207
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Hypertriglyceridemia: the future of genetics to guide individualized therapeutic strategies

, , , &
Pages 321-328 | Published online: 18 Jan 2017

References

  • Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am. J. Cardiol. 81(4A), 7B–12B (1998).
  • Miller M, Stone NJ, Ballantyne C et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 123(20), 2292–2333 (2011).
  • Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298(3), 299–308 (2007).
  • Nordestgaard BG, Freiberg JJ. Clinical relevance of non-fasting and postprandial hypertriglyceridemia and remnant cholesterol. Curr. Vasc. Pharmacol. 9(3), 281–286 (2011).
  • Zilversmit DB. Atherogenic nature of triglycerides, postprandial lipidemia, and triglyceride-rich remnant lipoproteins. Clin. Chem. 41(1), 153–158 (1995).
  • Benlian P, De Gennes JL, Foubert L, Zhang H, Gagné SE, Hayden M. Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N. Engl. J. Med. 335(12), 848–854 (1996).
  • Nordestgaard BG, Abildgaard S, Wittrup HH, Steffensen R, Jensen G, Tybjaerg-Hansen A. Heterozygous lipoprotein lipase deficiency: frequency in the general population, effect on plasma lipid levels, and risk of ischemic heart disease. Circulation 96(6), 1737–1744 (1997).
  • Cameron JL, Capuzzi DM, Zuidema GD, Margolis S. Acute pancreatitis with hyperlipemia: the incidence of lipid abnormalities in acute pancreatitis. Ann. Surg. 177(4), 483–489 (1973).
  • Berglund L, Brunzell JD, Goldberg AC et al. Evaluation and treatment of hypertriglyceridemia: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 97(9), 2969–2989 (2012).
  • Ros E. Intestinal absorption of triglyceride and cholesterol. Dietary and pharmacological inhibition to reduce cardiovascular risk. Atherosclerosis 151(2), 357–379 (2000).
  • Iqbal J, Hussain MM. Intestinal lipid absorption. Am. J. Physiol. Endocrinol. Metab. 296(6), e1183–e1194 (2009). Reviews the key players in intestinal lipid absorption, providing deep understanding of the process of dietary fat uptake.
  • Olivecrona G, Beisiegel U. Lipid binding of apolipoprotein CII is required for stimulation of lipoprotein lipase activity against apolipoprotein CII-deficient chylomicrons. Arterioscler. Thromb. Vasc. Biol. 17(8), 1545–1549 (1997).
  • Nilsson SK, Heeren J, Olivecrona G, Merkel M. Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 219(1), 15–21 (2011).
  • Goldberg IJ, Scheraldi CA, Yacoub LK, Saxena U, Bisgaier CL. Lipoprotein apoC-II activation of lipoprotein lipase. Modulation by apolipoprotein A-IV. J. Biol. Chem. 265(8), 4266–4272 (1990).
  • Péterfy M, Ben-Zeev O, Mao HZ et al. Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia. Nat. Genet. 39(12), 1483–1487 (2007).
  • Young SG, Davies BSJ, Voss CV et al. GPIHBP1, an endothelial cell transporter for lipoprotein lipase. J. Lipid Res. 52(11), 1869–1884 (2011).
  • Hassing HC, Surendran RP, Mooij HL, Stroes ES, Nieuwdorp M, Dallinga-Thie GM. Pathophysiology of hypertriglyceridemia. Biochim. Biophys. Acta 1821(5), 826–832 (2012).
  • Williams KJ. Molecular processes that handle – and mishandle – dietary lipids. J. Clin. Invest. 118(10), 3247–3259 (2008). Extensive review of the molecular processes involved in hepatic triglyceride (TG) clearance, leading to a better understanding of the pathophysiology involved in lipid disorders.
  • Ewald N, Hardt PD, Kloer HU. Severe hypertriglyceridemia and pancreatitis: presentation and management. Curr. Opin. Lipidol. 20(6), 497–504 (2009).
  • Koopmans SJ, Kushwaha RS, DeFronzo RA. Chronic physiologic hyperinsulinemia impairs suppression of plasma free fatty acids and increases de novo lipogenesis but does not cause dyslipidemia in conscious normal rats. Metab. Clin. Exp. 48(3), 330–337 (1999).
