400
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Incretins: new targets for the prevention of diabetes and obesity

&
Pages 109-121 | Published online: 18 Jan 2017

References

  • Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378(9793), 815–825 (2011).
  • Greenfield S, Rogers W, Mangotich M, Carney MF, Tarlov AR. Outcomes of patients with hypertension and noninsulin dependent diabetes mellitus treated by different systems and specialties. Results from the medical outcomes study. JAMA 274(18), 1436–1444 (1995).
  • Zhang P, Brown MB, Bilik D, Ackermann RT, Li R, Herman WH. Health utility scores for people with Type 2 diabetes in US managed care health plans: results from translating research into action for diabetes (TRIAD). Diabetes Care 35(11), 2250–2256 (2012).
  • Brancati FL, Kao WH, Folsom AR, Watson RL, Szklo M. Incident Type 2 diabetes mellitus in African American and white adults: the atherosclerosis risk in communities study. JAMA 283(17), 2253–2259 (2000).
  • Nathan DM, Davidson MB, DeFronzo RA et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 30(3), 753–759 (2007).
  • Leblanc ES, O’Connor E, Whitlock EP, Patnode CD, Kapka T. Effectiveness of primary care-relevant treatments for obesity in adults: a systematic evidence review for the US Preventive Services Task Force. Ann. Intern. Med. 155(7), 434–447 (2011).
  • Stanley S, Wynne K, McGowan B, Bloom S. Hormonal regulation of food intake. Physiol. Rev. 85(4), 1131–1158 (2005).
  • Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 132(6), 2131–2157 (2007).
  • Riddle M, Pencek R, Charenkavanich S, Lutz K, Wilhelm K, Porter L. Randomized comparison of pramlintide or mealtime insulin added to basal insulin treatment for patients with Type 2 diabetes. Diabetes Care 32(9), 1577–1582 (2009).
  • Nauck MA, Heimesaat MM, Behle K et al. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J. Clin. Endocrinol. Metab. 87(3), 1239–1246 (2002).
  • Shyangdan DS, Royle P, Clar C, Sharma P, Waugh N, Snaith A. Glucagon-like peptide analogs for Type 2 diabetes mellitus. Cochrane Database Syst. Rev. 10, CD0064232011 (2011).
  • Flint A, Raben A, Ersboll AK, Holst JJ, Astrup A. The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int. J. Obes. Relat. Disord. 25(6), 781–792 (2001).
  • Linnebjerg H, Kothare PA, Skrivanek Z et al. Exenatide: effect of injection time on postprandial glucose in patients with Type 2 diabetes. Diabet. Med. 23(3), 240–245 (2006).
  • McIntosh CH. Dipeptidyl peptidase IV inhibitors and diabetes therapy. Front. Biosci. 13, 1753–1773 (2008).
  • Drucker DJ. Dipeptidyl peptidase-4 inhibition and the treatment of Type 2 diabetes: preclinical biology and mechanisms of action. Diabetes Care 30(6), 1335–1343 (2007). ▪ Provides a full profile of the substrates of DPP4 and offers a compehesive analysis of the mechanisms of the therapeutic effects of DPP4 inhibitors.
  • Verdich C, Flint A, Gutzwiller JP et al. A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J. Clin. Endocrinol. Metab. 86(9), 4382–4389 (2001).
  • Vilsboll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomized controlled trials. BMJ 344, d7771 (2012).
  • Torekov SS, Madsbad S, Holst JJ. Obesity – an indication for GLP-1 treatment? Obesity pathophysiology and GLP-1 treatment potential. Obes. Rev. 12(8), 593–601 (2011).
  • Riche DM, East HE, Riche KD. Impact of sitagliptin on markers of beta-cell function: a meta-analysis. Am. J. Med. Sci. 337(5), 321–328 (2009).
  • Kahn SE. Clinical review 135: the importance of beta-cell failure in the development and progression of Type 2 diabetes. J. Clin. Endocrinol. Metab. 86(9), 4047–4058 (2001).
  • Ferrannini E, Gastaldelli A, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA. Beta-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. J. Clin. Endocrinol. Metab. 90(1), 493–500 (2005).
  • Salpeter SR, Buckley NS, Kahn JA, Salpeter EE. Meta-analysis: metformin treatment in persons at risk for diabetes mellitus. Am. J. Med. 121(2), 149–157.e2 (2008).
