252
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Monogenic causes of elevated HDL cholesterol and implications for development of new therapeutics

, &
Pages 635-648 | Published online: 18 Jan 2017

References

  • Ford ES, Ajani UA, Croft JB et al. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N. Engl. J. Med. 356(23), 2388–2398 (2007).
  • Boden WE, O’Rourke RA, Teo KK et al. Optimal medical therapy with or without PCI for stable coronary disease. N. Engl. J. Med. 356(15), 1503–1516 (2007).
  • Frye RL, August P, Brooks MM et al. A randomized trial of therapies for Type 2 diabetes and coronary artery disease. N. Engl. J. Med. 360(24), 2503–2515 (2009).
  • Abifadel M, Varret M, Rabes JP et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34(2), 154–156 (2003).
  • Cohen J. Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet. 37(2), 161–165 (2005).
  • Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354(12), 1264–1272 (2006).
  • Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N. Engl. J. Med. 367(20), 1891–1900 (2012).
  • Wilson PW, Castelli WP, Kannel WB. Coronary risk prediction in adults (the Framingham Heart Study). Am. J. Cardiol. 59(14), G91–G94 (1987).
  • Larach DB, Degoma EM, Rader DJ. Targeting high density lipoproteins in the prevention of cardiovascular disease? Curr. Cardiol. Rep. (2012).
  • Motazacker MM, Peter J. Treskes M, Shoulders CC, Kuivenhoven JA, Hovingh GK. Evidence of a polygenic origin of extreme high-density lipoprotein cholesterol levels. Arterioscler. Thromb. Vasc. Biol. 33(7), 1521–1528 (2013).
  • Barter PJ, Brewer HB Jr, Chapman MJ, Hennekens CH, Rader DJ, Tall AR. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23(2), 160–167 (2003).
  • Maugeais C, Tietge UJ, Broedl UC et al. Dose-dependent acceleration of high-density lipoprotein catabolism by endothelial lipase. Circulation 108(17), 2121–2126 (2003).
  • Hesler CB, Swenson TL, Tall AR. Purification and characterization of a human plasma cholesteryl ester transfer protein. J. Biol. Chem. 262(5), 2275–2282 (1987).
  • Brown ML, Inazu A, Hesler CB et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 342(6248), 448–451 (1989). ▪ Identification of two Japanese siblings with high HDL cholesterol (HDL-C) levels and genetic CETP deficiency.
  • Inazu A, Brown ML, Hesler CB et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N. Engl. J. Med. 323(18), 1234–1238 (1990).
  • Tato F, Vega GL, Tall AR, Grundy SM. Relation between cholesterol ester transfer protein activities and lipoprotein cholesterol in patients with hypercholesterolemia and combined hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 15(1), 112–120 (1995).
  • Kinoshita M, Teramoto T, Shimazu N et al. CETP is a determinant of serum LDL-cholesterol but not HDL-cholesterol in healthy Japanese. Atherosclerosis 120(1–2), 75–82 (1996).
  • McPherson R, Mann CJ, Tall AR et al. Plasma concentrations of cholesteryl ester transfer protein in hyperlipoproteinemia. Relation to cholesteryl ester transfer protein activity and other lipoprotein variables. Arterioscler. Thromb. 11(4), 797–804 (1991).
  • Moulin P, Appel GB, Ginsberg HN, Tall AR. Increased concentration of plasma cholesteryl ester transfer protein in nephrotic syndrome: role in dyslipidemia. J. Lipid Res. 33(12), 1817–1822 (1992).
  • de Grooth GJ, Smilde TJ, Van Wissen S et al. The relationship between cholesteryl ester transfer protein levels and risk factor profile in patients with familial hypercholesterolemia. Atherosclerosis 173(2), 261–267 (2004).
  • Barter PJ, Kastelein JJ. Targeting cholesteryl ester transfer protein for the prevention and management of cardiovascular disease. J. Am. Coll. Cardiol. 47(3), 492–499 (2006).
  • Tanigawa H, Billheimer JT, Tohyama J, Zhang Y, Rothblat G, Rader DJ. Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation 116(11), 1267–1273 (2007).
  • Foger B, Chase M, Amar MJ et al. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J. Biol. Chem. 274(52), 36912–36920 (1999).