  • Sparks JD, Sparks CE, Adeli K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler. Thromb. Vasc. Biol. 32(9), 2104–2112 (2012).
  • Preiss-Landl K, Zimmermann R, Hämmerle G, Zechner R. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr. Opin. Lipidol. 13(5), 471–481 (2002).
  • Sniderman A, Couture P, De Graaf J. Diagnosis and treatment of apolipoprotein B dyslipoproteinemias. Nat. Rev. Endocrinol. 6(6), 335–346 (2010).
  • Fredrickson DS, Lees RS. Editorial: a system for phenotyping hyperlipoproteinemia. Circulation 31(3), 321–327 (1965).
  • Surendran RP, Visser ME, Heemelaar S et al. Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia. J. Intern. Med. 272(2), 185–196 (2012). Genetic identification of key mutations in TG-related genes, leading to a hypertriglyceride phenotype.
  • Johansen CT, Wang J, Lanktree MB et al. An increased burden of common and rare lipid-associated risk alleles contributes to the phenotypic spectrum of hypertriglyceridemia. Arterioscler. Thromb. Vasc. Biol. 31(8), 1916–1926 (2011).
  • Lewis B. Classification of hyperlipidaemias. Proc. R. Soc. Med. 64(9), 905–908 (1971).
  • Merkel M, Eckel RH, Goldberg IJ. Lipoprotein lipase: genetics, lipid uptake, and regulation. J. Lipid Res. 43(12), 1997–2006 (2002).
  • Brisson D, Méthot J, Tremblay K, Tremblay M, Perron P, Gaudet D. Comparison of the efficacy of fibrates on hypertriglyceridemic phenotypes with different genetic and clinical characteristics. Pharmacogenet. Genomics 20(12), 742–747 (2010).
  • Gotoda T, Shirai K, Ohta T et al. Diagnosis and management of type I and type V hyperlipoproteinemia. J. Atheroscler. Thromb. 19(1), 1–12 (2012).
  • Johansen CT, Hegele RA. Genetic bases of hypertriglyceridemic phenotypes. Curr. Opin. Lipidol. 22(4), 247–253 (2011).
  • Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J. Clin. Invest. 111(12), 1795–1803 (2003).
  • Wang J, Cao H, Ban MR et al. Resequencing genomic DNA of patients with severe hypertriglyceridemia (MIM 144650). Arterioscler. Thromb. Vasc. Biol. 27(11), 2450–2455 (2007).
  • Wang J, Ban MR, Kennedy BA et al. APOA5 genetic variants are markers for classic hyperlipoproteinemia phenotypes and hypertriglyceridemia. Nat. Clin. Pract. Cardiovasc. Med. 5(11), 730–737 (2008).
  • Wang J, Ban MR, Zou GY et al. Polygenic determinants of severe hypertriglyceridemia. Hum. Mol. Genet. 17(18), 2894–2899 (2008).
  • Hegele RA, Ban MR, Hsueh N et al. A polygenic basis for four classical Fredrickson hyperlipoproteinemia phenotypes that are characterized by hypertriglyceridemia. Hum. Mol. Genet. 18(21), 4189–4194 (2009). The polygenetic phenotypes IIB–V causing hypertriglyceridemia share common genetic determinants.
  • Smith JA, Arnett DK, Kelly RJ et al. The genetic architecture of fasting plasma triglyceride response to fenofibrate treatment. Eur. J. Hum. Genet. 16(5), 603–613 (2008).
  • S á nchez-Moreno C, Ordov á s JM, Smith CE, Baraza JC, Lee YC, Garaulet M. APOA5 gene variation interacts with dietary fat intake to modulate obesity and circulating triglycerides in a Mediterranean population. J. Nutr. 141(3), 380–385 (2011).
  • Hegele RA. Plasma lipoproteins: genetic influences and clinical implications. Nat. Rev. Genet. 10(2), 109–121 (2009).
  • Goldstein DB. Common genetic variation and human traits. N. Engl. J. Med. 360(17), 1696–1698 (2009).
