1,009
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Lipid profile changes after pronounced weight loss induced by bariatric surgery

, , , , &
Pages 163-175 | Published online: 18 Jan 2017

References

  • Wang YC, Mcpherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378(9793), 815–825 (2011).
  • Tzotzas T, Evangelou P, Kiortsis DN. Obesity, weight loss and conditional cardiovascular risk factors. Obes. Rev. 12(5), e282–e289 (2011).
  • Adams TD, Gress RE, Smith SC et al. Long-term mortality after gastric bypass surgery. N. Engl. J. Med. 357(8), 753–761 (2007).
  • SjɆstrɆm L, Peltonen M, Jacobson P et al. Bariatric surgery and long-term cardiovascular events. JAMA 307(1), 56–65 (2012).
  • Buchwald H. Bariatric surgery for morbid obesity: health implications for patients, health professionals, and third-party payers. J. Am. Coll. Surg. 200(4), 593–604 (2005).
  • Poirier P, Cornier MA, Mazzone T et al. Bariatric surgery and cardiovascular risk factors: a scientific statement from the American Heart Association. Circulation 123, 1683–1701 (2011).
  • Culnan DM, Cooney RN, Stanley B, Lynch CJ. Apolipoprotein A-IV, a putative satiety/ antiatherogenic factor, rises after gastric bypass. Obesity (Silver Spring) 17(1), 46–52 (2009).
  • Eisenberg S. Lipoproteins and lipoprotein metabolism. A dynamic evaluation of the plasma fat transport system. Klin. Wochenschr. 61(3), 119–132 (1983).
  • Zannis VI, Chroni A, Krieger M. Role of ApoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J. Mol. Med. 84(4), 276–294 (2006).
  • Morgan J, Carey C, Lincoff A, Capuzzi D. High-density lipoprotein subfractions and risk of coronary artery disease. Curr. Atheroscler. Rep. 6(5), 359–365 (2004).
  • Rothblat GH, Phillips MC. High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr. Opin. Lipidol. 21(3), 229–238 (2010).
  • Chan DC, Ng TW, Watts GF. Apolipoprotein A-II: evaluating its significance in dyslipidaemia, insulin resistance, and atherosclerosis. Ann. Med. doi:10.3109/07853.890.2011.573498 (2011) (Epub ahead of print).
  • Boucher J, Ramsamy TA, Braschi S, Sahoo D, Neville TA, Sparks DL. Apolipoprotein A-II regulates HDL stability and affects hepatic lipase association and activity. J. Lipid Res. 45(5), 849–858 (2004).
  • Shachter NS. Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr. Opin. Lipidol. 12(3), 297–304 (2001).
  • Olivieri O, Martinelli N, Girelli D et al. Apolipoprotein C-III predicts cardiovascular mortality in severe coronary artery disease and is associated with an enhanced plasma thrombin generation. J. Thromb. Haemost. 8(3), 463–471 (2010).
  • De Beer MC, Durbin DM, Cai L et al. Apolipoprotein A-II modulates the binding and selective lipid uptake of reconstituted high density lipoprotein by scavenger receptor BI. J. Biol. Chem. 276(19), 15832–15839 (2001).
  • Thuahnai ST, Lund-Katz S, Dhanasekaran P et al. Scavenger receptor class B type I-mediated cholesteryl ester-selective uptake and efflux of unesterified cholesterol. Influence of high density lipoprotein size and structure. J. Biol. Chem. 279(13), 12448–12455 (2004).
  • Attia N, Nakbi A, Smaoui M et al. Increased phospholipid transfer protein activity associated with the impaired cellular cholesterol efflux in Type 2 diabetic subjects with coronary artery disease. Tohoku J. Exp. Med. 213(2), 129–137 (2007).
  • O’Brien PJ, Alborn WE, Sloan JH et al. The novel apolipoprotein A5 is present in human serum, is associated with VLDL, HDL, and chylomicrons, and circulates at very low concentrations compared with other apolipoproteins. Clin. Chem. 51(2), 351–359 (2005).
  • Havasi V, Szolnoki Z, Talian G et al. Apolipoprotein A5 gene promoter region T-1131C polymorphism associates with elevated circulating triglyceride levels and confers susceptibility for development of ischemic stroke. J. Mol. Neurosci. 29(2), 177–183 (2006).