  • Borggreve SE, Hillege HL, Dallinga-Thie GM et al. High plasma cholesteryl ester transfer protein levels may favour reduced incidence of cardiovascular events in men with low triglycerides. Eur. Heart J. 28(8), 1012–1018 (2007).
  • Kappelle PJ, Perton F, Hillege HL, Dallinga-Thie GM, Dullaart RP. High plasma cholesteryl ester transfer but not CETP mass predicts incident cardiovascular disease: a nested case-control study. Atherosclerosis 217(1), 249–252 (2011).
  • Robins SJ, Lyass A, Brocia RW, Massaro JM, Vasan RS. Plasma lipid transfer proteins and cardiovascular disease. The Framingham Heart Study. Atherosclerosis 228(1), 230–236 (2013).
  • Ritsch A, Scharnagl H, Eller P et al. Cholesteryl ester transfer protein and mortality in patients undergoing coronary angiography: the Ludwigshafen Risk and Cardiovascular Health study. Circulation 121(3), 366–374 (2010).
  • Hirano K, Yamashita S, Kuga Y et al. Atherosclerotic disease in marked hyperalphalipoproteinemia. Combined reduction of cholesteryl ester transfer protein and hepatic triglyceride lipase. Arterioscler. Thromb. Vasc. Biol. 15(11), 1849–1856 (1995).
  • Hirano K, Yamashita S, Nakajima N et al. Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler. Thromb. Vasc. Biol. 17(6), 1053–1059 (1997).
  • Zhong S, Sharp DS, Grove JS et al. Increased coronary heart disease in Japanese–American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J. Clin. Invest. 97(12), 2917–2923 (1996).
  • Curb JD, Abbott RD, Rodriguez BL et al. A prospective study of HDL-C and cholesteryl ester transfer protein gene mutations and the risk of coronary heart disease in the elderly. J. Lipid Res. 45(5), 948–953 (2004).
  • Bruce C, Sharp DS, Tall AR. Relationship of HDL and coronary heart disease to a common amino acid polymorphism in the cholesteryl ester transfer protein in men with and without hypertriglyceridemia. J. Lipid Res. 39(5), 1071–1078 (1998).
  • Agerholm-Larsen B, Nordestgaard BG, Steffensen R, Jensen G, Tybjaerg-Hansen A. Elevated HDL cholesterol is a risk factor for ischemic heart disease in white women when caused by a common mutation in the cholesteryl ester transfer protein gene. Circulation 101(16), 1907–1912 (2000).
  • Kakko S, Tamminen M, Paivansalo M et al. Cholesteryl ester transfer protein gene polymorphisms are associated with carotid atherosclerosis in men. Eur. J. Clin. Invest. 30(1), 18–25 (2000).
  • Thompson A, Di Angelantonio E, Sarwar N et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 299(23), 2777–2788 (2008).
  • Dullaart RP, Sluiter WJ. Common variation in the CETP gene and the implications for cardiovascular disease and its treatment: an updated analysis. Pharmacogenomics 9(6), 747–763 (2008).
  • Voight BF, Peloso GM, Orho-Melander M et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380(9841), 572–580 (2012). ▪▪ Mendelian randomization study that failed to find decreased myocardial infarction risk in carriers of the LIPG N396S allele, despite significantly increased HDL-C; called into question the cardioprotective effect of endothelial lipase deficiency or inhibition.
  • Kappelle PJ, Gansevoort RT, Hillege HJ, Wolffenbuttel BH, Dullaart RP, Group PS. Common variation in cholesteryl ester transfer protein: relationship of first major adverse cardiovascular events with the apolipoprotein B/apolipoprotein A–I ratio and the total cholesterol/high-density lipoprotein cholesterol ratio. J. Clin. Lipidol. 7(1), 56–64 (2013).
  • Ridker PM, Pare G, Parker AN, Zee RY, Miletich JP, Chasman DI. Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: genomewide analysis among 18 245 initially healthy women from the Women’s Genome Health Study. Circ. Cardiovasc. Genet. 2(1), 26–33 (2009).
  • Johannsen TH, Frikke-Schmidt R, Schou J. Nordestgaard BG, Tybjaerg-Hansen A. Genetic inhibition of CETP, ischemic vascular disease and mortality, and possible adverse effects. J. Am. Coll. Cardiol. 60(20), 2041–2048 (2012).
  • Sugano M, Makino N, Sawada S et al. Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterolfed rabbits. J. Biol. Chem. 273(9), 5033–5036 (1998).
