539
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Targeting MTP for the treatment of homozygous familial hypercholesterolemia

Pages 369-381 | Published online: 18 Jan 2017

References

  • Wetterau JR, Zilversmit DB. A triglyceride and cholesteryl ester transfer protein associated with liver microsomes. J. Biol. Chem. 259, 10863–10866 (1984).
  • Wetterau JR, Zilversmit DB. Localization of intracellular triacyglycerol and cholesteryl ester transfer activity in rat tissue. Biochim. Biophys. Acta 875, 610–617 (1986).
  • Wetterau JR, Combs KA, Spinner SN, Joiner BJ. Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. J. Biol. Chem. 265, 9800–9807 (1990).
  • Hussain MM, Rava P, Walsh M, Rana M, Iqbal J. Multiple functions of microsomal triglyceride transfer protein. Nutr. Metab. 9, 14 (2012).
  • Wetterau JR, Aggerbeck LP, Laplaud PM, McLean LR. Structural properties of the microsomal triglyceride-transfer protein complex. Biochemistry 30, 4406–4412 (1991).
  • Wetterau JR, Combs KA, McLean LR, Spinner SN, Aggerbeck LP. Protein disulfide isomerase appears necessary to maintain the catalytically active structure of the microsomal triglyceride transfer protein. Biochemistry 30, 9728–9735 (1991).
  • Wang L, Fast DG, Attie AD. The enzymatic and nonenzymatic roles of protein-disulfide isomerase in apolipoprotein B secretion. J. Biol. Chem. 272, 27644–27651 (1997).
  • Mann CJ, Anderson TA, Read J et al. The structure of vitellogenin provides a molecular model for the assembly and secretion of atherogenic lipoproteins. J. Mol. Biol. 285, 391–408 (1999).
  • Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apolipoprotein B-lipoprotein assembly. J. Lipid Res. 44, 22–32 (2003).
  • Hussain MM, Iqbal J, Anwar K, Rava P, Dai K. Microsomal triglyceride transfer protein: a multifunctional protein. Front. Biosci. 8, 500–506 (2003).
  • Smolenaars MM, Madsen O, Rodenburg KW, van der Horst DJ. Molecular diversity and evolution of the large lipid transfer protein superfamily. J. Lipid Res. 48, 489–502 (2007).
  • Chen Z, Newberry EP, Norris JY et al. ApoB100 is required for increased VLDL-triglyceride secretion by microsomal triglyceride transfer protein in ob/ob mice. J. Lipid Res. 49(9), 2013–2022 (2008).
  • van der Horst DJ, Roosendaal SD, Rodenburg KW. Circulatory lipid transport: lipoprotein assembly and function from an evolutionary perspective. Mol. Cell. Biochem. 326, 105–119 (2009).
  • Gordon DA, Jamil H. Progress towards understanding the role of microsomal triglyceride transfer protein in apolipoprotein-B lipoprotein assembly. Biochim. Biophys. Acta 1486, 72–83 (2000).
  • Wetterau JR, Aggerbeck LP, Bouma M-E et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 258, 999–1001 (1992).
  • Shoulders CC, Brett DJ, Bayliss JD et al. Abetalipoproteinemia is caused by defects of the gene encoding the 97 kDa subunit of a microsomal triglyceride transfer protein. Hum Mol. Genet. 2, 2109–2116 (1993).
  • Sharp D, Blinderman L, Combs KA et al. Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinemia. Nature 365, 65–69 (1993).
  • Berriot-Varoqueaux N, Aggerbeck LP, Samson-Bouma M, Wetterau JR. The role of the microsomal triglyceride transfer protein in abetalipoproteinemia. Annu. Rev. Nutr. 20, 663–697 (2000).
  • Chang BHJ, Liao W, Li L, Nakamuta M, Mack D, Chan L. Liver-specific inactivation of the abetalipoproteinemia gene completely abrogates very low density lipoprotein low density lipoprotein production in a viable conditional knockout mouse. J. Biol. Chem. 274, 6051–6055 (1999).
  • Raabe M, Véniant MM, Sullivan MA et al. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J. Clin. Invest. 103, 1287–1298 (1999).