  • Gerstein HC, Yusuf S, Bosch J et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomized controlled trial. Lancet 368(9541), 1096–1105 (2006).
  • Holman RR, Haffner SM, McMurray JJ et al. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N. Engl. J. Med. 362(16), 1463–1476 (2010).
  • Byrne MM, Sturis J, Sobel RJ, Polonsky KS. Elevated plasma glucose 2 h postchallenge predicts defects in beta-cell function. Am. J. Physiol. 270(4 Pt 1), e572–e579 (1996).
  • Seltzer HS, Allen EW, Herron AL Jr, Brennan MT. Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J. Clin. Invest. 46(3), 323–335 (1967).
  • Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with Type 2 diabetes. Diabetes 52(1), 102–110 (2003).
  • Bulotta A, Hui H, Anastasi E et al. Cultured pancreatic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1. J. Mol. Endocrinol. 29(3), 347–360 (2002).
  • Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology 143(8), 3152–3161 (2002).
  • Byrne MM, Gliem K, Wank U et al. Glucagon-like peptide 1 improves the ability of the beta-cell to sense and respond to glucose in subjects with impaired glucose tolerance. Diabetes 47(8), 1259–1265 (1998). ▪ Demonstrated the potential for the use of GLP-1 receptor agonists at a nondiabetic stage to improve b-cell responsiveness, which lends to the concept of GLP-1 receptor agonists as agents of diabetes prophylaxis.
  • Young AA, Gedulin BR, Bhavsar S et al. Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta). Diabetes 48(5), 1026–1034 (1999).
  • Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 (7–36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute postprandial and 24-h secretion patterns. J. Endocrinol. 138(1), 159–166 (1993).
  • Drucker DJ. The biology of incretin hormones. Cell Metab. 3(3), 153–165 (2006).
  • Yusta B, Baggio LL, Estall JL et al. GLP-1 receptor activation improves beta-cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 4(5), 391–406 (2006).
  • Cunha DA, Ladriere L, Ortis F et al. Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes 58(12), 2851–2862 (2009).
  • Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, Prentki M. Glucagon-like peptide-1 prevents beta-cell glucolipotoxicity. Diabetologia 47(5), 806–815 (2004).
  • Wang Q, Brubaker PL. Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia 45(9), 1263–1273 (2002).
  • Farilla L, Hui H, Bertolotto C et al. Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 143(11), 4397–4408 (2002).
  • Cummings BP, Stanhope KL, Graham JL et al. Chronic administration of the glucagon-like peptide-1 analog, liraglutide, delays the onset of diabetes and lowers triglycerides in UCD-T2DM rats. Diabetes 59(10), 2653–2661 (2010). ▪ This elegant rodent study finds that, in rats, diabetes can be prevented by GLP-1 receptor agonists. Their results could also be used to argue that GLP-1 receptor agonists could ameliorate the onset of severe obesity.
  • Sturis J, Gotfredsen CF, Romer J et al. GLP-1 derivative liraglutide in rats with beta-cell deficiencies: influence of metabolic state on beta-cell mass dynamics. Br. J. Pharmacol. 140(1), 123–132 (2003).
  • Hadjiyanni I, Baggio LL, Poussier P, Drucker DJ. Exendin-4 modulates diabetes onset in nonobese diabetic mice. Endocrinology 149(3), 1338–1349 (2008).
  • Thorkildsen C, Neve S, Larsen BD, Meier E, Petersen JS. Glucagon-like peptide 1 receptor agonist ZP10A increases insulin mRNA expression and prevents diabetic progression in db/db mice. J. Pharmacol. Exp. Ther. 307(2), 490–496 (2003).
  • Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of Type 2 diabetes: normalization of beta-cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54(10), 2506–2514 (2011).
  • Bregenholt S, Moldrup A, Blume N et al. The long-acting glucagon-like peptide-1 analogue, liraglutide, inhibits beta-cell apoptosis in vitro. Biochem. Biophys. Res. Commun. 330(2), 577–584 (2005).
  • Raun K, von Voss P, Gotfredsen CF, Golozoubova V, Rolin B, Knudsen LB. Liraglutide, a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-IV inhibitor, vildagliptin, does not. Diabetes 56(1), 8–15 (2007).