  • Rittershaus CW, Miller DP, Thomas LJ et al. Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 20(9), 2106–2112 (2000).
  • Davidson MH, Maki K, Umporowicz D, Wheeler A, Rittershaus C, Ryan U. The safety and immunogenicity of a CETP vaccine in healthy adults. Atherosclerosis 169(1), 113–120 (2003).
  • Morehouse LA, Sugarman ED, Bourassa PA et al. Inhibition of CETP activity by torcetrapib reduces susceptibility to dietinduced atherosclerosis in New Zealand White rabbits. J. Lipid Res. 48(6), 1263–1272 (2007).
  • Clark RW, Sutfin TA, Ruggeri RB et al. Raising high-density lipoprotein in humans through inhibition of cholesteryl ester transfer protein: an initial multidose study of torcetrapib. Arterioscler. Thromb. Vasc. Biol. 24(3), 490–497 (2004).
  • Brousseau ME, Schaefer EJ, Wolfe ML et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N. Engl. J. Med. 350(15), 1505–1515 (2004).
  • McKenney JM, Davidson MH, Shear CL, Revkin JH. Efficacy and safety of torcetrapib, a novel cholesteryl ester transfer protein inhibitor, in individuals with below-average high-density lipoprotein cholesterol levels on a background of atorvastatin. J. Am. Coll. Cardiol. 48(9), 1782–1790 (2006).
  • Davidson MH, McKenney JM, Shear CL, Revkin JH. Efficacy and safety of torcetrapib, a novel cholesteryl ester transfer protein inhibitor, in individuals with below-average high-density lipoprotein cholesterol levels. J. Am. Coll. Cardiol. 48(9), 1774–1781 (2006).
  • Nissen SE, Tardif JC, Nicholls SJ et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 356(13), 1304–1316 (2007).
  • Kastelein JJ, van Leuven SI, Burgess L et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N. Engl. J. Med. 356(16), 1620–1630 (2007).
  • Bots ML, Visseren FL, Evans GW et al. Torcetrapib and carotid intima–media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet 370(9582), 153–160 (2007).
  • Barter PJ, Caulfield M, Eriksson M et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357(21), 2109–2122 (2007). ▪ ILLUMINATE trial of torcetrapib; halted prematurely due to increased risk of adverse cardiovascular events and all-cause mortality in the torcetrapib-treated group.
  • Rader DJ. Illuminating HDL – is it still a viable therapeutic target? N. Engl. J. Med. 357(21), 2180–2183 (2007).
  • Okamoto H, Yonemori F, Wakitani K, Minowa T, Maeda K, Shinkai H. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 406(6792), 203–207 (2000).
  • Huang Z, Inazu A, Nohara A, Higashikata T, Mabuchi H. Cholesteryl ester transfer protein inhibitor (JTT-705) and the development of atherosclerosis in rabbits with severe hypercholesterolaemia. Clin. Sci. (Lond.), 103(6), 587–594 (2002).
  • de Grooth GJ, Kuivenhoven JA, Stalenhoef AF et al. Efficacy and safety of a novel cholesteryl ester transfer protein inhibitor, JTT-705, in humans: a randomized Phase II dose-response study. Circulation 105(18), 2159–2165 (2002).
  • Fayad ZA, Mani V, Woodward M et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 378(9802), 1547–1559 (2011).
  • Schwartz GG, Olsson AG, Abt M et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367(22), 2089–2099 (2012). ▪Dal-OUTCOMES trial of dalcetrapib; stopped early due to futility, as no reduced risk of recurrent myocardial infarction was seen in the dalcetrapib-treated group, despite significantly increased HDL-C.
  • Ranalletta M, Bierilo KK, Chen Y et al. Biochemical characterization of cholesteryl ester transfer protein inhibitors. J. Lipid Res. 51(9), 2739–2752 (2010).
  • Krishna R, Anderson MS, Bergman AJ et al. Effect of the cholesteryl ester transfer protein inhibitor, anacetrapib, on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals: two double-blind, randomised placebo-controlled Phase I studies. Lancet 370(9603), 1907–1914 (2007).
  • Bloomfield D, Carlson GL, Sapre A et al. Efficacy and safety of the cholesteryl ester transfer protein inhibitor anacetrapib as monotherapy and coadministered with atorvastatin in dyslipidemic patients. Am. Heart J. 157(2), 352–360.e2 (2009).
