418
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Role of oxidized phospholipids in cardiovascular pathology

, &
Pages 205-215 | Published online: 18 Jan 2017

References

  • Weismann D, Binder C. The innate immune response to products of phospholipid peroxidation. Biochim. Biophys. Acta 1818(10), 2465–2475 (2012).
  • Samhan-Arias A, Ji J, Demidova O et al. Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. Biochim. Biophys. Acta 1818(10), 2413–2423 (2012).
  • Bochkov V, Oskolkova O, Birukov K, Levonen A-L, Binder C, Stöckl J. Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal. 12(8), 1009–1059 (2010).
  • Chisolm G, Steinberg D. The oxidative modification hypothesis of atherogenesis: an overview. Free Radic. Biol. Med. 28(12), 1815–1826 (2000).
  • Fessel J, Porter N, Moore K, Sheller J, Roberts L. Discovery of lipid peroxidation products formed in vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension. Proc. Natl Acad. Sci USA 99(26), 16713–16718 (2002).
  • Weinstein E, Li H, Lawson J, Rokach J, Fitzgerald G, Axelsen P. Prothrombinase acceleration by oxidatively damaged phospholipids. J. Biol. Chem. 275(30), 22925–22930 (2000).
  • Marathe G, Zimmerman G, Prescott S, McIntyre T. Activation of vascular cells by PAF-like lipids in oxidized LDL. Vasc. Pharmacol. 38(4), 193–200 (2002).
  • Loidl A, Sevcsik E, Riesenhuber G, Deigner H-P, Hermetter A. Oxidized phospholipids in minimally modified low density lipoprotein induce apoptotic signaling via activation of acid sphingomyelinase in arterial smooth muscle cells. J. Biol. Chem. 278(35), 32921–32928 (2003).
  • Bochkov V, Philippova M, Oskolkova O et al. Oxidized phospholipids stimulate angiogenesis via autocrine mechanisms, implicating a novel role for lipid oxidation in the evolution of atherosclerotic lesions. Circulation Res. 99(8), 900–908 (2006).
  • Tyurina Y, Tyurin V, Zhao Q et al. Oxidation of phosphatidylserine: a mechanism for plasma membrane phospholipid scrambling during apoptosis? Biochem. Biophys. Res. Comm. 324(3), 1059–1064 (2004).
  • Ravandi A, Babaei S, Leung R et al. Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development. Lipids 39(2), 97–109 (2004).
  • Li R, Mouillesseaux K, Montoya D et al. Identification of prostaglandin E2 receptor subtype 2 as a receptor activated by OxPAPC. Circulation Res. 98(5), 642–650 (2006).
  • Birukova A, Fu P, Chatchavalvanich S et al. Polar head groups are important for barrierprotective effects of oxidized phospholipids on pulmonary endothelium. Am. J. Physiol. Lung Cell. Mol. Physiol. 292(4), 35 (2007).
  • Liao F, Andalibi A, Qiao J, Allayee H, Fogelman A, Lusis A. Genetic evidence for a common pathway mediating oxidative stress, inflammatory gene induction, and aortic fatty streak formation in mice. J. Clin. Invest. 94(2), 877–884 (1994).
  • Sies H. Oxidative stress: oxidants and antioxidants. Exp. Physiol. 82(2), 291–295 (1997).
  • Bochkov V. Inflammatory profile of oxidized phospholipids. Thromb. Haemost. 97(3), 348–354 (2007).
  • Zimman A, Mouillesseaux K, Le T et al. Vascular endothelial growth factor receptor 2 plays a role in the activation of aortic endothelial cells by oxidized phospholipids. Arterioscler. Thromb. Vasc. Biol. 27(2), 332–338 (2007).
  • Walton K, Hsieh X, Gharavi N et al. Receptors involved in the oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine-mediated synthesis of interleukin-8. A role for Toll-like receptor 4 and a glycosylphosphatidylinositol-anchored protein. J. Biol. Chem. 278(32), 29661–29666 (2003).