  • Gedulin BR, Nikoulina SE, Smith PA et al. Exenatide (exendin-4) improves insulin sensitivity and (1)-cell mass in insulinresistant obese fa/fa Zucker rats independent of glycemia and body weight. Endocrinology 146(4), 2069–2076 (2005).
  • Elahi D, Egan JM, Shannon RP et al. GLP-1 (9–36) amide, cleavage product of GLP-1 (7–36) amide, is a glucoregulatory peptide. Obesity (Silver Spring) 16(7), 1501–1509 (2008).
  • Ayala JE, Bracy DP, James FD, Julien BM, Wasserman DH, Drucker DJ. The glucagon-like peptide-1 receptor regulates endogenous glucose production and muscle glucose uptake independent of its incretin action. Endocrinology 150(3), 1155–1164 (2009).
  • Tomas E, Wood JA, Stanojevic V, Habener JF. Glucagon-like peptide-1(9–36) amide metabolite inhibits weight gain and attenuates diabetes and hepatic steatosis in diet-induced obese mice. Diabet. Obes. Metab. 13(1), 26–33 (2011).
  • Pocai A, Carrington PE, Adams JR et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58(10), 2258–2266 (2009).
  • Mack CM, Moore CX, Jodka CM et al. Anti-obesity action of peripheral exenatide (exendin-4) in rodents: effects on food intake, body weight, metabolic status and side-effect measures. Int. J. Obes. (Lond.) 30(9), 1332–1340 (2006).
  • Drucker DJ. Biologic actions and therapeutic potential of the proglucagonderived peptides. Nat. Clin. Prac. Endocrinol. Metab. 1(1), 22–31 (2005).
  • Bunck MC, Diamant M, Corner A et al. One-year treatment with exenatide improves beta-cell function, compared with insulin glargine, in metformin-treated Type 2 diabetic patients: a randomized, controlled trial. Diabetes Care 32(5), 762–768 (2009).
  • Fehse F, Trautmann M, Holst JJ et al. Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with Type 2 diabetes. J. Clin. Endocrinol. Metab. 90(11), 5991–5997 (2005).
  • Derosa G, Franzetti IG, Querci F et al. Exenatide plus metformin compared with metformin alone on beta-cell function in patients with Type 2 diabetes. Diabet. Med. 29(12), 1515–1523 (2012).
  • Kelly AS, Metzig AM, Rudser KD et al. Exenatide as a weight-loss therapy in extreme pediatric obesity: a randomized, controlled pilot study. Obesity (Silver Spring) 20(2), 364–370 (2012).
  • Shyangdan DS, Royle PL, Clar C, Sharma P, Waugh NR. Glucagon-like peptide analogs for Type 2 diabetes mellitus: systematic review and meta-analysis. BMC Endocr. Disord. 10, 20 (2010).
  • van Raalte DH, van Genugten RE, Linssen MM, Ouwens DM, Diamant M. Glucagon-like peptide-1 receptor agonist treatment prevents glucocorticoid-induced glucose intolerance and islet-cell dysfunction in humans. Diabetes Care 34(2), 412–417 (2011).
  • Astrup A, Rossner S, Van Gaal L et al. Effects of liraglutide in the treatment of obesity: a randomized, double-blind, placebo-controlled study. Lancet 374(9701), 1606–1616 (2009).
  • Orozco LJ, Buchleitner AM, Gimenez-Perez G, Roque IFM, Richter B, Mauricio D. Exercise or exercise and diet for preventing Type 2 diabetes mellitus. Cochrane Database Syst. Rev. 3, CD003054 (2008).
  • Nauck MA, Niedereichholz U, Ettler R et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am. J. Physiol. 273(5 Pt 1), e981–e988 (1997).
  • Meier JJ, Gallwitz B, Salmen S et al. Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with Type 2 diabetes. J. Clin. Endocrinol. Metab. 88(6), 2719–2725 (2003).
  • Ahren B, Gomis R, Standl E, Mills D, Schweizer A. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with Type 2 diabetes. Diabetes Care 27(12), 2874–2880 (2004).
  • Karagiannis T, Paschos P, Paletas K, Matthews DR, Tsapas A. Dipeptidyl peptidase-4 inhibitors for treatment of Type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. BMJ 344, e1369 (2012).
