61
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Regulating intestinal function to reduce atherogenic lipoproteins

, , &
Pages 481-490 | Published online: 18 Jan 2017

  • Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation 60, 473–485 (1979).
  • Lairon D. Macronutrient intake and modulation on chylomicron production and clearance. Atheroscler. Suppl. 9, 45–48 (2008).
  • Karpe F. Postprandial lipoprotein metabolism and atherosclerosis. J. Intern. Med. 246, 341–355 (1999).
  • Lopez‑Miranda J, Williams C, Lairon D. Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br. J. Nutr. 98, 458–473 (2007).
  • Tomkin GH, Owens D. The chylomicron: relationship to atherosclerosis. Int. J. Vasc. Med. 2012, 784536 (2012).
  • Alipour A, Elte JW, van Zaanen HC, Rietveld AP, Castro CM. Novel aspects of postprandial 7 lipemia in relation to atherosclerosis. 8 Atheroscler. Suppl. 9, 39–44 (2008).
  • Schwartz EA, Reaven PD. Lipolysis of triglyceride‑rich lipoproteins, vascular inflammation, and atherosclerosis. Biochim. Biophys. Acta 1821, 858–866 (2012).
  • Williams KJ. Molecular processes that handle – and mishandle – dietary lipids. J. Clin. Invest. 118, 3247–3259 (2008).
  • Ebara T, Okubo M, Horinishi A, Adachi M, Murase T, Hirano T. No evidence of accelerated atherosclerosis in a 66‑yr‑old chylomicronemia patient homozygous for the nonsense mutation (Tyr61‑‑>stop) in the lipoprotein lipase gene. Atherosclerosis 159, 375–379 (2001).
  • Ebara T, Endo Y, Yoshiike S et al. A 60‑y‑old chylomicronemia patient homozygous for missense mutation (G188E) in the lipoprotein lipase gene showed no accelerated atherosclerosis. Clin. Chim. Acta 386, 100–104 (2007).
  • Benlian P, de Gennes JL, Foubert L, Zhang H, Gagne SE, Hayden M. Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N. Engl. J. Med. 335, 848–854 (1996).
  • Saika Y, Sakai N, Takahashi M et al. Novel LPL mutation (L303F) found in a patient associated with coronary artery disease and severe systemic atherosclerosis. Eur. J. Clin. Invest. 33, 216–222 (2003).
  • Kawashiri MA, Higashikata T, Mizuno M et al. Long‑term course of lipoprotein lipase (LPL) deficiency due to homozygous LPL(Arita) in a patient with recurrent pancreatitis, retained glucose tolerance, and atherosclerosis. J. Clin. Endocrinol. Metab. 90, 6541–6544 (2005).
  • Murota K, Storch J. Uptake of micellar longchain fatty acid and sn‑2‑monoacylglycerol into human intestinal Caco‑2 cells exhibits characteristics of protein‑mediated transport. J. Nutr. 135, 1626–1630 (2005).
  • Shi Y, Cheng D. Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism. Am. J. Physiol. Endocrinol. Metab. 297, e10–e18 (2009).
  • Iqbal J, Hussain MM. Intestinal lipid absorption. Am. J. Physiol. Endocrinol. Metab. 296, e1183–e1194 (2009).
  • Pan X, Hussain MM. Gut triglyceride production. Biochim. Biophys. Acta 1821, 727–735 (2012).
  • Abumrad NA, Davidson NO. Role of the gut in lipid homeostasis. Physiol. Rev. 92, 1061–1085 (2012).
  • Mansbach CM, Siddiqi SA. The biogenesis of chylomicrons. Annu. Rev. Physiol. 72, 315–333 (2010).
  • Hussain MM, Kancha RK, Zhou Z, Luchoomun J, Zu H, Bakillah A. Chylomicron assembly and catabolism: role of apolipoproteins and receptors. Biochim. Biophys. Acta 1300, 151–170 (1996).
  • Zhang X, Qi R, Xian X et al. Spontaneous atherosclerosis in aged lipoprotein lipasedeficient mice with severe hypertriglyceridemia on a normal chow diet. Circ. Res. 102, 250–256 (2008).