  • Szapacs M, Kim H-YH, Porter N, Liebler D. Identification of proteins adducted by lipid peroxidation products in plasma and modifications of apolipoprotein A1 with a novel biotinylated phospholipid probe. J. Proteome Res. 7(10), 4237–4246 (2008).
  • Jin Y, Penning T. Aldo-keto reductases and bioactivation/detoxication. Annu. Rev. Pharmacol. Toxicol. 47, 263–292 (2007).
  • Stemmer U, Hermetter A. Protein modification by aldehydophospholipids and its functional consequences. Biochim. Biophys. Acta 1818(10), 2436–2445 (2012).
  • Levonen A-L, Landar A, Ramachandran A et al. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J. 378(Pt 2), 373–382 (2004).
  • Bochkov V, Mechtcheriakova D, Lucerna M et al. Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca(++)/NFAT. Blood 99(1), 199–206 (2002).
  • Cole A, Subbanagounder G, Mukhopadhyay S, Berliner J, Vora D. Oxidized phospholipid-induced endothelial cell/monocyte interaction is mediated by a cAMP-dependent R-Ras/PI3-kinase pathway. Arterioscler. Thromb. Vasc. Biol. 23(8), 1384–1390 (2003).
  • Gargalovic P, Imura M, Zhang B et al. Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc. Natl Acad. Sci USA 103(34), 12741–12746 (2006).
  • Birukov K, Bochkov V, Birukova A et al. Epoxycyclopentenone-containing oxidized phospholipids restore endothelial barrier function via Cdc42 and Rac. Circulation Res. 95(9), 892–901 (2004).
  • Glass C, Witztum J. Atherosclerosis. The road ahead. Cell 104(4), 503–516 (2001).
  • Afonyushkin T, Oskolkova O, Philippova M et al. Oxidized phospholipids regulate expression of ATF4 and VEGF in endothelial cells via NRF2-dependent mechanism: novel point of convergence between electrophilic and unfolded protein stress pathways. Arterioscler. Thromb. Vasc. Biol. 30(5), 1007–1013 (2010).
  • Doyle B, Caplice N. Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J. Am. Coll. Cardiol. 49(21), 2073–2080 (2007).
  • Shih P, Brennan M, Vora D et al. Blocking very late antigen-4 integrin decreases leukocyte entry and fatty streak formation in mice fed an atherogenic diet. Circulation Res. 84(3), 345–351 (1999).
  • Vora D, Fang Z, Liva S et al. Induction of P-selectin by oxidized lipoproteins. Separate effects on synthesis and surface expression. Circulation Res. 80(6), 810–818 (1997).
  • Dong Z, Chapman S, Brown A, Frenette P, Hynes R, Wagner D. The combined role of P- and E-selectins in atherosclerosis. J. Clin. Invest. 102(1), 145–152 (1998).
  • Podrez E, Poliakov E, Shen Z et al. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J. Biol. Chem. 277(41), 38503–38516 (2002).
  • Walton K, Gugiu B, Thomas M et al. A role for neutral sphingomyelinase activation in the inhibition of LPS action by phospholipid oxidation products. J. Lipid Res. 47(9), 1967–1974 (2006).
  • Greenberg M, Li X-M, Gugiu B et al. The lipid whisker model of the structure of oxidized cell membranes. J. Biol. Chem. 283(4), 2385–2396 (2008).
  • Podrez E, Poliakov E, Shen Z et al. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J. Biol. Chem. 277(41), 38517–38523 (2002).
  • Stemmer U, Dunai Z, Koller D et al. Toxicity of oxidized phospholipids in cultured macrophages. Lipids Health Dis. 11(1), 110 (2012).
  • Hörkkö S, Bird D, Miller E et al. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipidprotein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J. Clin. Invest. 103(1), 117–128 (1999).