  • Chen B, Moore A, Escobedo LV et al. Sitagliptin lowers glucagon and improves glucose tolerance in prediabetic obese SHROB rats. Exp. Biol. Med. (Maywood) 236(3), 309–314 (2011).
  • Pospisilik JA, Stafford SG, Demuth HU et al. Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and beta-cell glucose responsiveness in VDF (fa/fa) Zucker rats. Diabetes 51(4), 943–950 (2002).
  • Mu J, Woods J, Zhou YP et al. Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic beta-cell mass and function in a rodent model of Type 2 diabetes. Diabetes 55(6), 1695–1704 (2006).
  • Sudre B, Broqua P, White RB et al. Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats. Diabetes 51(5), 1461–1469 (2002).
  • Conarello SL, Li Z, Ronan J et al. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc. Natl Acad. Sci. USA 100(11), 6825–6830 (2003).
  • Bock G, Dalla Man C, Micheletto F et al. The effect of DPP-4 inhibition with sitagliptin on incretin secretion and on fasting and postprandial glucose turnover in subjects with impaired fasting glucose. Clin. Endocrinol. (Oxf.) 73(2), 189–196 (2010).
  • Rosenstock J, Foley JE, Rendell M et al. Effects of the dipeptidyl peptidase-IV inhibitor vildagliptin on incretin hormones, islet function, and postprandial glycemia in subjects with impaired glucose tolerance. Diabetes Care 31(1), 30–35 (2008).
  • Utzschneider KM, Tong J, Montgomery B et al. The dipeptidyl peptidase-4 inhibitor vildagliptin improves beta-cell function and insulin sensitivity in subjects with impaired fasting glucose. Diabetes Care 31(1), 108–113 (2008).
  • Ranganath LR, Beety JM, Morgan LM, Wright JW, Howland R, Marks V. Attenuated GLP-1 secretion in obesity: cause or consequence? Gut 38(6), 916–919 (1996).
  • Muscelli E, Mari A, Casolaro A et al. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and Type 2 diabetic patients. Diabetes 57(5), 1340–1348 (2008).
  • Le Roux CW, Aylwin SJ, Batterham RL et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann. Surg. 243(1), 108–114 (2006).
  • Morinigo R, Moize V, Musri M et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J. Clin. Endocrinol. Metab. 91(5), 1735–1740 (2006).
  • Lin E, Davis SS, Srinivasan J et al. Dual mechanism for Type 2 diabetes resolution after Roux-en-Y gastric bypass. Am. Surg. 75(6), 498–502; discussion 502–503 (2009).
  • Kjems LL, Holst JJ, Volund A, Madsbad S. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in Type 2 and nondiabetic subjects. Diabetes 52(2), 380–386 (2003).
  • Le Roux CW, Welbourn R, Werling M et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann. Surg. 246(5), 780–785 (2007).
  • Lauritsen KB, Moody AJ, Christensen KC, Lindkaer Jensen S. Gastric inhibitory polypeptide (GIP) and insulin release after small-bowel resection in man. Scand. J. Gastroenterol. 15(7), 833–840 (1980).
  • Sirinek KR, O’Dorisio TM, Hill D, McFee AS. Hyperinsulinism, glucose-dependent insulinotropic polypeptide, and the enteroinsular axis in morbidly obese patients before and after gastric bypass. Surgery 100(4), 781–787 (1986).
  • Jorgensen NB, Jacobsen SH, Dirksen C et al. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with Type 2 diabetes and normal glucose tolerance. Am. J. Physiol. Endocrinol. Metab. 303(1), e122–e131 (2012).
  • Hansen EN, Tamboli RA, Isbell JM et al. Role of the foregut in the early improvement in glucose tolerance and insulin sensitivity following Roux-en-Y gastric bypass surgery. Am. J. Physiol. Gastrointest. Liver Physiol. 300(5), G795–G802 (2011).
  • Bose M, Olivan B, Teixeira J, Pi-Sunyer FX, Laferrere B. Do incretins play a role in the remission of Type 2 diabetes after gastric bypass surgery: what are the evidence? Obes. Surg. 19(2), 217–229 (2009).
  • Patriti A, Aisa MC, Annetti C et al. How the hindgut can cure Type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto-kakizaki rats through an enhanced Proglucagon gene expression and L-cell number. Surgery 142(1), 74–85 (2007).