  • Mohler PJ, Zhu MY, Blade AM, Ham AJ, Shelness GS, Swift LL. Identification of a novel isoform of microsomal triglyceride transfer protein. J. Biol. Chem. 282, 26981–26988 (2007).
  • Rehberg EF, Samson-Bouma ME, Kienzle B et al. A novel abetalipoproteinemia genotype. Identification of a missense mutation in the 97-kDa subunit of the microsomal triglyceride transfer protein that prevents complex formation with protein disulfide isomerase. J. Biol. Chem. 271, 29945–29952 (1996).
  • Ohashi K, Ishibashi S, Osuga J et al. Novel mutations in the microsomal triglyceride transfer protein gene causing abetalipoproteinemia. J. Lipid Res. 41, 1199–1204 (2000).
  • Atzel A, Wetterau JR. Mechanism of microsomal triglyceride transfer protein catalyzed lipid transport. Biochemistry 32, 10444–10450 (1993).
  • Atzel A, Wetterau JR. Identification of two classes of lipid molecule binding sites on the microsomal triglyceride transfer protein. Biochemistry 33, 15382–15388 (1994).
  • Rava P, Athar H, Johnson C, Hussain MM. Transfer of cholesteryl esters and phospholipids as well as net deposition by microsomal triglyceride transfer protein. J. Lipid Res. 46, 1779–1785 (2005).
  • Kornzweig AL. Bassen–Kornzweig syndrome. Present status. J. Med. Genet. 7(3), 271–276 (1970).
  • Wetterau JR, Gregg RE, Harrity TW et al. An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science 282, 751–754 (1998).
  • Bakillah A, Nayak N, Saxena U, Medford RM, Hussain MM. Decreased secretion of ApoB follows inhibition of ApoB-MTP binding by a novel antagonist. Biochemistry 39(16), 4892–4899 (2000).
  • Ksander GM, deJesus R, Yuan A et al. Diaminoindanes as microsomal triglyceride transfer protein inhibitors. J. Med. Chem. 44(26), 4677–4687 (2001).
  • Bays H, Stein EA. Pharmacotherapy for dyslipidaemiacurrent therapies and future agents. Expert Opin. Pharmacother. 4(11), 1901–1938 (2003).
  • Takahashi J, Toshima G, Matsumoto Y et al. In vitro screening for antihyperlipidemic activities in foodstuffs by evaluating lipoprotein profiles secreted from human hepatoma cells. J. Nat. Med. 65(3–4), 670–674 (2011).
  • Dhote V, Joharapurkar A, Kshirsagar S et al. Inhibition of microsomal triglyceride transfer protein improves insulin sensitivity and reduces atherogenic risk in Zucker fatty rats. Clin. Exp. Pharmacol. Physiol. 38(5), 338–344 (2011).
  • Gordon DA, Jamil H, Sharp D et al. Secretion of apolipoprotein B-containing lipoproteins from HeLa cells is dependent on expression of the microsomal triglyceride transfer protein and is regulated by lipid availability. Proc. Natl Acad. Sci. USA 91, 7628–7632 (1994).
  • Rava P, Ojakian GK, Shelness GS, Hussain MM. Phospholipid transfer activity of microsomal triacylglycerol transfer protein is sufficient for the assembly and secretion of apolipoprotein B lipoproteins. J. Biol. Chem. 281, 11019–11027 (2006).
  • Bakillah A, El Abbouyi A. The role of microsomal triglyceride transfer protein in lipoprotein assembly: an update. Front. Biosci. 8, 294–305 (2003).
  • Liang J, Ginsberg HN. Microsomal triglyceride transfer protein binding and lipid transfer activities are independent of each other, but both are required for secretion of apolipoprotein B lipoproteins from liver cells. J. Biol. Chem. 276, 28606–28612 (2001).
  • Shoulders CC, Shelness GS. Current biology of MTP: implications for selective inhibition. Curr. Top. Med. Chem. 5, 283–300 (2005).
  • Kim E, Campbell S, Schueller O et al. A small-molecule inhibitor of enterocytic microsomal triglyceride transfer protein, SLx-4090: biochemical, pharmacodynamic, pharmacokinetic, and safety profile. J. Pharmacol. Exp. Ther. 337(3), 775–785 (2011).