  • Pennacchio LA, Olivier M, Hubacek JA et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294(5540), 169–173 (2001).
  • Van Der Vliet HN, Schaap FG, Levels JH et al. Adenoviral overexpression of apolipoprotein A-V reduces serum levels of triglycerides and cholesterol in mice. Biochem. Biophys. Res. Commun. 295(5), 1156–1159 (2002).
  • Schaap FG, Rensen PC, Voshol PJ et al. ApoAV reduces plasma triglycerides by inhibiting very low density lipoproteintriglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J. Biol. Chem. 279(27), 27941–27947 (2004).
  • Warden CH, Langner CA, Gordon JI, Taylor BA, McLean JW, Lusis AJ. Tissue-specific expression, developmental regulation, and chromosomal mapping of the lecithin:cholesterol acyltransferase gene. Evidence for expression in brain and testes as well as liver. J. Biol. Chem. 264, 21573–21581 (1989).
  • Albers JJ, Tollefson JH, Wolfbauer G, Albright RE Jr. Cholesteryl ester transfer protein in human brain. Int. J. Clin. Lab. Res. 21(3), 264–266 (1992).
  • Rousset X, Vaisman B, Amar M, Sethi AA, Remaley AT. Lecithin:cholesterol acyltransferase – from biochemistry to role in cardiovascular disease. Curr. Opin. Endocrinol. Diabetes Obes. 16(2), 163–171 (2009).
  • Zilversmit DB, Hughes LB, Balmer J. Stimulation of cholesterol ester exchange by lipoprotein-free rabbit plasma. Biochim. Biophys. Acta 409(3), 393–398 (1975).
  • Chajek T, Fielding CJ. Isolation and characterization of a human serum cholesteryl ester transfer protein. Proc. Natl Acad. Sci. USA 75(7), 3445–3449 (1978).
  • Deckelbaum RJ, Eisenberg S, Oschry Y, Butbul E, Sharon I, Olivecrona T. Reversible modification of human plasma low density lipoproteins toward triglyceride-rich precursors. A mechanism for losing excess cholesterol esters. J. Biol. Chem. 257(11), 6509–6517 (1982).
  • Swenson TL, Brocia RW, Tall AR. Plasma cholesteryl ester transfer protein has binding sites for neutral lipids and phospholipids. J. Biol. Chem. 263(11), 5150–5157 (1988).
  • Glomset JA. The plasma lecithins:cholesterol acyltransferase reaction. J. Lipid Res. 9(2), 155–167 (1968).
  • Tall AR. Plasma cholesteryl ester transfer protein. J. Lipid Res. 34(8), 1255–1274 (1993).
  • Barter PJ, Brewer HB Jr, Chapman MJ, Hennekens CH, Rader DJ, Tall AR. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23(2), 160–167 (2003).
  • Sikorski JA. Oral cholesteryl ester transfer protein (CETP) inhibitors: a potential new approach for treating coronary artery disease. J. Med. Chem. 49(1), 1–22 (2006).
  • Massey JB, Hickson D, She HS et al. Measurement and prediction of the rates of spontaneous transfer of phospholipids between plasma lipoproteins. Biochim. Biophys. Acta 794(2), 274–280 (1984).
  • Ramsamy TA, Neville TA, Chauhan BM, Aggarwal D, Sparks DL. Apolipoprotein A-I regulates lipid hydrolysis by hepatic lipase. J. Biol. Chem. 275(43), 33480–33486 (2000).
  • Boucher JG, Nguyen T, Sparks DL. Lipoprotein electrostatic properties regulate hepatic lipase association and activity. Biochem. Cell Biol. 85(6), 696–708 (2007).
  • Mowri HO, Patsch JR, Gotto AM Jr, Patsch W. Apolipoprotein A-II influences the substrate properties of human HDL2 and HDL3 for hepatic lipase. Arterioscler. Thromb. Vasc. Biol. 16(6), 755–762 (1996).
  • Mowri HO, Patsch W, Smith LC, Gotto AM Jr, Patsch JR. Different reactivities of high density lipoprotein2 subfractions with hepatic lipase. J. Lipid Res. 33(9), 1269–1279 (1992).