  • Patriti A, Facchiano E, Annetti C et al. Early improvement of glucose tolerance after ileal transposition in a nonobese Type 2 diabetes rat model. Obes. Surg. 15(9), 1258–1264 (2005).
  • Cummings BP, Strader AD, Stanhope KL et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology 138(7), 2437–2446, 2446.e1 (2010).
  • Strader AD, Clausen TR, Goodin SZ, Wendt D. Ileal interposition improves glucose tolerance in low dose streptozotocin-treated diabetic and euglycemic rats. Obes. Surg. 19(1), 96–104 (2009).
  • Buchwald H, Estok R, Fahrbach K et al. Weight and Type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am. J. Med. 122(3), 248–256.e5 (2009).
  • Lee WJ, Chong K, Chen CY et al. Diabetes remission and insulin secretion after gastric bypass in patients with body mass index <35 kg/m2. Obes. Surg. 21(7), 889–895 (2011). ▪ One of the first studies to test the effect of bariatric surgery on diabetes remission as a primary objective. This forms part of the argument for considering bariatric surgery in those not within the current guidelines. This concept may lead to future consideration of metabolic surgery to treat diabetes and not obesity, and possibly even the use of this surgery in preventing diabetes.
  • Scopinaro N, Adami GF, Papadia FS et al. Effects of biliopanceratic diversion on Type 2 diabetes in patients with BMI 25–35. Ann. Surg. 253(4), 699–703 (2011).
  • Shimizu H, Timratana P, Schauer PR, Rogula T. Review of metabolic surgery for Type 2 diabetes in patients with a BMI <35 kg/ m2. J. Obes. 2012, 147256 (2012).
  • Mari A, Manco M, Guidone C et al. Restoration of normal glucose tolerance in severely obese patients after bilio–pancreatic diversion: role of insulin sensitivity and beta-cell function. Diabetologia 49(9), 2136–2143 (2006).
  • Bose M, Teixeira J, Olivan B et al. Weight loss and incretin responsiveness improve glucose control independently after gastric bypass surgery. J. Diabetes 2(1), 47–55 (2010).
  • Pournaras DJ, Aasheim ET, Sovik TT et al. Effect of the definition of Type 2 diabetes remission in the evaluation of bariatric surgery for metabolic disorders. Br. J. Surg. 99(1), 100–103 (2012).
  • Schauer PR, Kashyap SR, Wolski K et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 366(17), 1567–1576 (2012). ▪ The use of bariatric surgery as a diabetic therapy is investigated and found to be successful. This helped to change the concept of bariatric surgery as ‘weight-loss surgery’ and reinforces the metabolic surgery concept.
  • Long SD, O’Brien K, MacDonald KG Jr et al. Weight loss in severely obese subjects prevents the progression of impaired glucose tolerance to Type 2 diabetes. A longitudinal interventional study. Diabetes Care 17(5), 372–375 (1994).
  • Pontiroli AE, Folli F, Paganelli M et al. Laparoscopic gastric banding prevents Type 2 diabetes and arterial hypertension and induces their remission in morbid obesity: a 4-year case–controlled study. Diabetes Care 28(11), 2703–2709 (2005).
  • Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg. Obes. Relat. Dis. 3(6), 597–601 (2007).
  • Rodieux F, Giusti V, D’Alessio DA, Suter M, Tappy L. Effects of gastric bypass and gastric banding on glucose kinetics and gut hormone release. Obesity (Silver Spring) 16(2), 298–305 (2008).
  • Carlsson LM, Peltonen M, Ahlin S et al. Bariatric surgery and prevention of Type 2 diabetes in Swedish obese subjects. N. Engl. J. Med. 367(8), 695–704 (2012).
  • Buchwald H, Estok R, Fahrbach K, Banel D, Sledge I. Trends in mortality in bariatric surgery: a systematic review and meta-analysis. Surgery 142(4), 621–632; discussion 632–635 (2007).
  • Peeters A, O’Brien PE, Laurie C et al. Substantial intentional weight loss and mortality in the severely obese. Ann. Surg. 246(6), 1028–1033 (2007).
  • Jornvall H, Carlquist M, Kwauk S et al. Amino acid sequence and heterogeneity of gastric inhibitory polypeptide (GIP). FEBS Lett. 123(2), 205–210 (1981).
