453
Views
4
CrossRef citations to date
0
Altmetric
Reviews

The role of lysophosphatidic acid on human osteoblast formation, maturation and the implications for bone health and disease

&
Pages 123-135 | Published online: 18 Jan 2017

References

  • Jalink K, Hengeveld T, Mulder S et al. Lysophosphatidic acid-induced Ca2+ mobilisation in human A431 cells: structure–activity analysis. Biochem. J. 307, 609–616 (1995).
  • Wang DA, Lorincz Z, Bautista DL, Liliom K, Tigyi G, Parrill AL. A single amino acid determines lysophospholipid specificity of the S1P1 (EDG1) and LPA1 (EDG2) phospholipid growth factor receptors. J. Biol. Chem. 276(52), 49213–49220 (2001).
  • Tokumura A, Majima E, Kariya Y et al. Identification of human plasma lysophospholipase D, a lysophosphatidic acidproducing enzyme, as autotaxin, a multifunctional phosphodiesterase. J. Biol. Chem. 277(42), 39436–39442 (2002).
  • Umezu-Goto M. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J. Cell Biol. 158(2), 227–233 (2002).
  • Thumser AE, Voysey JE, Wilton DC. The binding of lysophospholipids to rat liver faty acid-binding protein and albumin. Biochem. J. 301, 801–806 (1994).
  • Tigyi G, Miledi R. Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 phaechromocytoma cells. J. Biol. Chem. 267(30), 21360–21367 (1992). ▪▪ Seminal research paper identifying albumin as the natural carrier for lysophosphatidic acid (LPA).
  • Ridley AJ, Hall A. The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).
  • Gidley J, Openshaw S, Pring ET, Sale S, Mansell JP. Lysophosphatidic acid cooperates with 1a,25(OH)2D3 in stimulating human MG63 osteoblast maturation. Prostaglandins Other Lipid Mediat. 80(1–2), 46–61 (2006). ▪▪ First study reporting on the synergistic cooperation between LPA and calcitriol, findings that help explain the in vitro response of human osteoblasts to this steroid hormone.
  • Noguchi Y, Okamoto A, Kasama T, Imajoh-Ohmi S, Karatsu T, Nogawa H. Lysophosphatidic acid cooperates with EGF in inducing branching morphogenesis of embryonic mouse salivary epithelium.Developmental Dynamics 235(2), 403–410 (2006).
  • Moolenaar WH, Van Meeteren LA, Giepmans BNG. The ins and outs of lysophosphatidic acid signaling. BioEssays 26(8), 870–881 (2004).
  • Choi JW, Herr DR, Noguchi K et al. LPA receptors: subtypes and biological actions.Annu. Rev. Pharmacol. Toxicol. 50(1), 157–186 (2010). ▪▪ Excellent review pertaining to LPA receptor biology.
  • Tigyi G. Aiming drug discovery at lysophosphatidic acid target. BJP 161, 241–270 (2010).
  • Blackburn J, Mansell JP. The emerging role of lysophosphatidic acid (LPA) in skeletal biology. Bone 50(3), 756–762 (2012). ▪ First review detailing the biological responses of human and nonhuman skeletal cell types to LPA.
  • Checovich W, Mosher D. Lysophosphatidic acid enhances fibronectin binding to adherent cells. Arterioscler. Thromb. 13, 1662–1667 (1993).
  • Zhang Q, Checovich WJ, Peters DM, Albrecht RM, Mosher DF. Modulation of cell surface fibronectin assembly sites by lysophosphatidic acid. J. Cell Biol. 127, 1447–1459 (1994). ▪ First study reporting on the expression of LPA receptors for human osteoblasts.
  • Zhang Q, Mangnusson MK, Mosher DF. Lysophosphatidic acid and microtubuledestabilising agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction.Mol. Biol. Cell 8, 1415–1425 (1997).
  • Zhang Q, Peyruchaud O, French KJ, Magnusson MK, Mosher DF. Spingosine 1-phosphate stimulates fibronectin matrix assembly through a Rho-dependent signal pathway. Blood 93, 2984–2990 (1999).
  • Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol. 20(5), 495–501 (2008).
  • Dziak R, Yang BM, Leung BW et al. Effects of sphingosine-1-phosphate and lysophosphatidic acid on human osteoblastic cells. Prostaglandins Leukot. Essent. Fatty Acids 68(3), 239–249 (2003).
  • Whyte MP. Physiological role of alkaline phosphatase explored in hypophosphatasia.Ann. NY Acad. Sci. 1192, 190–200 (2010).
  • Grey A, Chen Q, Callon K, Xu X, Reid IR, Cornish J. The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving gi proteins and phosphatidylinositol-3 kinase. Endocrinology 143(12), 4755–4763 (2002).
  • Liedert A, Kaspar D, Blakytny R, Claes L, Ignatius A. Signal transduction pathways involved in mechanotransduction in bone cells. Biochem. Biophys. Res. Commun. 349(1), 1–5 (2006).
  • Klein-Nulend J, Bacabac RG, Mullender MG. Mechanobiology of bone tissue. Pathol. Biol. (Paris) 53(10), 576–580 (2005).
  • Harada S-I, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature 423, 349–355 (2003).
  • Pavalko FM, Norvell SM, Burr DB, Turner CH, Duncan RL, Bidwell JP. A model for mechanotransduction in bone cells: the load-bearing mechanosomes. J. Cell. Biochem. 88(1), 104–112 (2003).
  • Alenghat FJ, Ingber DE. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. STKE 2002(119), pe6 (2002).
  • Hunger-Glaser I, Salazar EP, Sinnett-Smith J, Rozengurt E. Bombesin, lysophosphatidic acid, and epidermal growth factor rapidly stimulate focal adhesion kinase phosphorylation at Ser-910: requirement for ERK activation. J. Biol. Chem. 278(25), 22631–22643 (2003).
  • Bershadsky A, Chausovsky A, Becker E, Lyubimova A, Geiger B. Involvement of microtubules in the control of adhesiondependent signal transduction. Curr. Biol. 6(10), 1279–1289 (1996).
  • Kole TP, Tseng Y, Huang L, Katz JL, Wirtz D. Rho kinase regulates the intracellular micromechanical response of adherent cells to rho activation. Mol. Biol. Cell. 15(7), 3475–3484 (2004).
  • Mansell JP, Farrar D, Jones S, Nowghani M. Cytoskeletal reorganisation, 1alpha,25-dihydroxy vitamin D3 and human MG63 osteoblast maturation. Mol. Cell. Endocrinol. 305(1–2), 38–46 (2009).
  • Lipfert L, Haimovich B, Schaller MD, Cobb BS, Thomas Parsons J, Brugge JS. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase PP125FAK in platelets. J. Cell Biol. 119(4), 905–912 (1992).
  • Sinnett-Smith J, Zachary I, Valverde AM, Rozengurt E. Bombesin stimulation of p125 focal adhesion kinase tyrosine phosphorylation. J. Biol. Chem. 268(19), 14261–14268 (1993).
  • Chen Q, Kinch MS, Lin TH, Burridge K, Juliano R. Integrin-mediated cell adhesion activates mitogen-activated protein kinases.J. Biol. Chem. 269(43), 26602–26605 (1994).
  • Rankin S, Rozengurt E. Platelet-derived growth factor modulation of focal adhesion kinase (p125FAK) and paxillin tyrosine phosphorylation in swiss 3T3 cells. J. Biol. Chem. 269(1), 704–710 (1994).
  • Seufferlein T, Rozengurt E. Lysophosphatidic acid stimulates tyrosine phosphorylation of focal adhesion kinase, paxillin and p130.J. Biol. Chem. 269(12), 9345–9351 (1994).
  • Zhu X, Assoian RK. Integrin-dependent activation of map kinase: a link to shapedependent cell proliferation. Mol. Biol. Cell 6, 273–282 (1995).
  • Sharma S, Barr AB, Macdonald HM, Sheehy T, Novotny R, Corriveau A. Vitamin D deficiency and disease risk among aboriginal arctic populations. Nutrition Rev. 69(8), 468–478 (2011).