  • Cannon CP, Shah S, Dansky HM et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N. Engl. J. Med. 363(25), 2406–2415 (2010).
  • Nicholls SJ, Brewer HB, Kastelein JJ et al. Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol: a randomized controlled trial. JAMA 306(19), 2099–2109 (2011).
  • Jaye M, Lynch KJ, Krawiec J et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet. 21(4), 424–428 (1999). ▪Initial cloning and characterization of endothelial lipase; overexpression studies in mice led to decreased HDL-C and apoA-I levels.
  • Hirata K, Dichek HL, Cioffi JA et al. Cloning of a unique lipase from endothelial cells extends the lipase gene family. J. Biol. Chem. 274(20), 14170–14175 (1999).
  • Yancey PG, Kawashiri MA, Moore R et al. In vivo modulation of HDL phospholipid has opposing effects on SR-BI- and ABCA1-mediated cholesterol efflux. J. Lipid Res. 45(2), 337–346 (2004).
  • Nijstad N, Wiersma H, Gautier T, van der Giet M, Maugeais C, Tietge UJ. Scavenger receptor BI-mediated selective uptake is required for the remodeling of high density lipoprotein by endothelial lipase. J. Biol. Chem. 284(10), 6093–6100 (2009).
  • Ishida T, Choi S, Kundu RK et al. Endothelial lipase is a major determinant of HDL level. J. Clin. Invest. 111(3), 347–355 (2003).
  • Jin W, Millar JS, Broedl U, Glick JM, Rader DJ. Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J. Clin. Invest. 111(3), 357–362 (2003).
  • Ma K, Cilingiroglu M, Otvos JD, Ballantyne CM, Marian AJ, Chan L. Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. Proc. Natl Acad. Sci. USA 100(5), 2748–2753 (2003).
  • Qiu G, Hill JS. Endothelial lipase promotes apolipoprotein AI-mediated cholesterol efflux in THP-1 macrophages. Arterioscler. Thromb. Vasc. Biol. 29(1), 84–91 (2009).
  • Wiersma H, Gatti A, Nijstad N, Kuipers F, Tietge UJ. Hepatic SR-BI, not endothelial lipase, expression determines biliary cholesterol secretion in mice. J. Lipid Res. 50(8), 1571–1580 (2009).
  • Brown RJ, Lagor WR, Sankaranaravanan S et al. Impact of combined deficiency of hepatic lipase and endothelial lipase on the metabolism of both high-density lipoproteins and apolipoprotein B-containing lipoproteins. Circ. Res. 107(3), 357–364 (2010).
  • deLemos AS, Wolfe ML, Long CJ, Sivapackianathan R, Rader DJ. Identification of genetic variants in endothelial lipase in persons with elevated high-density lipoprotein cholesterol. Circulation 106(11), 1321–1326 (2002).
  • Vergeer M, Cohn DM, Boekholdt SM et al. Lack of association between common genetic variation in endothelial lipase (LIPG) and the risk for CAD and DVT. Atherosclerosis 211(2), 558–564 (2010).
  • Yamakawa-Kobayashi K, Yanagi H, Endo K, Arinami T, Hamaguchi H. Relationship between serum HDL-C levels and common genetic variants of the endothelial lipase gene in Japanese school-aged children. Hum. Genet. 113(4), 311–315 (2003).
  • Paradis ME, Couture P, Bosse Y et al. The T111I mutation in the EL gene modulates the impact of dietary fat on the HDL profile in women. J. Lipid Res. 44(10), 1902–1908 (2003).
  • Razzaghi H, Santorico SA, Kamboh MI. Population-based resequencing of LIPG and ZNF202 genes in subjects with extreme HDL levels. Front. Genet. 3, 89 (2012).
  • Jensen MK, Rimm EB, Mukamal KJ et al. The T111I variant in the endothelial lipase gene and risk of coronary heart disease in three independent populations. Eur. Heart J. 30(13), 1584–1589 (2009).
  • Edmondson AC, Brown RJ, Kathiresan S et al. Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans. J. Clin. Invest. 119(4), 1042–1050 (2009).
  • Khetarpal SA, Edmondson AC, Raghavan A et al. Mining the LIPG allelic spectrum reveals the contribution of rare and common regulatory variants to HDL cholesterol. PLoS Genet. 7(12), e1002393 (2011).