  • Holst JJ. On the physiology of GIP and GLP-1. Horm. Metab. Res. 36(11–12), 747–754 (2004).
  • Gault VA, McClean PL, Cassidy RS, Irwin N, Flatt PR. Chemical gastric inhibitory polypeptide receptor antagonism protects against obesity, insulin resistance, glucose intolerance and associated disturbances in mice fed high-fat and cafeteria diets. Diabetologia 50(8), 1752–1762 (2007).
  • Irwin N, Gault VA, Green BD et al. Effects of short-term chemical ablation of the GIP receptor on insulin secretion, islet morphology and glucose homeostasis in mice. Biol. Chem. 385(9), 845–852 (2004).
  • Tseng CC, Kieffer TJ, Jarboe LA, Usdin TB, Wolfe MM. Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP). Effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. J. Clin. Invest. 98(11), 2440–2445 (1996).
  • Flatt PR, Bailey CJ, Kwasowski P, Swanston-Flatt SK, Marks V. Abnormalities of GIP in spontaneous syndromes of obesity and diabetes in mice. Diabetes 32(5), 433–435 (1983).
  • Bailey CJ, Flatt PR, Kwasowski P, Powell CJ, Marks V. Immunoreactive gastric inhibitory polypeptide and K cell hyperplasia in obese hyperglycemic (ob/ob) mice fed high fat and high carbohydrate cafeteria diets. Acta Endocrinologica 112(2), 224–229 (1986).
  • Gault VA, Irwin N, Green BD et al. Chemical ablation of gastric inhibitory polypeptide receptor action by daily (Pro3)GIP administration improves glucose tolerance and ameliorates insulin resistance and abnormalities of islet structure in obesityrelated diabetes. Diabetes 54(8), 2436–2446 (2005).
  • Irwin N, McClean PL, O’Harte FP, Gault VA, Harriott P, Flatt PR. Early administration of the glucose-dependent insulinotropic polypeptide receptor antagonist (Pro3)GIP prevents the development of diabetes and related metabolic abnormalities associated with genetically inherited obesity in ob/ob mice. Diabetologia 50(7), 1532–1540 (2007).
  • Miyawaki K, Yamada Y, Ban N et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 8(7), 738–742 (2002). ▪ Demonstrated the effect of glucose-dependent insulinotropic polypeptide on preventing obesity. The effects of glucose-dependent insulinotropic polypeptide in humans are yet to be fully understood.
  • McClean PL, Irwin N, Cassidy RS, Holst JJ, Gault VA, Flatt PR. GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. Am. J. Physiol. Endocrinol. Metab. 293(6), e1746–e1755 (2007).
  • Hansotia T, Maida A, Flock G et al. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J. Clin. Invest. 117(1), 143–152 (2007).
  • Althage MC, Ford EL, Wang S, Tso P, Polonsky KS, Wice BM. Targeted ablation of glucose-dependent insulinotropic polypeptideproducing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet. J. Biol. Chem. 283(26), 18365–18376 (2008).
  • Fulurija A, Lutz TA, Sladko K et al. Vaccination against GIP for the treatment of obesity. PloS ONE 3(9), e3163 (2008).
  • Widenmaier SB, Kim SJ, Yang GK et al. A GIP receptor agonist exhibits beta-cell anti-apoptotic actions in rat models of diabetes resulting in improved beta-cell function and glycemic control. PLoS one 5(3), e9590 (2010).
  • Nakamura T, Tanimoto H, Mizuno Y, Tsubamoto Y, Noda H. Biological and functional characteristics of a novel lowmolecular weight antagonist of glucose-dependent insulinotropic polypeptide receptor, SKL-14959, in vitro and in vivo. Diabet. Obes. Metab. 14(6), 511–517 (2012).
  • Butler PC, Chou J, Carter WB et al. Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes 39(6), 752–756 (1990).
  • Moore CX, Cooper GJ. Cosecretion of amylin and insulin from cultured islet beta-cells: modulation by nutrient secretagogues, islet hormones and hypoglycemic agents. Biochem. Biophys. Res. Commun. 179(1), 1–9 (1991).
  • Lutz TA, Geary N, Szabady MM, Del Prete E, Scharrer E. Amylin decreases meal size in rats. Physiol. Behav. 58(6), 1197–1202 (1995).