  • Olivecrona T, Bengtsson-Olivecrona G, Ostergaard P, Liu G, Chevreuil O, Hultin M. New aspects on heparin and lipoprotein metabolism. Haemostasis 23(Suppl. 1), 150–160 (1993).
  • Young EK, Chatterjee C, Sparks DL. HDL-ApoE content regulates the displacement of hepatic lipase from cell surface proteoglycans. Am. J. Pathol. 175(1), 448–457 (2009).
  • Hime NJ, Drew KJ, Hahn C, Barter PJ, Rye KA. Apolipoprotein E enhances hepatic lipase-mediated hydrolysis of reconstituted high-density lipoprotein phospholipid and triacylglycerol in an isoform-dependent manner. Biochemistry 43(38), 12306–12314 (2004).
  • Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am. J. Physiol. Endocrinol. Metab. 297(2), E271–E288 (2009).
  • Williams KJ. Molecular processes that handle – and mishandle – dietary lipids. J. Clin. Invest. 118(10), 3247–3259 (2008).
  • Braun JE, Severson DL. Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem. J. 287(Pt 2), 337–347 (1992).
  • Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res. 37(4), 693–707 (1996).
  • Williams KJ. Some things just have to be done in vivo: GPIHBP1, caloric delivery, and the generation of remnant lipoproteins. Arterioscler. Thromb. Vasc. Biol. 29(6), 792–795 (2009).
  • Sendak RA, Melford K, Kao A, Bensadoun A. Identification of the epitope of a monoclonal antibody that inhibits heparin binding of lipoprotein lipase: new evidence for a carboxyl-terminal heparin-binding domain. J. Lipid Res. 39(3), 633–646 (1998).
  • Parthasarathy N, Goldberg IJ, Sivaram P, Mulloy B, Flory DM, Wagner WD. Oligosaccharide sequences of endothelial cell surface heparan sulfate proteoglycan with affinity for lipoprotein lipase. J. Biol. Chem. 269(35), 22391–22396 (1994).
  • Sukonina V, Lookene A, Olivecrona T, Olivecrona G. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc. Natl Acad. Sci. USA 103(46), 17450–17455 (2006).
  • Romeo S, Yin W, Kozlitina J et al. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J. Clin. Invest. 119(1), 70–79 (2009).
  • Sonnenburg WK, Yu D, Lee EC et al. GPIHBP1 stabilizes lipoprotein lipase and prevents its inhibition by angiopoietin-like 3 and angiopoietin-like 4. J. Lipid Res. 50(12), 2421–2429 (2009).
  • Scuteri A, Najjar SS, Muller DC et al. Metabolic syndrome amplifies the ageassociated increases in vascular thickness and stiffness. J. Am. Coll. Cardiol. 43(8), 1388–1395 (2004).
  • Tzou WS, Douglas PS, Srinivasan SR et al. Increased subclinical atherosclerosis in young adults with metabolic syndrome: the Bogalusa Heart Study. J. Am. Coll. Cardiol. 46(3), 457–463 (2005).
  • Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836–843 (2000).
  • Mosca L. C-reactive protein – to screen or not to screen? N. Engl. J. Med. 347(20), 1615–1617 (2002).
  • Scanu A. Lipoprotein(a). A genetic risk factor for premature coronary heart disease. JAMA 267(24), 3326–3329 (1992).
  • Clarke R, Peden JF, Hopewell JC et al.; Procardis Consortium. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361(26), 2518–2528 (2009).
  • Cacciapuoti F. Hyper-homocysteinemia: a novel risk factor or a powerful marker for cardiovascular diseases? Pathogenetic and therapeutical uncertainties. J. Thromb. Thrombolysis 32(1), 82–88 (2011).
  • Aso Y. Plasminogen activator inhibitor (PAI)-1 in vascular inflammation and thrombosis. Front. Biosci. 12, 2957–2966 (2007).
  • Tschoner A, Sturm W, Engl J et al. Plasminogen activator inhibitor 1 and visceral obesity during pronounced weight loss after bariatric surgery. Nutr. Metab. Cardiovasc. Dis. 22(4), 340–346 (2012).
