557
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Familial combined hypolipidemia due to mutations in the ANGPTL3 gene

, , &
Pages 81-95 | Published online: 18 Jan 2017

References

  • Hato T, Tabata M, Oike Y. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc. Med. 18(1), 6–14 (2008).
  • Miida T, Hirayama S. Impacts of angiopoietin-like proteins on lipoprotein metabolism and cardiovascular events. Curr. Opin. Lipidol. 21(1), 70–75 (2010).
  • Mattijssen F, Kersten S. Regulation of triglyceride metabolism by angiopoietin-like proteins. Biochim. Biophys. Acta 1821(5), 782–789 (2012).
  • Bauer RC, Stylianou IM, Rader DJ. Functional validation of new pathways in lipoprotein metabolism identified by human genetics. Curr. Opin. Lipidol. 22(2), 123–128 (2011).
  • Lichtenstein L, Kersten S. Modulation of plasma TG lipolysis by angiopoietin-like proteins and GPIHBP1. Biochim. Biophys. Acta 1801(4), 415–420 (2010).
  • Koishi R, Ando Y, Ono M et al. Angptl3 regulates lipid metabolism in mice. Nat. Genet. 30(2), 151–157 (2002).
  • Shimizugawa T, Ono M, Shimamura M et al. ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J. Biol. Chem. 277(37), 33742–33748 (2002).
  • Ono M, Shimizugawa T, Shimamura M, Yoshida K et al. Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo. J. Biol. Chem. 278(43), 41804–41809 (2003).
  • Köster A, Chao YB, Mosior M et al. Transgenic angiopoietin-like (angptl)4 overexpression and targeted disruption of angptl4 and angptl3: regulation of triglyceride metabolism. Endocrinology 146(11), 4943–4950 (2005).
  • Fujimoto K, Koishi R, Shimizugawa T, Ando Y. Angptl3-null mice show low plasma lipid concentrations by enhanced lipoprotein lipase activity. Exp. Anim. 55(1), 27–34 (2006).
  • Lee EC, Desai U, Gololobov G et al. Identification of a new functional domain in angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL). J. Biol. Chem. 284(20), 13735–13745 (2009). ▪ Identification of the specific domain of ANGPTL3 involved in the interaction with lipoprotein lipase.
  • Shan L, Yu XC, Liu Z et al. The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms. J. Biol. Chem. 284(3), 1419–1424 (2009). ▪ Demonstration that ANGPTL3 reduces lipoprotein lipase catalytic activity, but does not alter its self-inactivation rate.
  • Liu J, Afroza H, Rader DJ, Jin W. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. J. Biol. Chem. 285(36), 27561–27570 (2010). ▪ Demonstration that, in the presence of cells, ANGPTL3 enhances the cleavage of lipoprotein lipase by pro-protein convertases.
  • Adeyo O, Goulborne CN, Bensadoun A, Beigneux AP, Fong LG, Young SG. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 and the intravascular processing of triglyceride-rich lipoproteins. J. Intern. Med. 272(6), 528–540 (2012).
  • Nilsson SK, Anderson F, Ericsson M et al. Triacylglycerol-rich lipoproteins protect lipoprotein lipase from inactivation by ANGPTL3 and ANGPTL4. Biochim. Biophys. Acta 1821(10), 1370–1378 (2012).
  • Sonnenburg WK, Yu D, Lee EC et al. GPIHBP1 stabilizes lipoprotein lipase and prevents its inhibition by angiopoietin-like 3 and angiopoietin-like 4. J. Lipid Res. 50 (12), 2421–2429, (2009).
  • Shimamura M, Matsuda M, Yasumo H et al. Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler. Thromb. Vasc. Biol. 27(2), 366–372 (2007).
  • Jin W, Wang X, Millar JS et al. Hepatic proprotein convertases modulate HDL metabolism. Cell Metab. 6(2), 129–136 (2007).
  • Jin W, Fuki IV, Seidah NG, Benjannet S, Glick JM, Rader DJ. Proprotein convertases are responsible for proteolysis and inactivation of endothelial lipase. J. Biol. Chem. 280(44), 36551–36559 (2005).
  • Jaye M, Lynch KJ, Krawiec J et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet. 21(4), 424–428 (1999).
  • Quagliarini F, Wang Y, Kozlitina J et al. Atypical angiopoietin-like protein that regulates ANGPTL3. Proc. Natl Acad. Sci. USA 109(48), 19751–19756 (2012). ▪▪ Demonstration that ANGPTL3 is activated by ANGPTL8, a novel member of the family of angiopoietin-like proteins.
  • Ren G, Kim JY, Smas CM. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am. J. Physiol. Endocrinol. Metab. 303(3), e334–e351 (2012).
  • Zhang R. Lipasin, a novel nutritionallyregulated liver-enriched factor that regulates serum triglyceride levels. Biochem. Biophys. Res. Commun. 424(4), 786–792 (2012).