  • Teslovich TM, Musunuru K, Smith AV et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466(7307), 707–713 (2010). Identification of new loci through genome-wide association study technology, showing the biological and clinical relevance of genetic studies of larger cohorts.
  • Lee YC, Lai CQ, Ordovas JM, Parnell LD. A database of gene–environment interactions pertaining to blood lipid traits, cardiovascular disease and Type 2 diabetes. J. Data Mining Genomics Proteomics 2(1), 106 (2011).
  • Delgado-Lista J, Perez-Jimenez F, Ruano J et al. Effects of variations in the APOA1/C3/A4/A5 gene cluster on different parameters of postprandial lipid metabolism in healthy young men. J. Lipid Res. 51(1), 63–73 (2010).
  • Perez-Martinez P, Garcia-Rios A, Delgado-Lista J, Perez-Jimenez F, Lopez-Miranda J. Nutrigenetics of the postprandial lipoprotein metabolism: evidences from human intervention studies. Curr. Vasc. Pharmacol. 9(3), 287–291 (2011).
  • Jackson KG, Poppitt SD, Minihane AM. Postprandial lipemia and cardiovascular disease risk: interrelationships between dietary, physiological and genetic determinants. Atherosclerosis 220(1), 22–33 (2012).
  • Campbell TL. Reflections on research and the future of medicine. Science 153(3734), 442–449 (1966).
  • Tatum EL. Molecular biology, nucleic acids, and the future of medicine. Perspect. Biol. Med. 10(1), 19–32 (1966).
  • Blaese RM, Culver KW, Miller AD et al. T lymphocyte-directed gene therapy for ADA-SCID. Initial trial results after 4 years. Science 270(5235), 475–480 (1995).
  • Nierman MC, Rip J, Twisk J et al. Gene therapy for genetic lipoprotein lipase deficiency: from promise to practice. Neth. J. Med. 63(1), 14–19 (2005).
  • Ross CJ, Twisk J, Bakker AC et al. Correction of feline lipoprotein lipase deficiency with adeno-associated virus serotype 1-mediated gene transfer of the lipoprotein lipase S447X beneficial mutation. Hum. Gene Ther. 17(5), 487–499 (2006).
  • Nierman MC, Rip J, Kuivenhoven JA et al. Enhanced ApoB48 metabolism in lipoprotein lipase X447 homozygotes. Atherosclerosis 194(2), 446–451 (2007).
  • Stroes ES, Nierman MC, Meulenberg JJ et al. Intramuscular administration of AAV1-lipoprotein lipase S447X lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler. Thromb. Vasc. Biol. 28(12), 2303–2304 (2008). The first clinical trial in which a viral vector with lipoprotein lipase (LPL) was injected into LPL-deficient patients and could successfully induce LPL expression, and the transient lowering of plasma TG.
  • Gaudet D, Méthot J, Déry S et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPL(S447X)) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther. 20(4), 361–369 (2012).
  • Carpentier AC, Frisch F, Labbé SM et al. Effect of alipogene tiparvovec (AAV1-LPL(S447X)) on postprandial chylomicron metabolism in lipoprotein lipase-deficient patients. J. Clin. Endocrinol. Metab. 97(5), 1635–1644 (2012).
  • Gaudet D, Méthot J, Kastelein J. Gene therapy for lipoprotein lipase deficiency. Curr. Opin. Lipidol. 23(4), 310–320 (2012).
  • van der Vliet HN, Schaap FG, Levels JH et al. Adenoviral overexpression of apolipoprotein A-V reduces serum levels of triglycerides and cholesterol in mice. Biochem. Biophys. Res. Commun. 295(5), 1156–1159 (2002).
  • Sharma V, Beckstead JA, Simonsen JB et al. Gene transfer of apolipoprotein A-V improves the hypertriglyceridemic phenotype of apoa5-/- mice. Arterioscler. Thromb. Vasc. Biol. 33(3), 474–480 (2013).
  • Garelnabi M, Lor K, Jin J, Chai F, Santanam N. The paradox of apoA5 modulation of triglycerides: evidence from clinical and basic research. Clin. Biochem. 46(1–2), 12–19 (2013).