  • Pratico D. Prostanoid and isoprostanoid pathways in atherogenesis. Atherosclerosis 201(1), 8–16 (2008).
  • Deigner HP, Hermetter A. Oxidized phospholipids: emerging lipid mediators in pathophysiology. Curr. Opin. Lipidol. 19(3), 289–294 (2008).
  • Wymann MP, Schneiter R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9(2), 162–176 (2008).
  • Shimizu T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 49, 123–150 (2009).
  • Cedars A, Jenkins CM, Mancuso DJ, Gross RW. Calcium-independent phospholipases in the heart: mediators of cellular signaling, bioenergetics, and ischemia-induced electrophysiologic dysfunction. J. Cardiovasc. Pharmacol. 53(4), 277–289 (2009).
  • Hamaguchi K, Kuwata H, Yoshihara K et al. Induction of distinct sets of secretory phospholipase A(2) in rodents during inflammation. Biochim. Biophys. Acta 1635(1), 37–47 (2003).
  • Jaulmes A, Thierry S, Janvier B, Raymondjean M, Marechal V. Activation of sPLA2-IIA and PGE2 production by high mobility group protein B1 in vascular smooth muscle cells sensitized by IL-1beta. FASEB J. 20(10), 1727–1729 (2006).
  • Thompson A, Gao P, Orfei L et al. Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet 375(9725), 1536–1544 (2010).
  • Kiortsis DN, Tsouli S, Lourida ES et al. Lack of association between carotid intima–media thickness and PAF-acetylhydrolase mass and activity in patients with primary hyperlipidemia. Angiology 56(4), 451–458 (2005).
  • Després JP, Lamarche B, Mauriège P et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N. Engl. J. Med. 334(15), 952–957 (1996).
  • Alberti KG, Zimmet P, Shaw J. The metabolic syndrome – a new worldwide definition. Lancet 366(9491), 1059–1062 (2005).
  • Vega GL. Management of atherogenic dyslipidemia of the metabolic syndrome: evolving rationale for combined drug therapy. Endocrinol. Metab. Clin. North Am. 33(3), 525–544 (2004).
  • Lamon-Fava S, Wilson PW, Schaefer EJ. Impact of body mass index on coronary heart disease risk factors in men and women. The Framingham Offspring Study. Arterioscler. Thromb. Vasc. Biol. 16(12), 1509–1515 (1996).
  • Arsenault BJ, Boekholdt SM, Kastelein JJ. Lipid parameters for measuring risk of cardiovascular disease. Nat. Rev. Cardiol. 8(4), 197–206 (2011).
  • Ginsberg HN, MacCallum PR. The obesity, metabolic syndrome, and Type 2 diabetes mellitus pandemic: Part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia in persons with the metabolic syndrome and Type 2 diabetes mellitus. J. Cardiometab. Syndr. 4(2), 113–119 (2009).
  • Fisher EA, Ginsberg HN. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J. Biol. Chem. 277(20), 17377–17380 (2002).
  • Ginsberg HN. Insulin resistance and cardiovascular disease. J. Clin. Invest. 106(4), 453–458 (2000).
  • Ginsberg HN, Zhang YL, Hernandez-Ono A. Metabolic syndrome: focus on dyslipidemia. Obesity (Silver Spring) 14(Suppl. 1), S41–S49 (2006).
  • Rashid S, Genest J. Effect of obesity on high-density lipoprotein metabolism. Obesity (Silver Spring) 15(12), 2875–2888 (2007).
  • Uehara Y, Miura S, Von Eckardstein A et al. Unsaturated fatty acids suppress the expression of the ATP-binding cassette transporter G1 (ABCG1) and ABCA1 genes via an LXR/RXR responsive element. Atherosclerosis 191(1), 11–21 (2007).
  • Mauldin JP, Nagelin MH, Wojcik AJ et al. Reduced expression of ATP-binding cassette transporter G1 increases cholesterol accumulation in macrophages of patients with Type 2 diabetes mellitus. Circulation 117(21), 2785–2792 (2008).
  • Attia N, Fournier N, Vedie B et al. Impact of android overweight or obesity and insulin resistance on basal and postprandial SR-BI and ABCA1-mediated serum cholesterol efflux capacities. Atherosclerosis 209(2), 422–429 (2010).