  • Beigneux AP, Davies BS, Gin P et al. Glycosylphosphatidylinositol‑anchored highdensity lipoprotein‑binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab. 5, 279–291 (2007).
  • Weinstein MM, Yin L, Tu Y et al. Chylomicronemia elicits atherosclerosis in mice – brief report. Arterioscler. Thromb. Vasc. Biol. 30, 20–23 (2010). ▪▪ This study shows that Gpihbp1 deficiency results in atherosclerosis in mice.
  • Planer D, Metzger S, Zcharia E, Wexler ID, Vlodavsky I, Chajek‑Shaul T. Role of heparanase on hepatic uptake of intestinal derived lipoprotein and fatty streak formation in mice. PLoS ONE 6, e18370 (2011). ▪▪ Overproduction of heparanase is shown to increase atherosclerosis.
  • Iqbal J, Queiroz J, Li Y, Jiang XC, Ron D, Hussain MM. Increased intestinal lipid absorption caused by Ire1β deficiency contributes to hyperlipidemia and atherosclerosis in apolipoprotein E‑deficient mice. Circ. Res. 110, 1575–1584 (2012). ▪▪ Increased lipid absorption has been shown to enhance atherosclerosis in Apoe-/- mice.
  • Iqbal J, Dai K, Seimon T et al. IRE1β inhibits chylomicron production by selectively degrading MTP mRNA. Cell Metab. 7, 445–455 (2008).
  • Williams KJ, Tabas I. The response‑to‑retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).
  • Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).
  • Rapp JH, Lespine A, Hamilton RL et al. Triglyceride‑rich lipoproteins isolated by selected‑affinity anti‑apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler. Thromb. 14, 1767–1774 (1994).
  • Chung BH, Tallis G, Yalamoori V, Anantharamaiah GM, Segrest JP. Liposomelike particles isolated from human atherosclerotic plaques are structurally and compositionally similar to surface remnants of triglyceride‑rich lipoproteins. Arterioscler. Thromb. 14, 622–635 (1994).
  • Proctor SD, Mamo JC. Retention of fluorescent‑labelled chylomicron remnants within the intima of the arterial wall – evidence that plaque cholesterol may be derived from post‑prandial lipoproteins. Eur. J. Clin. Invest. 28, 497–503 (1998).
  • Proctor SD, Vine DF, Mamo JC. Arterial retention of apolipoprotein B(48)‑ and B(100)‑containing lipoproteins in atherogenesis. Curr. Opin. Lipidol. 13, 461–470 (2002).
  • Bovenberg SA, Alipour A, Elte JW et al. Cellmediated lipoprotein transport: a novel antiatherogenic concept. Atheroscler. Suppl. 11, 25–29 (2010).
  • Cuchel M, Meagher EA, du Toit TH et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single‑arm, open‑label, Phase 3 study. Lancet 381, 40–46 (2013). ▪ Demonstrated that long-term use of the MTP inhibitor does not increase steatosis.
  • Joy TR. Novel therapeutic agents for lowering low density lipoprotein cholesterol. Pharmacol. Ther. 135, 31–43 (2012).
  • Ricotta DN, Frishman W. Mipomersen: a safe and effective antisense therapy adjunct to statins in patients with hypercholesterolemia. Cardiol. Rev. 20, 90–95 (2012).
  • Davis HR Jr, Tershakovec AM, Tomassini JE, Musliner T. Intestinal sterol transporters and cholesterol absorption inhibition. Curr. Opin. Lipidol. 22, 467–478 (2011).
  • Birch AM, Buckett LK, Turnbull AV. DGAT1 inhibitors as anti‑obesity and anti‑diabetic agents. Curr. Opin. Drug Discov. Dev. 13, 489–496 (2010).
  • Nagashima M, Watanabe T, Terasaki M et al. Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice. Diabetologia 54, 2649–2659 (2011).
  • Joshi PH, Kalyani RR, Blumenthal RS, Donner TW. Cardiovascular effects of noninsulin, glucose‑lowering agents: need for more outcomes data. Am. J. Cardiol. 110, 32B–42B (2012).
  • Sivertsen J, Rosenmeier J, Holst JJ, Vilsboll T. The effect of glucagon‑like peptide 1 on cardiovascular risk. Nat. Rev. Cardiol. 9, 209–222 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.