  • Franceschi R, James WM, Zerlauth G. 1alpha, 25-dihydroxyvitamin D3 specific regulation of growth, morphology, and fibronectin in a human osteosarcoma cell line.J. Cell. Physiol. 123, 401–409 (1985).
  • Franceschi R, Linson CJ, Peter TC, Romano PR. Regulation of cellular adhesion and fibronectin synthesis by 1alpha,15-dihydroxyvitamin D3. J. Biol. Chem. 262(9), 4165–4171 (1987).
  • Franceschi R, Young J. Regulation of alkaline phosphatase by 1,25-dihydroxyvitamin D3 and ascorbic acid in bone-derived cells. J. Bone Miner. Res. 5, 1157–1167 (1990).
  • Yarram SJ, Tasman C, Gidley J, Clare M, Sandy JR, Mansell JP. Epidermal growth factor and calcitriol synergistically induce osteoblast maturation. Mol. Cell. Endocrinol. 220(1–2), 9–20 (2004).
  • Bonewald L, Kester MB, Schwartz Z et al. Effects of combining transforming growth factor beta and 1,25-dihydroxyvitamin D3 on differentiation of a human osteosarcoma (MG-63). J. Biol. Chem. 267(13), 8943–8949 (1992).
  • Wergedal JE, Matsuyama T, Strong DD. Differentiation of normal human bone cells by transforming growth factor-b and 1,25(OH)2 vitamin D3. Metabolism 41(1), 42–48 (1992).
  • Psychogios N, Hau DD, Peng J et al. The human serum metabolome. PLoS ONE 6(2), e16957 (2010).
  • Chen RF. Removal of fatty acids from serum albumin by charcoal treatment. J. Biol. Chem. 242(2), 173–181 (1967).
  • Schoenmakers I, Ginty F, Jarjou LM et al. Interrelation of parathyroid hormone and vitamin D metabolites in adolescents from the UK and The Gambia. J. Steroid Biochem. Mol. Biol. 121(1–2), 217–220 (2010).
  • Uchida M, Ozonco K, Pike JW. In vitro binding of vitamin D receptor occupied by 24R,25-dihydroxyvitamin D3 to vitamin D responsive element of human osteocalcin gene. J. Steroid Biochem. Mol. Biol. 60(3–4), 181–187 (1997).
  • Khanal R, Nemere I. Membrane receptors for vitamin D metabolites. Crit. Rev. Eukaryot. Gene Expr. 17(1), 31–47 (2007).
  • Dai B, David V, Alshayeb HM et al. Assessment of 24,25(OH)(2)D levels does not support FGF23-mediated catabolism of vitamin D metabolites. Kidney Int. 82(10), 1061–1070 (2012).
  • Skjodt H, Gallagher JA, Beresford JN, Couch M, Poser J, Russell RGG. Vitamin D metabolites regulate osteocalcin synthesis and proliferation of human bone cells in vitro.J. Endocrinol. 105, 391–396 (1985).
  • Beresford JN, Gallager JA, Russell RGG. 1,25-dihydroxyvitamin D3 and human bone-derived cells in vitro: effects on alkaline phosphatase, type I collagen and proliferation.Endocrinology 119(4), 1776–1785 (1986).
  • Oyajobi B, Russell RGG, Caswell A. Modulation of ecto-nucleoside triphosphate pyrophosphatase activity of human osteoblast-like bone cells by 1 alpha,25-dihydroxyvitamin D3, 24R,25-dihydroxyvitamin D3, parathyroid hormone, and dexamethasone. J. Bone Miner. Res. 9(8), 1259–1266 (1994).
  • Yamamoto T, Ozono K, Shima M, Yamaoka K, Okada S. 24R,25-dihydroxyvitamin D3 increases cyclic GMP contents, leading to an enhancement of osteocalcin synthesis by 1,25-dihydroxyvitamin D3 in cultured human osteoblastic cells. Exper. Cell Res. 244, 71–76 (1998).
  • Van Driel M, Koedam M, Buurman CJ et al. Evidence that both 1alpha,25-dihydroxyvitamin D3 and 24-hydroxylated D3 enhance human osteoblast differentiation and mineralization. J. Cell. Biochem. 99(3), 922–935 (2006).
