehnert M, Schiller J, Arnold K. Experiments towards quantification of saturated and polyunsaturated diacylglycerols by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry. Chem. Phys. Lipids 100(1–2), 115–125 (1999).
  • Petkovic M, Schiller J, Muller M et al. Detection of individual phospholipids in lipid mixtures by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Phosphatidylcholine prevents the detection of further species. Anal. Biochem. 289(2), 202–216 (2001).
  • Muller M, Schiller J, Petkovic M et al. Limits for the detection of (poly-) phosphoinositides by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS). Chem. Phys. Lipids 110(2), 151–164 (2001).
  • Sunner J, Dratz E, Chen YC. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem. 67(23), 4335–4342 (1995).
  • Watanabe T, Kawasaki H, Yonezawa T, Arakawa R. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles. J. Mass Spectrom. 43(8), 1063–1071 (2008).
  • Lorkiewicz P, Yappert MC. Titania microparticles and nanoparticles as matrixes for in vitro and in situ analysis of small molecules by MALDI-MS. Anal. Chem. 81(16), 6596–6603 (2009).
  • Cornett DS, Reyzer ML, Chaurand P, Caprioli RM. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat. Methods 4(10), 828–833 (2007).
  • Fuchs B, Suss R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid research. Prog. Lipid Res. 49(4), 450–475 (2010). ▪▪ Excellent update on various matrix-assisted laser desorption ionization-TOF MS-based lipid analyses.
  • Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat. Med. 7(4), 493–496 (2001).
  • Chughtai K, Heeren RM. Mass spectrometric imaging for biomedical tissue analysis. Chem. Rev. 110(5), 3237–3277 (2010).
  • Seeley EH, Caprioli RM. MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol. 29(3), 136–143 (2011).
  • Christie WW. Gas chromatography-mass spectrometry methods for structural analysis of fatty acids. Lipids 33(4), 343–353 (1998).
  • Axelsen PH, Murphy RC. Quantitative analysis of phospholipids containing arachidonate and docosahexaenoate chains in microdissected regions of mouse brain. J. Lipid Res. 51(3), 660–671 (2010).
  • Blaas N, Schuurmann C, Bartke N, Stahl B, Humpf HU. Structural profiling and quantification of sphingomyelin in human breast milk by HPLC-MS/MS. J. Agric. Food Chem. 59(11), 6018–6024 (2011).
  • Min HK, Kong G, Moon MH. Quantitative analysis of urinary phospholipids found in patients with breast cancer by nanoflow liquid chromatography-tandem mass spectrometry: II. Negative ion mode analysis of four phospholipid classes. Anal. Bioanal. Chem. 396(3), 1273–1280 (2010). ▪ Detailed information regarding the preparation and quantification by nanoliquid chromatography MS of four different categories of phospholipids (phosphatidylserine, phosphatidylinositol, phosphatidylglycerol and phosphatidic acid) from the urine of patients with breast cancer.
  • Touchstone JC. Thin-layer chromatographic procedures for lipid separation. J. Chromatogr. B Biomed. Appl. 671(1–2), 169–195 (1995).
  • Sommerer D, Suss R, Hammerschmidt S, Wirtz H, Arnold K, Schiller J. Analysis of the phospholipid composition of bronchoalveolar lavage (BAL) fluid from man and minipig by MALDI-TOF mass spectrometry in combination with TLC. J. Pharm. Biomed. Anal. 35(1), 199–206 (2004).
  • Rohlfing A, Muthing J, Pohlentz G et al. IR-MALDI-MS analysis of HPTLCseparated phospholipid mixtures directly from the TLC plate. Anal. Chem. 79(15), 5793–5808 (2007).
  • Fuchs B, Schiller J, Suss R, Schurenberg M, Suckau D. A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal. Bioanal. Chem. 389(3), 827–834 (2007).
  • Meleh M, Pozlep B, Mlakar A, Meden-Vrtovec H, Zupancic-Kralj L. Determination of serum lysophosphatidic acid as a potential biomarker for ovarian cancer. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 858(1–2), 287–291 (2007). ▪ Demonstration of the correlation between higher levels of lysophosphatidic acid and the early stage of ovarian cancer using molecule-targeted MS analysis (multiple-reaction monitoring).
  • Nakanishi H, Iida Y, Shimizu T, Taguchi R. Analysis of oxidized phosphatidylcholines as markers for oxidative stress, using multiple reaction monitoring with theoretically expanded data sets with reversed-phase liquid chromatography/tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877(13), 1366–1374 (2008).