  • Young AA, Gedulin BR, Rink TJ. Doseresponses for the slowing of gastric emptying in a rodent model by glucagon-like peptide (7–36) NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake. Metabolism 45(1), 1–3 (1996).
  • Roth JD, D’Souza L, Griffin PS et al. Interactions of amylinergic and melanocortinergic systems in the control of food intake and body weight in rodents. Diabet. Obes. Metab. 14(7), 608–615 (2012).
  • Trevaskis JL, Turek VF, Wittmer C et al. Enhanced amylin-mediated body weight loss in estradiol-deficient diet-induced obese rats. Endocrinology 151(12), 5657–5668 (2010).
  • Singh-Franco D, Perez A, Harrington C. The effect of pramlintide acetate on glycemic control and weight in patients with Type 2 diabetes mellitus and in obese patients without diabetes: a systematic review and meta-analysis. Diabet. Obes. Metab. 13(2), 169–180 (2011).
  • Aronne LJ, Halseth AE, Burns CM, Miller S, Shen LZ. Enhanced weight loss following coadministration of pramlintide with sibutramine or phentermine in a multicenter trial. Obesity (Silver Spring) 18(9), 1739–1746 (2010).
  • Trevaskis JL, Lei C, Koda JE, Weyer C, Parkes DG, Roth JD. Interaction of leptin and amylin in the long-term maintenance of weight loss in diet-induced obese rats. Obesity (Silver Spring) 18(1), 21–26 (2010).
  • Ravussin E, Smith SR, Mitchell JA et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity (Silver Spring) 17(9), 1736–1743 (2009).
  • Roth JD, Roland BL, Cole RL et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc. Natl Acad. Sci. USA 105(20), 7257–7262 (2008).
  • Trevaskis JL, Coffey T, Cole R et al. Amylin-mediated restoration of leptin responsiveness in diet-induced obesity: magnitude and mechanisms. Endocrinology 149(11), 5679–5687 (2008).
  • Seth R, Knight WD, Overton JM. Combined amylin-leptin treatment lowers blood pressure and adiposity in lean and obese rats. Int. J. Obes. (Lond.) 35(9), 1183–1192 (2011).
  • Kusakabe T, Ebihara K, Sakai T et al. Amylin improves the effect of leptin on insulin sensitivity in leptin-resistant diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 302(8), e924–e931 (2012).
  • Ludvik B, Lell B, Hartter E, Schnack C, Prager R. Decrease of stimulated amylin release precedes impairment of insulin secretion in Type 2 diabetes. Diabetes 40(12), 1615–1619 (1991).
  • Gros L, Thorens B, Bataille D, Kervran A. Glucagon-like peptide-1-(7–36) amide, oxyntomodulin, and glucagon interact with a common receptor in a somatostatin-secreting cell line. Endocrinology 133(2), 631–638 (1993).
  • Dakin CL, Gunn I, Small CJ et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology 142(10), 4244–4250 (2001).
  • Baggio LL, Huang Q, Brown TJ, Drucker DJ. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127(2), 546–558 (2004).
  • Dakin CL, Small CJ, Batterham RL et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 145(6), 2687–2695 (2004).
  • Wynne K, Park AJ, Small CJ et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 54(8), 2390–2395 (2005).
  • Wynne K, Park AJ, Small CJ et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomized controlled trial. Int. J. Obes. (Lond.) 30(12), 1729–1736 (2006).
  • Druce MR, Minnion JS, Field BC et al. Investigation of structure-activity relationships of oxyntomodulin (OXM) using OXM analogs. Endocrinology 150(4), 1712–1722 (2009).
  • Parlevliet ET, Heijboer AC, Schroder-van der Elst JP et al. Oxyntomodulin ameliorates glucose intolerance in mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 294(1), e142–e147 (2008).
  • Kerr BD, Flatt PR, Gault VA. (D-Ser2) Oxm[mPEG-PAL]: a novel chemically modified analogue of oxyntomodulin with antihyperglycemic, insulinotropic and anorexigenic actions. Biochem. Pharmacol. 80(11), 1727–1735 (2010).
  • Flatt PR, Bailey CJ, Green BD. Recent advances in antidiabetic drug therapies targeting the enteroinsular axis. Curr. Drug Metab. 10(2), 125–137 (2009).