  • Tang T, Li L, Tang J et al. A mouse knockout library for secreted and transmembrane proteins. Nat. Biotechnol. 28(7), 749–755, (2010).
  • Hatsuda S, Shoji T, Shinohara K et al. Association between plasma angiopoietin-like protein 3 and arterial wall thickness in healthy subjects. J. Vasc. Res. 44(1), 61–66 (2007).
  • Robciuc MR, Tahvanainen E, Jauhiainen M, Ehnholm C. Quantitation of serum angiopoietin-like proteins 3 and 4 in a Finnish population sample. J. Lipid Res. 51(4), 824–831 (2010).
  • Moon HD, Nakajima K, Kamiyama K, Takanashi K, Sakurabayashi I, Nagamine T. Higher frequency of abnormal serum angiopoietin-like protein 3 than abnormal cholesteryl ester transfer protein in Japanese hyperalphalipoproteinemic subjects. Clin. Chim. Acta 398(1–2), 99–104 (2008).
  • Kathiresan S, Melander O, Guiducci C et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40(2), 189–197 (2008).
  • Teslovich TM, Musunuru K, Smith AV et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466(7307), 707–713 (2010).
  • Romeo S, Yin W, Kozlitina J, Pennacchio LA et al. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J. Clin. Invest. 119(1), 70–79 (2009).
  • Pulai JI, Neuman RJ, Groenewegen AW, Wu J, Schonfeld G. Genetic heterogeneity in familial hypobetalipoproteinemia: linkage and nonlinkage to the apoB gene in Caucasian families. Am. J. Med. Genet. 76(1), 79–86 (1998).
  • Tarugi P, Averna M. Hypobetalipoproteinemia: genetics, biochemistry, and clinical spectrum. Adv. Clin. Chem. 54, 81–107 (2011).
  • Musunuru K, Pirruccello JP, Do R et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 363(23), 2220–2227 (2010). ▪ First identification of mutations in the ANGPTL3 gene as the cause of familial combined hypolipidemia.
  • Pisciotta L, Favari E, Magnolo L et al. Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3.Circ. Cardiovasc. Genet. 5(1), 42–50 (2012). ▪ Familial combined hypolipidemia is associated with changes in the subtypes and functionality of HDL.
  • Martín-Campos JM, Roig R, Mayoral C et al. Identification of a novel mutation in the ANGPTL3 gene in two families diagnosed of familial hypobetalipoproteinemia without APOB mutation. Clin. Chim. Acta 413(5–6), 552–555 (2012).
  • Minicocci I, Montali A, Robciuc MR et al. Mutations in the ANGPTL3 gene and familial combined hypolipidemia: a clinical and biochemical characterization. J. Clin. Endocrinol. Metab. 97(7), e1266–e1275 (2012). ▪ Identification of a cluster of families with familial combined hypolipidemia sharing the same ANGPTL3 gene mutation.
  • Noto D, Cefalù AB, Valenti V et al. Prevalence of ANGPTL3 and APOB gene mutations in subjects with combined hypolipidemia. Arterioscler. Thromb. Vasc. Biol. 32(3), 805–809 (2012). ▪ Loss-of-function mutations of ANGPTL3 were found in a subset of subjects with the clinical diagnosis of familial hypobetalipoproteinemia associated with low HDL cholesterol levels.
  • Ando Y, Shimizugawa T, Takeshita S et al. A decreased expression of angiopoietin-like 3 is protective against atherosclerosis in apoE-deficient mice. J. Lipid Res. 44(6), 1216–1223 (2003).
  • Broedl UC, Maugeais C, Millar JS et al. Endothelial lipase promotes the catabolism of apoB-containing lipoproteins. Circ. Res. 94(12), 1554–1561 (2004).
  • Maugeais C, Tietge UJ, Broedl UC et al. Dose-dependent acceleration of high-density lipoprotein catabolism by endothelial lipase. Circulation 108(17), 2121–2126 (2003).
  • Nijstad N, Wiersma H, Gautier T, van der Giet M, Maugeais C, Tietge UJ. 52 Scavenger receptor BI-mediated selective uptake is required for the remodelling of high density lipoprotein by endothelial lipase. J. Biol. Chem. 284(10), 6093–6100 (2009).
  • Badellino KO, Wolfe ML, Reilly MP, Rader DJ. Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis. PLoS Med. 3(2), e22 (2006).
  • Khetarpal SA, Edmondson AC, Raghavan A et al. Mining the LIPG allelic spectrum reveals the contribution of rare and common regulatory variants to HDL cholesterol. PLoS Genet. 7(12), e1002393 (2011).
  • Khera AV, Cuchel M, de la Llera-Moya M et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364(2), 127–135 (2011).
  • Zhang CC, Kaba M, Ge G et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat. Med. 12(2), 240–245 (2006).
  • Zheng J, Huynh H, Umikawa M, Silvany R, Zhang CC. Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. Blood 117(2), 470–479 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.