  • Schaap FG, Nierman MC, Berbée JF et al. Evidence for a complex relationship between apoA-V and apoC-III in patients with severe hypertriglyceridemia. J. Lipid Res. 47(10), 2333–2339 (2006).
  • Hyun YJ, Jang Y, Chae JS et al. Association of apolipoprotein A5 concentration with serum insulin and triglyceride levels and coronary artery disease in Korean men. Atherosclerosis 205(2), 568–573 (2009).
  • Dallinga-Thie GM, van Tol A, Hattori H, van Vark-van der Zee LC, Jansen H, Sijbrands EJ. Plasma apolipoprotein A5 and triglycerides in Type 2 diabetes. Diabetologia 49(7), 1505–1511 (2006).
  • Vaessen SF, Schaap FG, Kuivenhoven JA et al. Apolipoprotein A-V, triglycerides and risk of coronary artery disease: the prospective Epic-Norfolk population study. J. Lipid Res. 47(9), 2064–2070 (2006).
  • Kassim SH, Wilson JM, Rader DJ. Gene therapy for dyslipidemia: a review of gene replacement and gene inhibition strategies. Clin. Lipidol. 5(6), 793–809 (2010).
  • Pollin TI, Damcott CM, Shen H et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 322(5908), 1702–1705 (2008).
  • Ito Y, Azrolan N, O’Connell A, Walsh A, Breslow JL. Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 249(4970), 790–793 (1990).
  • Maeda N, Li H, Lee D, Oliver P, Quarfordt SH, Osada J. Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J. Biol. Chem. 269(38), 23610–23616 (1994).
  • Holleboom AG, Karlsson H, Lin RS et al. Heterozygosity for a loss-of-function mutation in GALNT2 improves plasma triglyceride clearance in man. Cell Metab. 14(6), 811–818 (2011).
  • Williams AJK, Thrower SL, Sequeiros IM et al. Pancreatic volume is reduced in adult patients with recently diagnosed Type 1 diabetes. J. Clin. Endocrinol. Metab. 97(11), e2109–e2113 (2012).
  • Graham MJ, Lee RG, Bell TA et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ. Res. doi:10.1161/CIRCRESAHA.111.300367 (2013) (Epub ahead of print).
  • Birch AM, Birtles S, Buckett LK et al. Discovery of a potent, selective, and orally efficacious pyrimidinooxazinyl bicyclooctaneacetic acid diacylglycerol acyltransferase-1 inhibitor. J. Med. Chem. 52(6), 1558–1568 (2009).
  • Ables GP, Yang KJZ, Vogel S et al. Intestinal DGAT1 deficiency reduces postprandial triglyceride and retinyl ester excursions by inhibiting chylomicron secretion and delaying gastric emptying. J. Lipid Res. 53(11), 2364–2379 (2012).
  • Meyers C, Gaudet D, Tremblay K, Amer A, Chen J, Aimin F. The DGAT1 inhibitor LCQ908 decreases triglyceride levels in patients with the familial chylomicronemia syndrome. J. Clin. Lipidol. 6(3), 266–267 (2012).
  • Marshall A. Laying the foundations for personalized medicines. Nat. Biotechnol. 15(10), 954–957 (1997).
  • Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286(5439), 487–491 (1999).
  • Motulsky AG. Drug reactions enzymes, and biochemical genetics. J. Am. Med. Assoc. 165(7), 835–837 (1957).
  • Thanassoulis G, Vasan RS. Genetic cardiovascular risk prediction: will we get there? Circulation 122(22), 2323–2334 (2010).
  • Khot UN, Khot MB, Bajzer CT et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA 290(7), 898–904 (2003).
  • Yusuf S, Hawken S, Ounpuu S et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 364(9438), 937–952 (2004).
  • Lewington S, Bragg F, Clarke R. A review on metaanalysis of biomarkers: promises and pitfalls. Clin. Chem. 58(8), 1192–1204 (2012).
  • Di Angelantonio E, Sarwar N, Perry P et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302(18), 1993–2000 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.