  • McCoy MG, Sun GS, Marchadier D, Maugeais C, Glick JM, Rader DJ. Characterization of the lipolytic activity of endothelial lipase. J. Lipid Res. 43(6), 921–929 (2002).
  • Miksztowicz V, McCoy MG, Schreier L et al. Endothelial lipase activity predicts high-density lipoprotein catabolism in hemodialysis: novel phospholipase assay in postheparin human plasma. Arterioscler. Thromb. Vasc. Biol. 32(12), 3033–3040 (2012).
  • Tatematsu S, Francis SA, Natarajan P et al. Endothelial lipase is a critical determinant of high-density lipoprotein-stimulated sphingosine 1-phosphate-dependent signaling in vascular endothelium. Arterioscler. Thromb. Vasc. Biol. 33(8), 1788–1794 (2013).
  • Rao SP, Riederer M, Lechleitner M et al. Acyl chain-dependent effect of lysophosphatidylcholine on endotheliumdependent vasorelaxation. PLoS ONE 8(5), e65155 (2013).
  • Ishida T, Choi SY, Kundu RK et al. Endothelial lipase modulates susceptibility to atherosclerosis in apolipoprotein-E-deficient mice. J. Biol. Chem. 279(43), 45085–45092 (2004).
  • Ko KW, Paul A, Ma K, Li L, Chan L. Endothelial lipase modulates HDL but has no effect on atherosclerosis development in apoE-/- and LDLR-/- mice. J. Lipid Res. 46(12), 2586–2594 (2005).
  • Mank-Seymour AR, Durham KL, Thompson JF, Seymour AB, Milos PM. Association between single-nucleotide polymorphisms in the endothelial lipase (LIPG) gene and high-density lipoprotein cholesterol levels. Biochim. Biophys. Acta 1636(1), 40–46 (2004).
  • Singaraja RR, Sivapalaratnam S, Hovingh K et al. The impact of partial and complete loss-of-function mutations in endothelial lipase on high-density lipoprotein levels and functionality in humans. Circ. Cardiovasc. Genet. 6(1), 54–62 (2013).
  • Goodman KB, Bury MJ, Cheung M et al. Discovery of potent, selective sulfonylfuran urea endothelial lipase inhibitors. Bioorg. Med. Chem. Lett. 19(1), 27–30 (2009).
  • O’Connell DP, LeBlanc DF, Cromley D, Billheimer J. Rader DJ, Bachovchin WW. Design and synthesis of boronic acid inhibitors of endothelial lipase. Bioorg. Med. Chem. Lett. 22(3), 1397–1401 (2012).
  • Brown WV, Baginsky ML. Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. Biochem. Biophys. Res. Commun. 46(2), 375–382 (1972). ▪ Initial isolation of the apoC-III protein and characterization as a noncompetitive inhibitor of lipoprotein lipase.
  • Karathanasis SK, McPherson J. Zannis VI, Breslow JL. Linkage of human apolipoproteins A-I and C-III genes. Nature 304(5924), 371–373 (1983).
  • Karathanasis SK. Apolipoprotein multigene family: tandem organization of human apolipoprotein AI, CIII, and AIV genes. Proc. Natl Acad. Sci. USA 82(19), 6374–6378 (1985).
  • Ito Y, Azrolan N, O’Connell A, Walsh A, Breslow JL. Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 249(4970), 790–793 (1990).
  • Maeda N, Li H, Lee D, Oliver P, Quarfordt SH, Osada J. Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J. Biol. Chem. 269(38), 23610–23616 (1994).
  • Le NA, Gibson JC, Ginsberg HN. Independent regulation of plasma apolipoprotein C-II and C-III concentrations in very low density and high density lipoproteins: implications for the regulation of the catabolism of these lipoproteins. J. Lipid Res. 29(5), 669–677 (1988).
  • Chan DC, Nguyen MN, Watts GF, Barrett PH. Plasma apolipoprotein C-III transport in centrally obese men: associations with very low-density lipoprotein apolipoprotein B and high-density lipoprotein apolipoprotein A-I metabolism. J. Clin. Endocrinol. Metab. 93(2), 557–564 (2008).
  • Sacks FM, Alaupovic P, Moye LA et al. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation 102(16), 1886–1892 (2000).
  • Lee SJ, Campos H, Moye LA, Sacks FM. LDL containing apolipoprotein CIII is an independent risk factor for coronary events in diabetic patients. Arterioscler. Thromb. Vasc. Biol. 23(5), 853–858 (2003).
