392
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Investigating sitosterolemia to understand lipid physiology

&
Pages 649-658 | Published online: 18 Jan 2017

References

  • Schoenheimer R. [The importance of plant sterols for the animal organism]. Hoppe-Seyler’s Z. für Physiol. Chem. 180, 1–5 (1929). ▪ Classic paper that outlines the key issues in this field almost a century ago.
  • Bhattacharyya AK, Connor WE. Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J. Clin. Invest. 53(4), 1033–1043 (1974). ▪▪ One of the best examples of how to investigate a rare human disorder; the authors predicted the pathological basis well before the genetic defect was identified.
  • Patel SB, Salen G. Sitosterolemia: xenophobia for the body. In: Evidence-Based Management of Lipid Disorders. Vissers MN, Kastelein JJP, Stroes ES (Eds). tfm Publishing Ltd, Shrewsbury, UK, 217–230 (2010).
  • Mouritsen OG, Zuckermann MJ. What’s so special about cholesterol? Lipids 39(11), 1101–1113 (2004).
  • Weihrauch JL, Gardner JM. Sterol content of foods of plant origin. J. Am. Diet. Assoc. 73(1), 39–47 (1978).
  • Nair PP, Turjman N, Kessie G et al. Diet, nutrition intake, and metabolism in populations at high and low risk for colon cancer. Dietary cholesterol, beta-sitosterol, and stigmasterol. Am. J. Clin. Nutr. 40(Suppl. 4), 927–930 (1984).
  • Normen AL, Brants HA, Voorrips LE, Andersson HA, van den Brandt PA, Goldbohm RA. Plant sterol intakes and colorectal cancer risk in The Netherlands Cohort Study on Diet and Cancer. Am. J. Clin. Nutr. 74(1), 141–148 (2001).
  • Valsta LM, Lemstrom A, Ovaskainen ML et al. Estimation of plant sterol and cholesterol intake in Finland: quality of new values and their effect on intake. Br. J. Nutr. 92(4), 671–678 (2004).
  • Salen G, Ahrens E Jr, Grundy SM. Metabolism of beta-sitosterol in man. J. Clin. Invest. 49(5), 952–967 (1970).
  • Gould RG, Jones RJ, LeRoy GV, Wissler RW, Taylor CB. Absorbability of beta-sitosterol in humans. Metabolism 18(8), 652–662 (1969).
  • Jolley CD, Woollett LA, Turley SD, Dietschy JM. Centripetal cholesterol flux to the liver is dictated by events in the peripheral organs and not by the plasma high density lipoprotein or apolipoprotein A-I concentration. J. Lipid Res. 39(11), 2143–2149. (1998).
  • McMurry MP, Connor WE, Cerqueira MT. Dietary cholesterol and the plasma lipids and lipoproteins in the Tarahumara Indians: a people habituated to a low cholesterol diet after weaning. Am. J. Clin. Nutr. 35(4), 741–744 (1982).
  • Bhattacharyya AK, Connor WE, Spector AA. Excretion of sterols from the skin of normal and hypercholesterolemic humans. Implications for sterol balance studies.J. Clin. Invest. 51(8), 2060–2070 (1972).
  • Beaty TH, Kwiterovich P Jr, Khoury MJ et al. Genetic analysis of plasma sitosterol, apoprotein B, and lipoproteins in a large Amish pedigree with sitosterolemia. Am. J. Hum. Genet. 38(4), 492–504 (1986).
  • Salen G, Shore V, Tint GS et al. Increased sitosterol absorption, decreased removal, and expanded body pools compensate for reduced cholesterol synthesis in sitosterolemia with xanthomatosis. J. Lipid Res. 30(9), 1319–1330 (1989).
  • Salen G, Tint GS, Shefer S, Shore V, Nguyen L. Increased sitosterol absorption is offset by rapid elimination to prevent accumulation in heterozygotes with sitosterolemia. Arterioscler. Thromb. 12(5), 563–568 (1992).
  • Patel SB, Salen G, Hidaka H et al. Mapping a gene involved in regulating dietary cholesterol absorption. The sitosterolemia locus is found at chromosome 2p21. J. Clin. Invest. 102(5), 1041–1044 (1998).
  • Lu K, Lee M-H, Hazard S et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8 respectively. Am. J. Hum. Genet. 69, 278–290 (2001).
  • Gregg RE, Connor WE, Lin DS, Brewer H Jr. Abnormal metabolism of shellfish sterols in a patient with sitosterolemia and xanthomatosis. J. Clin. Invest. 77(6), 1864–1872 (1986). ▪ Not just plant sterols, but even shellfish sterols can accumulate in sitosterolemia.