  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J. Clin. 61(2), 69–90 (2011).
  • Sutphen R, Xu Y, Wilbanks GD et al. Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol. Biomarkers Prev. 13(7), 1185–1191 (2004). ▪ First proof of the potential link between levels of lysophospholipids and cases of ovarian cancer.
  • Xiao YJ, Schwartz B, Washington M et al. Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: comparison of the lysophospholipid contents in malignant versus nonmalignant ascitic fluids. Anal. Biochem. 290(2), 302–313 (2001).
  • Zhao S, Wang Y, Dou A et al. Study of phospholipid profile of ovarian tumor by high performance liquid chromatography-mass spectrometry. Chin. J. Chromatogr. 29(9), 843–850 (2011).
  • Wedge DC, Allwood JW, Dunn W et al. Is serum or plasma more appropriate for intersubject comparisons in metabolomic studies? An assessment in patients with small-cell lung cancer. Anal. Chem. 83(17), 6689–6697 (2011). ▪▪ First extended assessment of serum versus plasma usefulness in lipid and metabolite analysis using gas chromatography- and liquid chromatography-MS workflow.
  • Lokhov PG, Kharybin ON, Archakov AI. Diagnosis of lung cancer based on direct-infusion electrospray mass spectrometry of blood plasma metabolites. Int. J. Mass Spectrom. 309, 200–205 (2012).
  • Bartella L, Thakur SB, Morris EA et al. Enhancing nonmass lesions in the breast: evaluation with proton (1H) MR spectroscopy. Radiology 245(1), 80–87 (2007).
  • Kim H, Min HK, Kong G, Moon MH. Quantitative analysis of phosphatidylcholines and phosphatidylethanolamines in urine of patients with breast cancer by nanoflow liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 393(6–7), 1649–1656 (2009).
  • Hammad LA, Wu G, Saleh MM et al. Elevated levels of hydroxylated phosphocholine lipids in the blood serum of breast cancer patients. Rapid Commun. Mass Spectrom. 23(6), 863–876 (2009).
  • Chapman MA, Buckley D, Henson DB, Armitage NC. Preoperative carcinoembryonic antigen is related to tumour stage and longterm survival in colorectal cancer. Br. J. Cancer 78, 1346–1349 (1998).
  • Itzkowitz S, Brand R, Jandorf L et al. A simplified, noninvasive stool DNA test for colorectal cancer detection. Am. J. Gastroenterol. 103(11), 2862–2870 (2008).
  • Zhao Z, Xiao Y, Elson P et al. Plasma lysophosphatidylcholine levels: potential biomarkers for colorectal cancer. J. Clin. Oncol. 25(19), 2696–2701 (2007).
  • Qiu Y, Cai G, Su M et al. Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS. J. Proteome Res. 8(10), 4844–4850 (2009).
  • Thompson IM, Pauler DK, Goodman PJ et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or = 4.0 ng per milliliter. N. Engl. J. Med. 350(22), 2239–2246 (2004).
  • Cvetkovic B, Vucic V, Cvetkovic Z, Popovic T, Glibetic M. Systemic alterations in concentrations and distribution of plasma phospholipids in prostate cancer patients. Med. Oncol. 29(2), 809–814 (2012).
  • Lokhov PG, Dashtiev MI, Moshkovskii SA, Archakov AI. Metabolite profiling of blood plasma of patients with prostate cancer. Metabolomics 6(1), 156–163 (2010).
  • Nunes J, Naymark M, Sauer L et al. Circulating sphingosine-1-phosphate and erythrocyte sphingosine kinase-1 activity as novel biomarkers for early prostate cancer detection. Br. J. Cancer 106(5), 909–915 (2012). ▪ Provides a potential mechanism for cancer-related anemia. Also shows the first evidence that plasma sphingosine-1-phosphate and erythrocyte SphK1 activity are the potential markers for prostate cancer diagnosis, monitoring and mortality prediction.
  • Sreekumar A, Poisson LM, Rajendiran TM et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457(7231), 910–914 (2009).
  • Min HK, Lim S, Chung BC, Moon MH. Shotgun lipidomics for candidate biomarkers of urinary phospholipids in prostate cancer. Anal. Bioanal. Chem. 399(2), 823–830 (2011).
  • Kuliszkiewicz-Janus M, Baczynski S. Application of 31P NMR spectroscopy to monitor chemotherapy-associated changes of serum phospholipids in patients with malignant lymphomas. Magn. Reson. Med. 35(4), 449–456 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.