  • Olivieri O, Martinelli N, Girelli D et al. Apolipoprotein C-III predicts cardiovascular mortality in severe coronary artery disease and is associated with an enhanced plasma thrombin generation. J. Thromb. Haemost. 8(3), 463–471 (2010).
  • Mendivil CO, Rimm EB, Furtado J, Chiuve SE, Sacks FM. Low-density lipoproteins containing apolipoprotein C-III and the risk of coronary heart disease. Circulation 124(19), 2065–2072 (2011).
  • Blankenhorn DH, Alaupovic P, Wickham E, Chin HP, Azen SP. Prediction of angiographic change in native human coronary arteries and aortocoronary bypass grafts. Lipid and nonlipid factors. Circulation 81(2), 470–476 (1990).
  • Hodis HN, Mack WJ, Azen SP et al. Triglyceride- and cholesterol-rich lipoproteins have a differential effect on mild/moderate and severe lesion progression as assessed by quantitative coronary angiography in a controlled trial of lovastatin. Circulation 90(1), 42–49 (1994).
  • Alaupovic P, Mack WJ, Knight-Gibson C, Hodis HN. The role of triglyceride-rich lipoprotein families in the progression of atherosclerotic lesions as determined by sequential coronary angiography from a controlled clinical trial. Arterioscler. Thromb. Vasc. Biol. 17(4), 715–722 (1997).
  • Koren E, Corder C, Mueller G et al. Triglyceride enriched lipoprotein particles correlate with the severity of coronary artery disease. Atherosclerosis 122(1), 105–115 (1996).
  • Genest JJ Jr, Bard JM, Fruchart JC, Ordovas JM, Wilson PF, Schaefer EJ. Plasma apolipoprotein A-I, A-II, B, E and C-III containing particles in men with premature coronary artery disease. Atherosclerosis 90(2–3), 149–157 (1991).
  • Jensen MK, Rimm EB, Furtado JD, Sacks FM. Apolipoprotein C-III as a potential modulator of the association between HDL-cholesterol and incident coronary heart disease. J. Am. Heart Assoc. 1(2), pii: jah3-e000232 (2012).
  • Riwanto M, Rohrer L, Roschitzki B et al. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoproteinproteome remodeling. Circulation 127(8), 891–904 (2013).
  • von Eckardstein A, Holz H, Sandkamp M, Weng W, Funke H, Assmann G. Apolipoprotein C-III(Lys58----Glu). Identification of an apolipoprotein C-III variant in a family with hyperalphalipoproteinemia. J. Clin. Invest. 87(5), 1724–1731 (1991).
  • Herron KL, Lofgren IE, Adiconis X, Ordovas JM, Fernandez ML. Associations between plasma lipid parameters and APOC3 and APOA4 genotypes in a healthy population are independent of dietary cholesterol intake. Atherosclerosis 184(1), 113–120 (2006).
  • Yin RX, Li YY, Lai CQ. Apolipoprotein A1/ C3/A5 haplotypes and serum lipid levels. Lipids Health Dis. 10, 140 (2011).
  • Teslovich TM, Musunuru K, Smith AV et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466(7307), 707–713 (2010).
  • Holleboom AG, Karlsson H, Lin RS et al. Heterozygosity for a loss-of-function mutation in GALNT2 improves plasma triglyceride clearance in man. Cell Metab. 14(6), 811–818 (2011).
  • Peacock RE, Hamsten A, Johansson J. Nilsson-Ehle P, Humphries SE. Associations of genotypes at the apolipoprotein AI-CIII-AIV, apolipoprotein B and lipoprotein lipase gene loci with coronary atherosclerosis and high density lipoprotein subclasses. Clin. Genet. 46(4), 273–282 (1994).
  • Ruiz-Narvaez EA, Yang Y, Nakanishi Y, Kirchdorfer J. Campos H. APOC3/A5 haplotypes, lipid levels, and risk of myocardial infarction in the Central Valley of Costa Rica. J. Lipid Res. 46(12), 2605–2613 (2005).
  • Ruiz-Narvaez EA, Sacks FM, Campos H. Abdominal obesity and hyperglycemia mask the effect of a common APOC3 haplotype on the risk of myocardial infarction. Am. J. Clin. Nutr. 87(6), 1932–1938 (2008).