  • Kidambi S, Patel SB. Sitosterolaemia: pathophysiology, clinical presentation and laboratory diagnosis. J. Clin. Pathol. 61(5), 588–594 (2008).
  • Yu L, von Bergmann K, Lutjohann D, Hobbs HH, Cohen JC. Selective sterol accumulation in ABCG5/ABCG8-deficient mice. J. Lipid Res. 45(2), 301–307 (2004).
  • Lee MH, Lu K, Patel SB. Genetic basis of sitosterolemia. Curr. Opin. Lipidol. 12(2), 141–149 (2001).
  • Salen G, Horak I, Rothkopf M et al. Lethal atherosclerosis associated with abnormal plasma and tissue sterol composition in sitosterolemia with xanthomatosis. J. Lipid Res. 26(9), 1126–1133 (1985).
  • Mymin D, Wang J, Frohlich J, Hegele RA. Image in cardiovascular medicine. Aortic xanthomatosis with coronary ostial occlusion in a child homozygous for a nonsense mutation in ABCG8. Circulation 107(5), 791 (2003).
  • Kolovou G, Voudris V, Drogari E, Palatianos G, Cokkinos DV. Coronary bypass grafts in a young girl with sitosterolemia. Eur. Heart J. 17(6), 965–966 (1996).
  • Clayton PT, Bowron A, Mills KA, Massoud A, Casteels M, Milla PJ. Phytosterolemia in children with parenteral nutrition-associated cholestatic liver disease. Gastroenterology 105(6), 1806–1813 (1993).
  • Yu L, Hammer RE, Li-Hawkins J et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc. Natl Acad. Sci. USA 99(25), 16237–16242 (2002).
  • Vanmierlo T, Weingartner O, van der Pol S et al. Dietary intake of plant sterols stably increases plant sterol levels in the murine brain. J. Lipid Res. 53(4), 726–735 (2012).
  • Vanmierlo T, Rutten K, van Vark-van der Zee LC et al. Cerebral accumulation of dietary derivable plant sterols does not interfere with memory and anxiety related behavior in Abcg5-/- mice. Plant Foods Hum. Nutr. 66(2), 149–156 (2011).
  • Lee M-H, Lu K, Hazard S et al. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat. Gen. 27, 79–83 (2001).
  • Lee MH, Hazard S, Carpten JD et al. Fine-mapping, mutation analyses, and structural mapping of cerebrotendinous xanthomatosis in US pedigrees. J. Lipid Res. 42(2), 159–169. (2001).
  • Berge KE, Tian H, Graf GA et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290(5497), 1771–1775 (2000).
  • Hazard SE, Patel SB. Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflugers Arch. 453(5), 745–752 (2007).
  • Graf GA, Li WP, Gerard RD et al. Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J. Clin. Invest. 110(5), 659–669 (2002).
  • Graf GA, Yu L, Li WP et al. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J. Biol. Chem. 278(48), 48275–48282 (2003).
  • Graf GA, Cohen JC, Hobbs HH. Missense mutations in ABCG5 and ABCG8 disrupt heterodimerization and trafficking. J. Biol. Chem. 279(23), 24881–24888 (2004).
  • Kwiterovich PO Jr, Chen SC, Virgil DG, Schweitzer A, Arnold DR, Kratz LE. Response of obligate heterozygotes for phytosterolemia to a low-fat diet and to a plant sterol ester dietary challenge. J. Lipid Res. 44(6), 1143–1155 (2003).
  • Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol. Rev. 62(1), 1–96 (2010).
  • Salen G, von Bergmann K, Lutjohann D et al. Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia. Circulation 109(8), 966–971 (2004).
  • Altmann SW, Davis HR Jr, Zhu LJ et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303(5661), 1201–1204 (2004).
  • Davis HR Jr, Zhu LJ, Hoos LM et al. Niemann-Pick C1 like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J. Biol. Chem. 279(32), 33586–33592 (2004).
  • van der Velde AE, Brufau G, Groen AK. Transintestinal cholesterol efflux. Curr. Opin. Lipidol. 21(3), 167–171 (2010).
  • Ge L, Wang J, Qi W et al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab. 7(6), 508–519 (2008).
  • Xie C, Zhou ZS, Li N et al. Ezetimibe blocks the internalization of NPC1L1 and cholesterol in mouse small intestine. J. Lipid Res. 53(10), 2092–2101 (2012).
  • Xie C, Li N, Chen ZJ, Li BL, Song BL. The small GTPase Cdc42 interacts with Niemann-Pick C1-like 1 (NPC1L1) and controls its movement from endocytic recycling compartment to plasma membrane in a cholesterol-dependent manner. J. Biol. Chem. 286(41), 35933–35942 (2011).