  • Kadl A, Sharma P, Chen W et al. Oxidized phospholipid-induced inflammation is mediated by Toll-like receptor 2. Free Radic. Biol. Med. 51(10), 1903–1909 (2011).
  • Seimon T, Nadolski M, Liao X et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 12(5), 467–482 (2010).
  • Yeh M, Leitinger N, De Martin R et al. Increased transcription of IL-8 in endothelial cells is differentially regulated by TNF-alpha and oxidized phospholipids. Arterioscler. Thromb. Vasc. Biol. 21(10), 1585–1591 (2001).
  • Ishii H, Tezuka T, Ishikawa H, Takada K, Oida K, Horie S. Oxidized phospholipids in oxidized low-density lipoprotein downregulate thrombomodulin transcription in vascular endothelial cells through a decrease in the binding of RARbeta-RXRalpha heterodimers and Sp1 and Sp3 to their binding sequences in the TM promoter. Blood 101(12), 4765–4774 (2003).
  • Haserück N, Erl W, Pandey D et al. The plaque lipid lysophosphatidic acid stimulates platelet activation and platelet-monocyte aggregate formation in whole blood: involvement of P2Y1 and P2Y12 receptors. Blood 103(7), 2585–2592 (2004).
  • Göpfert M, Siedler F, Siess W, Sellmayer A. Structural identification of oxidized acylphosphatidylcholines that induce platelet activation. J. Vasc. Res. 42(2), 120–132 (2005).
  • Podrez E, Byzova T, Febbraio M et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat. Med. 13(9), 1086–1095 (2007).
  • Davis B, Koster G, Douet L et al. Electrospray ionization mass spectrometry identifies substrates and products of lipoprotein-associated phospholipase A2 in oxidized human low density lipoprotein. J. Biol. Chem. 283(10), 6428–6437 (2008).
  • Zweier J, Talukder M. The role of oxidants and free radicals in reperfusion injury. Cardiovasc. Res. 70(2), 181–190 (2006).
  • Gustafsson A, Gottlieb R. Mechanisms of apoptosis in the heart. J. Clin. Immunol. 23(6), 447–459 (2003).
  • Halestrap A, Kerr P, Javadov S, Woodfield K. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim. Biophys. Acta 1366(1–2), 79–94 (1998).
  • Tsimikas S, Brilakis E, Miller E et al. Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N. Engl. J. Med. 353(1), 46–57 (2005). Landmark study correlating angiographically defined coronary artery disease with circulating levels of oxidized phospholipids.
  • Kiechl S, Willeit J, Mayr M et al. Oxidized phospholipids, lipoprotein(a), lipoprotein-associated phospholipase A2 activity, and 10-year cardiovascular outcomes: prospective results from the Bruneck study. Arterioscler. Thromb. Vasc. Biol. 27(8), 1788–1795 (2007).
  • Tsimikas S, Kiechl S, Willeit J et al. Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease: five-year prospective results from the Bruneck study. J. Am. Coll. Cardiol. 47(11), 2219–2228 (2006).
  • Tsimikas S, Willeit P, Willeit J et al. Oxidation-specific biomarkers, prospective 15-year cardiovascular and stroke outcomes, and net reclassification of cardiovascular events. J. Am. Coll. Cardiol. 60(21), 2218–2229 (2012).
  • Tsimikas S, Mallat Z, Talmud P et al. Oxidation-specific biomarkers, lipoprotein(a), and risk of fatal and nonfatal coronary events. J. Am. Coll. Cardiol. 56(12), 946–955 (2010).
  • Ravandi A, Boekholdt S, Mallat Z et al. Relationship of IgG and IgM autoantibodies and immune complexes to oxidized LDL with markers of oxidation and inflammation and cardiovascular events: results from the EPIC-Norfolk Study. J. Lipid Res. 52(10), 1829–1836 (2011).
  • Van Dijk R, Kolodgie F, Ravandi A et al. Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. J. Lipid Res. 53(12), 2773–2790 (2012).