  • Onat A, Erginel-Unaltuna N, Coban N, Cicek G, Yuksel H. APOC3 -482C>T polymorphism, circulating apolipoprotein C-III and smoking: interrelation and roles in predicting Type-2 diabetes and coronary disease. Clin. Biochem. 44(5–6), 391–396 (2011).
  • Andreassi MG, Adlerstein D, Carpeggiani C et al. Individual and summed effects of high-risk genetic polymorphisms on recurrent cardiovascular events following ischemic heart disease. Atherosclerosis 223(2), 409–415 (2012).
  • Olivieri O, Bassi A, Stranieri C et al. Apolipoprotein C-III, metabolic syndrome, and risk of coronary artery disease. J. Lipid Res. 44(12), 2374–2381 (2003).
  • Ding Y, Zhu MA, Wang ZX, Zhu J. Feng JB, Li DS. Associations of polymorphisms in the apolipoprotein APOA1-C3-A5 gene cluster with acute coronary syndrome. J. Biomed. Biotechnol. 2012, 509420 (2012).
  • Yu J, Huang J, Liang Y et al. Lack of association between apolipoprotein C3 gene polymorphisms and risk of coronary heart disease in a Han population in East China. Lipids Health Dis. 10, 200 (2011).
  • Boer JM, Feskens EJ, Kuivenhoven JA et al. Parental history of myocardial infarction: lipid traits, gene polymorphisms and lifestyle. Atherosclerosis 155(1), 149–156 (2001).
  • Baroni MG, Berni A, Romeo S et al. Genetic study of common variants at the ApoE, ApoAI, ApoCIII, ApoB, lipoprotein lipase (LPL) and hepatic lipase (LIPC) genes and coronary artery disease (CAD): variation in LIPC gene associates with clinical outcomes in patients with established CAD. BMC Med. Genet. 4, 8 (2003).
  • Liu S, Song Y, Hu FB et al. A prospective study of the APOA1 XmnI and APOC3 SstI polymorphisms in the APOA1/C3/A4 gene cluster and risk of incident myocardial infarction in men. Atherosclerosis 177(1), 119–126 (2004).
  • Chhabra S, Narang R, Lakshmy R et al. Apolipoprotein C3 SstI polymorphism in the risk assessment of CAD. Mol. Cell. Biochem. 259(1–2), 59–66 (2004).
  • Relvas WG, Izar MC, Helfenstein T et al. Relationship between gene polymorphisms and prevalence of myocardial infarction among diabetic and non-diabetic subjects. Atherosclerosis 178(1), 101–105 (2005).
  • Abd El-Aziz TA, Mohamed RH, Hashem RM. Association of lipoprotein lipase and apolipoprotein C-III genes polymorphism with acute myocardial infarction in diabetic patients. Mol. Cell. Biochem. 354(1–2), 141–150 (2011).
  • Sediri Y, Kallel A, Feki M et al. Association of a DNA polymorphism of the apolipoprotein AI-CIII-AIV gene cluster with myocardial infarction in a Tunisian population. Eur. J. Intern. Med. 22(4), 407–411 (2011).
  • Pollin TI, Damcott CM, Shen H et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 322(5908), 1702–1705 (2008). ▪▪ Identification of the APOC3 R19X nonsense mutation in a population of old order Amish. Heterozygotes for this variant had increased HDL-C and decreased LDL cholesterol, total cholesterol and triglycerides, and less detectable coronary artery calcification. These results implied a cardioprotective effect of partial apoC-III deficiency.
  • Holmberg R, Refai E, Hoog A et al. Lowering apolipoprotein CIII delays onset of Type 1 diabetes. Proc. Natl Acad. Sci. USA 108(26), 10685–10689 (2011).
  • Makinen PI, Yla-Herttuala S. Therapeutic gene targeting approaches for the treatment of dyslipidemias and atherosclerosis. Curr. Opin. Lipidol. 24(2), 116–122 (2013).
  • Khera AV, Cuchel M, de la Llera-Moya M et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364(2), 127–135 (2011).
  • Vergeer M, Korporaal SJ, Franssen R et al. Genetic variant of the scavenger receptor BI in humans. N. Engl. J. Med. 364(2), 136–145 (2011).
  • Varbo A, Benn M, Tybjaerg-Hansen A, Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease. J. Am. Coll. Cardiol. 61(4), 427–436 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.