  • Temel RE, Gebre AK, Parks JS, Rudel LL. Compared with acyl-CoA: cholesterol O-acyltransferase (ACAT) 1 and lecithin:cholesterol acyltransferase, ACAT2 displays the greatest capacity to differentiate cholesterol from sitosterol. J. Biol. Chem. 278(48), 47594–47601 (2003).
  • Kuksis A, Huang TC. Differential absorption of plant sterols in the dog. Can. J. Biochem. Physiol. 40, 1493–1504 (1962).
  • Wang HH, Patel SB, Carey MC, Wang DQ. Quantifying anomalous intestinal sterol uptake, lymphatic transport, and biliary secretion in Abcg8-/- mice. Hepatology 45(4), 998–1006 (2007).
  • Young SG, Zechner R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 27(5), 459–484 (2013).
  • Bosner MS, Lange LG, Stenson WF, Ostlund RE Jr. Percent cholesterol absorption in normal women and men quantified with dual stable isotopic tracers and negative ion mass spectrometry. J. Lipid Res. 40(2), 302–308 (1999).
  • Yu L, Li-Hawkins J, Hammer RE et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J. Clin. Invest. 110(5), 671–680. (2002).
  • Dietschy JM, Turley SD, Spady DK. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J. Lipid Res. 34(10), 1637–1659. (1993).
  • Pramfalk C, Jiang ZY, Parini P. Hepatic Niemann-Pick C1-like 1. Curr. Opin. Lipidol. 22(3), 225–230 (2011).
  • Rees DC, Iolascon A, Carella M et al. Stomatocytic haemolysis and macrothrombocytopenia (Mediterranean stomatocytosis/macrothrombocytopenia) is the haematological presentation of phytosterolaemia. Br. J. Haematol. 130(2), 297–309 (2005).
  • Huang MZ, Naito Y, Watanabe S et al. Effect of rapeseed and dietary oils on the mean survival time of stroke-prone spontaneously hypertensive rats. Biol. Pharm. Bull. 19(4), 554–557. (1996).
  • Ratnayake WM, L’Abbe MR, Mueller R et al. Vegetable oils high in phytosterols make erythrocytes less deformable and shorten the life span of stroke-prone spontaneously hypertensive rats. J. Nutr. 130(5), 1166–1178 (2000).
  • Scoggan KA, Gruber H, Lariviere K. A missense mutation in the Abcg5 gene causes phytosterolemia in SHR, stroke-prone SHR, and WKY rats. J. Lipid Res. 44(5), 911–916 (2003).
  • Yu H, Pandit B, Klett E et al. The rat STSL locus: characterization, chromosomal assignment, and genetic variations in sitosterolemic hypertensive rats. BMC Cardiovasc. Disord. 3(1), 4 (2003).
  • Kruit JK, Drayer AL, Bloks VW et al. Plant sterols cause macrothrombocytopenia in a mouse model of sitosterolemia. J. Biol. Chem. 283(10), 6281–6287 (2008).
  • Chase TH, Lyons BL, Bronson RT et al. The mouse mutation “thrombocytopenia and cardiomyopathy” (trac) disrupts Abcg5: a spontaneous single gene model for human hereditary phytosterolemia/sitosterolemia. Blood 115(6), 1267–1276 (2010).
  • Kanaji T, Kanaji S, Montgomery RR, Patel SB, Newman PJ. Platelet hyperreactivity explains the bleeding abnormality and macrothrombocytopenia in a murine model of sitosterolemia. Blood 122(15), 2732–2742 (2013).
  • Miettinen TA, Klett EL, Gylling H, Isoniemi H, Patel SB. Liver transplantation in a patient with sitosterolemia and cirrhosis. Gastroenterology 130(2), 542–547 (2006).
  • Mushtaq T, Wales JK, Wright NP. Adrenal insufficiency in phytosterolaemia. Eur. J. Endocrinol. 157(Suppl. 1), S61–S65 (2007).
  • Yang C, Yu L, Li W, Xu F, Cohen JC, Hobbs HH. Disruption of cholesterol homeostasis by plant sterols. J. Clin. Invest. 114(6), 813–822 (2004).
  • Solca C, Tint GS, Patel SB. Dietary xenosterols lead to infertility and loss of abdominal adipose tissue in sterolin-deficient mice. J. Lipid Res. 54(2), 397–409 (2013).
  • McDaniel AL, Alger HM, Sawyer JK et al. Phytosterol feeding causes toxicity in ABCG5/G8 knockout mice. Am. J. Pathol. 182(4), 1131–1138 (2013).
  • Lu K, Lee M, Patel SB. Dietary cholesterol absorption; more than just bile. Trends Endocrinol. Metab. 12(7), 314–320 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.