  • Fang M, Olivares-Navarrete R, Wieland M, Cochran DL, Boyan BD, Schwartz Z. The role of phospholipase D in osteoblast response to titanium surface microstructure. J. Biomed. Mater. Res. 93(3), 897–909 (2010).
  • Somjen D, Katzburg S, Grafi-Cohen M, Knoll E, Sharon O, Posner GH. Vitamin D metabolites and analogs induce lipoxygenase mRNA expression and activity as well as reactive oxygen species (ROS) production in human bone cell line. J. Steroid Biochem. Mol. Biol. 123(1–2), 85–89 (2011).
  • Xu Y, Qian L, Prestwich GD. Synthesis of monofluorinated analogues of lysophosphatidic acid. J. Organic Chem. 68, 5320–5330 (2003).
  • Mansell JP, Shorez D, Farrar D, Nowghani M. Lithocholate – a promising non-calcaemic calcitriol surrogate for promoting human osteoblast maturation upon biomaterials. Steroids 74(12), 963–970 (2009).
  • Makishima M, Lu TT, Xie W et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296, 1313–1316 (2002).
  • Adachi R, Honma Y, Masuno H et al. Selective activation of vitamin D receptor by lithocholic acid acetate, a bile acid derivative.J. Lipid Res. 46(1), 46–57 (2005).
  • Nakamura T, Kurokawa T, Orimo H. Increase of bone volume in vitamin D-repleted rats by massive administration of 24R,25(OH)2D3. Calcif. Tissue Int. 43(4), 235–243 (1988).
  • Ishizawa M, Matsunawa M, Adachi R et al. Lithocholic acid derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia. J. Lipid Res. 49(4), 763–772 (2008).
  • Liu P, Oyajobi B, Russell R, Scutt A. Regulation of osteogenic differentiation of human bone marrow stromal cells: interaction between transforming growth factor-beta and 1,25(OH)2 vitamin D3 in vitro. Calcif. Tissue Int. 65, 173–180 (1999).
  • Geng S, Zhou S, Glowacki J. Effects of 25-hydroxyvitamin D3 on proliferation and osteoblast differentiation of human marrow stromal cells require CYP27B1/1ahydroxylase. J. Bone Miner. Res. 26(5), 1145–1153 (2011).
  • Jaganathan BG, Ruester B, Dressel L et al. Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells 25(8), 1966–1974 (2007).
  • Liu Y-B, Kharode Y, Bodine PVN, Yaworsky PJ, Robinson JA, Billiard J. LPA induces osteoblast differentiation through interplay of two receptors: LPA1 and LPA4.J. Cell. Biochem. 109, 794–800 (2010).
  • Song HY, Lee MJ, Kim MY et al. Lysophosphatidic acid mediates migration of human mesenchymal stem cells stimulated by synovial fluid of patients with rheumatoid arthritis. Biochim. Biophys. Acta 1801(1), 23–30 (2010).
  • Mansell JP, Nowghani M, Pabbruwe M, Paterson IC, Smith AJ, Blom AW. Lysophosphatidic acid and calcitriol cooperate to promote human osteoblastogenesis: requirement of albumin-bound LPA.Prostaglandins Other Lipid Mediat. 95(1–4), 45–52 (2011).
  • Contos JJ, Ishii I, Chun J. Lysophosphatidic acid receptors. Mol. Pharmacol. 58, 13384–13389 (2000).
  • Gennero I, Laurencin-Dalicieux S, Conte-Auriol F et al. Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass. Bone 49(3), 395–403 (2011).
  • Mansell JP, Barbour M, Moore C et al. The synergistic effects of lysophosphatidic acid receptor agonists and calcitriol on MG63 osteoblast maturation at titanium and hydroxyapatite surfaces. Biomaterials 31(2), 199–206 (2010).
  • Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nature Rev. 3(8), 582–591 (2003).
  • Gotoh M, Fujiwara Y, Yue J et al. Controlling cancer through the autotaxinlysophosphatidic acid receptor axis. Biochem. Soc. Trans. 40(1), 31–36 (2012).