  • Hildebrand P, Ensinck JW, Ketterer S et al. Effect of a cholecystokinin antagonist on meal-stimulated insulin and pancreatic polypeptide release in humans. J. Clin. Endocrinol. Metab. 72(5), 1123–1129 (1991).
  • Ahren B, Holst JJ, Efendic S. Antidiabetogenic action of cholecystokinin-8 in Type 2 diabetes. J. Clin. Endocrinol. Metab. 85(3), 1043–1048 (2000).
  • Kuntz E, Pinget M, Damge P. Cholecystokinin octapeptide: a potential growth factor for pancreatic beta-cells in diabetic rats. JOP 5(6), 464–475 (2004).
  • Lavine JA, Raess PW, Stapleton DS et al. Cholecystokinin is up-regulated in obese mouse islets and expands beta-cell mass by increasing beta-cell survival. Endocrinology 151(8), 3577–3588 (2010).
  • Irwin N, Frizelle P, Montgomery IA, Moffett RC, O’Harte FP, Flatt PR. Beneficial effects of the novel cholecystokinin agonist (pGlu-Gln)-CCK-8 in mouse models of obesity/diabetes. Diabetologia 55(10), 2747–2758 (2012). ▪ Outlined the potential of cholecystokinin receptor agonists to treat and prevent obesity.
  • Lo CM, King A, Samuelson LC et al. Cholecystokinin knockout mice are resistant to high-fat diet-induced obesity. Gastroenterology 138(5), 1997–2005 (2010).
  • Jordan J, Greenway FL, Leiter LA et al. Stimulation of cholecystokinin-A receptors with GI181771X does not cause weight loss in overweight or obese patients. Clin. Pharmacol. Ther. 83(2), 281–287 (2008).
  • Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89(5), 1070–1077 (1985).
  • Batterham RL, Heffron H, Kapoor S et al. Critical role for peptide YY in proteinmediated satiation and body-weight regulation. Cell Metab. 4(3), 223–233 (2006).
  • Batterham RL, Cowley MA, Small CJ et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418(6898), 650–654 (2002).
  • Batterham RL, Cohen MA, Ellis SM et al. Inhibition of food intake in obese subjects by peptide YY3–36. N. Engl. J. Med. 349(10), 941–948 (2003).
  • Talsania T, Anini Y, Siu S, Drucker DJ, Brubaker PL. Peripheral exendin-4 and peptide YY(3–36) synergistically reduce food intake through different mechanisms in mice. Endocrinology 146(9), 3748–3756 (2005).
  • Neary NM, Small CJ, Druce MR et al. Peptide YY3–36 and glucagon-like peptide-17–36 inhibit food intake additively. Endocrinology 146(12), 5120–5127 (2005).
  • Fenske WK, Bueter M, Miras AD, Ghatei MA, Bloom SR, Le Roux CW. Exogenous peptide YY3–36 and exendin-4 further decrease food intake, whereas octreotide increases food intake in rats after Roux-en-Y gastric bypass. Int. J. Obes. (Lond.) 36(3), 379–384 (2012). ▪ Illustrated the potential for use of supplemental incretin therapy to enhance the anorexigenic effect of bariatric surgery.
  • Abbott CR, Monteiro M, Small CJ et al. The inhibitory effects of peripheral administration of peptide YY(3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagalbrainstem-hypothalamic pathway. Brain Res. 1044(1), 127–131 (2005).
  • De Silva A, Salem V, Long CJ et al. The gut hormones PYY 3–36 and GLP-1 7–36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 14(5), 700–706 (2011).
  • van den Hoek AM, Heijboer AC, Corssmit EP et al. PYY3–36 reinforces insulin action on glucose disposal in mice fed a high-fat diet. Diabetes 53(8), 1949–1952 (2004).
  • Gantz I, Erondu N, Mallick M et al. Efficacy and safety of intranasal peptide YY3–36 for weight reduction in obese adults. J. Clin. Endocrinol. Metab. 92(5), 1754–1757 (2007).
  • Zac-Varghese S, De Silva A, Bloom SR. Translational studies on PYY as a novel target in obesity. Curr. Opin. Pharmacol. 11(6), 582–585 (2011).
  • Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults – the evidence report. NIH. Obes. Res. 6(Suppl. 2), S51–S209 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.