  • Hansel B, Giral P, Nobecourt E et al. Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. J. Clin. Endocrinol. Metab. 89(10), 4963–4971 (2004).
  • Magkos F, Mohammed BS, Mittendorfer B. Plasma lipid transfer enzymes in non-diabetic lean and obese men and women. Lipids 44(5), 459–464 (2009).
  • Rousset X, Shamburek R, Vaisman B, Amar M, Remaley AT. Lecithin cholesterol acyltransferase: an anti- or pro-atherogenic factor? Curr. Atheroscler. Rep. 13(3), 249–256 (2011).
  • Calabresi L, Franceschini G. Lecithin:cholesterol acyltransferase, high-density lipoproteins, and atheroprotection in humans. Trends Cardiovasc. Med. 20(2), 50–53 (2010).
  • Ebenbichler CF, Laimer M, Kaser S et al. Relationship between cholesteryl ester transfer protein and atherogenic lipoprotein profile in morbidly obese women. Arterioscler. Thromb. Vasc. Biol. 22(9), 1465–1469 (2002).
  • Arai T, Yamashita S, Hirano K et al. Increased plasma cholesteryl ester transfer protein in obese subjects. A possible mechanism for the reduction of serum HDL cholesterol levels in obesity. Arterioscler. Thromb. 14(7), 1129–1136 (1994).
  • Schlitt A, Blankenberg S, Bickel C et al. PLTP activity is a risk factor for subsequent cardiovascular events in CAD patients under statin therapy: the AtheroGene study. J. Lipid Res. 50(4), 723–729 (2009).
  • De Vries R, Groen AK, Perton FG et al. Increased cholesterol efflux from cultured fibroblasts to plasma from hypertriglyceridemic Type 2 diabetic patients: roles of pre beta-HDL, phospholipid transfer protein and cholesterol esterification. Atherosclerosis 196(2), 733–741 (2008).
  • Tzotzas T, Desrumaux C, Lagrost L. Plasma phospholipid transfer protein (PLTP): review of an emerging cardiometabolic risk factor. Obes. Rev. 10(4), 403–411 (2009).
  • Laimer MW, Engl J, Tschoner A. Effects of weight loss on lipid transfer proteins in morbidly obese women. Lipids 44(12), 1125–1130 (2009).
  • Purnell JQ, Kahn SE, Albers JJ, Nevin DN, Brunzell JD, Schwartz RS. Effect of weight loss with reduction of intra-abdominal fat on lipid metabolism in older men. J. Clin. Endocrinol. Metab. 85(3), 977–982 (2000).
  • Brunzell JD, Zambon A, Deeb SS. The effect of hepatic lipase on coronary artery disease in humans is influenced by the underlying lipoprotein phenotype. Biochim. Biophys. Acta 1821(3), 365–372 (2012).
  • Zambon S, Romanato G, Sartore G et al. Bariatric surgery improves atherogenic LDL profile by triglyceride reduction. Obes. Surg. 19(2), 190–195 (2009).
  • Mittendorfer B, Patterson BW, Klein S. Effect of weight loss on VLDL-triglyceride and apoB-100 kinetics in women with abdominal obesity. Am. J. Physiol. Endocrinol. Metab. 284(3), E549–E556 (2003).
  • Asztalos BF, Swarbrick MM, Schaefer EJ et al. Effects of weight loss, induced by gastric bypass surgery, on HDL remodeling in obese women. J. Lipid Res. 51(8), 2405–2412 (2010).
  • Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res. 96(12), 1221–1232 (2005).
  • Aron-Wisnewsky J, Julia Z, Poitou C et al. Effect of bariatric surgery-induced weight loss on SR-BI-, ABCG1-, and ABCA1- mediated cellular cholesterol efflux in obese women. J. Clin. Endocrinol. Metab. 96(4), 1151–1159 (2011).
  • Harvey SB, Zhang Y, Wilson-Grady J et al. O-glycoside biomarker of apolipoprotein C3: responsiveness to obesity, bariatric surgery, and therapy with metformin, to chronic or severe liver disease and to mortality in severe sepsis and graft vs host disease. J. Proteome Res. 8(2), 603–612 (2009).