  • Peyruchaud O, Leblanc R, David M. Pleiotropic activity of lysophosphatidic acid in bone metastasis. Biochim. Biophys. Acta 1831(1), 99–104 (2013).
  • Windischhofer W, Huber E, Rossmann C et al. LPA-induced suppression of periostin in human osteosarcoma cells is mediated by the LPA(1)/Egr-1 axis. Biochimie 94(9), 1997–2005 (2012).
  • Mcmahon AP, Champion JE, Mcmahon JA, Sukhatme VP. Developmental expression of the putative transcription factor Egr-1 suggests that Egr-1 and c-fos are coregulated in some tissues. Development 108, 281–287 (1990).
  • Horiuchi K, Amizuka N, Takeshita S et al. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J. Bone Miner. Res. 14(7), 1239–1249 (1999).
  • Merle B, Garnero P. The multiple facets of periostin in bone metabolism. Osteoporosis Int. 23(4), 1199–1212 (2012).
  • Rucker RB, Kasonen T, Clegg MS et al. Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am. J. Clin. Nutr. 67(Suppl. 5), S996–S1002 (1998).
  • Pischon N, Maki JM, Weisshaupt P et al. Lysyl oxidase (lox) gene deficiency affects osteoblastic phenotype. Calcif. Tissue Int. 85(2), 119–126 (2009).
  • Kato Y, Windle JJ, Koop BA, Mundy GR, Bonewald LF. Establishment of an osteocytelike cell line, MLO-Y4. J. Bone Miner. Res. 12(12), 2014–2023 (1997).
  • Prestwich G. Phosphatase-resistant analogues of lysophosphatidic acid: agonists promote healing, antagonists and autotaxin inhibitors treat cancer. Biochim. Biophys. Acta 1781(9), 588–594 (2008).
  • Hasegawa Y. Identification of a phosphothionate analogue of lysophosphatidic acid (LPA) as a selective agonist of the LPA3 receptor. J. Biol. Chem. 278(14), 11962–11969 (2003).
  • Qian L, Xu Y, Hasegawa Y, Aoki J, Mills GB, Prestwich GD. Enantioselective responses to a phosphorothioate analogue of lysophosphatidic acid with LPA3 receptorselective agonist activity. J. Med. Chem. 46, 5575–5578 (2003).
  • Mansell JP, Brown J, Knapp JG, Faul CF, Blom AW. Lysophosphatidic acidfunctionalised titanium as a superior surface for supporting human osteoblast (MG63) maturation. Eur. Cells Mater. 23, 348–361 (2012). ▪ First study describing the functionalization of orthopedic-grade titanium with LPA as a potential surface finish for enhancing human osteoblast maturation.
  • Samadi N, Bekele R, Capatos D, Venkatraman G, Sariahmetoglu M, Brindley DN. Regulation of lysophosphatidate signaling by autotaxin and lipid phosphate phosphatases with respect to tumor progression, angiogenesis, metastasis and chemo-resistance. Biochimie 93(1), 61–70 (2011).
  • Tomsig JL, Snyder AH, Berdyshev EV et al. Lipid phosphate phosphohydrolase type 1 (LPP1) degrades extracellular lysophosphatidic acid in vivo. Biochem. J. 419(3), 611–618 (2009).
  • Tanyi JL, Morris AJ, Wolf JK. The human lipid phosphate phosphatase-3 decreases the growth, survival, and tumorigenesis of ovarian cancer cells: validation of the lysophosphatidic acid signalling cascade as a target for therapy in ovarian cancer. Cancer Res. 63, 1073–1082 (2003).
  • Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. 89(4), 780–785 (2007).
  • Dixon T, Shaw M, Ebrahim S, Dieppe P. Trends in hip and knee joint replacement: socioeconomic inequalities and projections of need. Ann. Rheum. Dis. 63(7), 825–830 (2004).
  • Albers HM, Dong A, Van Meeteren LA et al. Boronic acid-based inhibitor of autotaxin reveals rapid turnover of LPA in the circulation. Proc. Natl Acad. Sci. USA 107(16), 7257–7262 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.