  • Tsimikas S, Bergmark C, Beyer R et al. Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J. Am. Coll. Cardiol. 41(3), 360–370 (2003). Temporal changes in oxidized phospholipids during acute coronary syndromes utilizing EO6 antibody.
  • Tsimikas S, Lau H, Han K-R et al. Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a): short-term and long-term immunologic responses to oxidized low-density lipoprotein. Circulation 109(25), 3164–3170 (2004).
  • Leibundgut G, Arai K, Orsoni A et al. Oxidized phospholipids are present on plasminogen, affect fibrinolysis, and increase following acute myocardial infarction. J. Am. Coll. Cardiol. 59(16), 1426–1437 (2012).
  • Silaste ML, Rantala M, Alfthan G et al. Changes in dietary fat intake alter plasma levels of oxidized low-density lipoprotein and lipoprotein(a). Arterioscler. Thromb. Vasc. Biol. 24(3), 498–503 (2004).
  • Rodenburg J, Vissers M, Wiegman A et al. Oxidized low-density lipoprotein in children with familial hypercholesterolemia and unaffected siblings: effect of pravastatin. J. Am. Coll. Cardiol. 47(9), 1803–1810 (2006).
  • Faghihnia N, Tsimikas S, Miller E, Witztum J, Krauss R. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat highcarbohydrate diet. J. Lipid Res. 51(11), 3324–3330 (2010).
  • Choi S, Chae A, Miller E et al. Relationship between biomarkers of oxidized low-density lipoprotein, statin therapy, quantitative coronary angiography, and atheroma: volume observations from the REVERSAL (Reversal of Atherosclerosis with Aggressive Lipid Lowering) study. J. Am. Coll. Cardiol. 52(1), 24–32 (2008).
  • Ky B, Burke A, Tsimikas S et al. The influence of pravastatin and atorvastatin on markers of oxidative stress in hypercholesterolemic humans. J. Am. Coll. Cardiol. 51(17), 1653–1662 (2008).
  • Yoshida H, Shoda T, Yanai H et al. Effects of pitavastatin and atorvastatin on lipoprotein oxidation biomarkers in patients with dyslipidemia. Atherosclerosis 226(1), 161–164 (2013).
  • Ahmadi N, Tsimikas S, Hajsadeghi F et al. Relation of oxidative biomarkers, vascular dysfunction, and progression of coronary artery calcium. Am. J. Cardiol. 105(4), 459–466 (2010).
  • Stefanutti C, Morozzi C, Petta A. Lipid and low-density-lipoprotein apheresis. Effects on plasma inflammatory profile and on cytokine pattern in patients with severe dyslipidemia. Cytokine 56(3), 842–849 (2011).
  • Merki E, Graham M, Taleb A et al. Antisense oligonucleotide lowers plasma levels of apolipoprotein (a) and lipoprotein (a) in transgenic mice. J. Am. Coll. Cardiol. 57(15), 1611–1621 (2011).
  • Bennet A, Di Angelantonio E, Erqou S et al. Lipoprotein(a) levels and risk of future coronary heart disease: large-scale prospective data. Arch. Intern. Med. 168(6), 598–608 (2008).
  • Briley-Saebo K, Cho Y, Shaw P et al. Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. J. Am. Coll. Cardiol. 57(3), 337–347 (2011).
  • Tsimikas S, Shortal B, Witztum J, Palinski W. In vivo uptake of radiolabeled MDA2, an oxidation-specific monoclonal antibody, provides an accurate measure of atherosclerotic lesions rich in oxidized LDL and is highly sensitive to their regression. Arterioscler. Thromb. Vasc. Biol. 20(3), 689–697 (2000).
  • Briley-Saebo K, Nguyen T, Saeboe A et al. In vivo detection of oxidation-specific epitopes in atherosclerotic lesions using biocompatible manganese molecular magnetic imaging probes. J. Am. Coll. Cardiol. 59(6), 616–626 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.