  • Ress C, Moschen AR, Sausgruber N et al. The role of apolipoprotein A5 in nonalcoholic fatty liver disease. Gut 60(7), 985–991 (2011).
  • SjɆstrɆm L, Lindroos AK, Peltonen M et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med. 351(26), 2683–2693 (2004).
  • SjɆstrɆm L, Narbro K, SjɆstrɆm CD et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357(8), 741–752 (2007).
  • Rother KI, Brown RJ. Selecting weight loss surgery based on HDL genotype – are we there yet? At the brink of ‘personalized surgery’. J. Clin. Endocrinol. Metab. 96(6), 1664–1667 (2011).
  • Pardina E, Lecube A, Llamas R et al. Lipoprotein lipase but not hormone-sensitive lipase activities achieve normality after surgically induced weight loss in morbidly obese patients. Obes. Surg. 19(8), 1150–1158 (2009).
  • Kaser S, Laimer M, Sandhofer A, Salzmann K, Ebenbichler CF, Patsch JR. Effects of weight loss on PLTP activity and HDL particle size. Int. J. Obes. Relat. Metab. Disord. 28(10), 1280–1282 (2004).
  • Murdoch SJ, Kahn SE, Albers JJ, Brunzell JD, Purnell JQ. PLTP activity decreases with weight loss: changes in PLTP are associated with changes in subcutaneous fat and FFA but not IAF or insulin sensitivity. J. Lipid Res. 44(9), 1705–1712 (2003).
  • Tzotzas T, Dumont L, Triantos A, Karamouzis M, Constantinidis T, Lagrost L. Early decreases in plasma lipid transfer proteins during weight reduction. Obesity (Silver Spring) 14(6), 1038–1045 (2006).
  • Sturm W, Tschoner A, Engl J et al. Effect of bariatric surgery on both functional and structural measures of premature atherosclerosis. Eur. Heart J. 30, 2038–2043 (2009).
  • Habib P, Scrocco JD, Terek M, Vanek V, Mikolich JR. Effects of bariatric surgery on inflammatory, functional and structural markers of coronary atherosclerosis. Am. J. Cardiol. 104, 1251–1255 (2009).
  • Hanusch-Enserer U, Zorn G, Wojta J et al. Non-conventional markers of atherosclerosis before and after gastric banding surgery. Eur. Heart J. 30, 1516–1524 (2009).
  • Boman L, Ericson M. Lipoprotein A levels after intestinal bypass operation for morbid obesity. Obes. Surg. 7(2), 125–127 (1997).
  • Pihlajamäki J, GrɆnlund S, Simonen M et al. Cholesterol absorption decreases after Roux-en-Y gastric bypass but not after gastric banding. Metabolism 59(6), 866–872 (2010).
  • Pohle-Krauza RJ, McCarroll ML, Pasini DD, Dan AG, Zografakis JG. Age and gender exert differential effects on blood lipids in patients after LAGB and LRYGB. Surg. Obes. Relat. Dis. 7(2), 170–175 (2011).
  • Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP. Cardiovascular benefits of bariatric surgery in morbidly obese patients. Obes. Rev. 12(7), 515–524 (2011).
  • Brunault P, Jacobi D, Léger J et al. Observations regarding ‘quality of life’ and ‘comfort with food’ after bariatric surgery: comparison between laparoscopic adjustable gastric banding and sleeve gastrectomy. Obes. Surg. 21(8), 1225–1231 (2011).
  • Buchwald H, Avidor Y, Braunwald E et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 292(14), 1724–1737 (2004).
  • Agren G, Narbro K, Näslund I, SjɆstrɆm L, Peltonen M. Long-term effects of weight loss on pharmaceutical costs in obese subjects. A report from the SOS intervention study. Int. J. Obes. Relat. Metab. Disord. 26(2), 184–192 (2002).
  • Sampalis JS, Liberman M, Auger S, Christou NV. The impact of weight reduction surgery on health-care costs in morbidly obese patients. Obes. Surg. 14(7), 939–947 (2004).
  • Zambon S, Romanato G, Sartore G et al. Bariatric surgery improves atherogenic LDL profile by triglyceride reduction. Obes. Surg. 19(2), 190–195 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.