  • Sahai A, Pan X, Paul R, Malladi P, Kohli R, Whitington PF. Roles of phosphatidylinositol 3-kinase and osteopontin in steatosis and aminotransferase release by hepatocytes treated with methionine-choline-deficient medium. Am. J. Physiol. Gastrointest. Liver Physiol. 291(1), 55–62 (2006).
  • Björkegren J, Beigneux A, Bergo MO, Maher JJ, Young SG. Blocking the secretion of hepatic very low density lipoproteins renders the liver more susceptible to toxin-induced injury. J. Biol. Chem. 277(7), 5476–5483 (2002).
  • Pan X, Hussain FN, Iqbal J et al. Inhibiting proteasomal degradation of microsomal triglyceride transfer protein prevents CCl4-induced steatosis. Expert Opin. Ther. Targets 11(2), 181–189 (2007).
  • Pereira IV, Stefano JT, Oliveira CP. Microsomal triglyceride transfer protein and nonalcoholic fatty liver disease. Expert Rev. Gastroenterol. Hepatol. 5, 245–251 (2011).
  • Sahebkar A, Watts GF. New LDL-cholesterol lowering therapies: pharmacology, clinical trials, and relevance to acute coronary syndromes. Clin. Ther. 35(8), 1082–1098 (2013).
  • Aggarwal D, West KL, Zern TL, Shrestha S, Vergara-Jimenez M, Fernandez ML. JTT-130, a microsomal triglyceride transfer protein (MTP) inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs. BMC Cardiovasc. Disord. 5, 30 (2005).
  • Pan X, Hussain FN, Iqbal J, Feuerman MH, Hussain MM. Inhibiting proteasomal degradation of microsomal triglyceride transfer protein prevents CCl4-induced steatosis. J. Biol. Chem. 282(23), 17078–17089 (2007).
  • Spann NJ, Kang S, Li AC et al. Coordinate transcriptional repression of liver fatty acid-binding protein and microsomal triglyceride transfer protein blocks hepatic very low density lipoprotein secretion without hepatosteatosis. J. Biol. Chem. 281(44), 33066–33077 (2006).
  • Burnett JR, Watts GF. MTP inhibition as a treatment for dyslipidaemias: time to deliver or empty promises? Expert Opin. Ther. Targets 11(2), 181–189 (2007).
  • Burnett JR. Drug evaluation: the MTP inhibitor JTT-130 as a potential treatment for hyperlipidemia. IDrugs 9(7), 495–499 (2006).
  • Nachimuthu S, Raggi P. Novel agents to manage dyslipidemias and impact atherosclerosis. Cardiovasc. Hematol. Disord. Drug Targets 6(3), 209–217 (2006).
  • Miyazaki, , Miwa S, Kodama H et al. Hepatic and intestinal changes in rats treated with T-0126, a microsomal triglyceride transfer protein (MTP) inhibitor. Toxicol. Sci. 32(2), 161–177 (2007).
  • Hussain MM, Bakillah A. New approaches to target microsomal triglyceride transfer protein. Curr. Opin. Lipidol. 19, 572–578 (2008).
  • Wierzbicki AS, Hardman T, Prince WT. Future challenges for microsomal transport protein inhibitors. Curr. Vasc. Pharmacol. 7, 277–286 (2009).
  • Paras C, Hussain MM, Rosenson RS. Emerging drugs for hyperlipidemia. Expert Opin. Emerg. Drugs 15, 433–451 (2010).
  • Stefanutti C, Morozzi C, Di Giacomo S. New clinical perspectives of hypolipidemic drug therapy in severe hypercholesterolemia. Curr. Med. Chem. 19(28), 4861–4868 (2012).
  • Brozovic S, Nagaishi T, Yoshida M et al. CD1d function is regulated by microsomal triglyceride transfer protein. Nat. Med. 10, 535–539 (2004).
  • Major AS, Joyce S, Van Kaer L. Lipid metabolism, atherogenesis and CD1-restricted antigen presentation. Trends Mol. Med. 12(6), 270–278 (2006).
  • Kaser A, Hava DL, Dougan SK et al. Microsomal triglyceride transfer protein regulates endogenous and exogenous antigen presentation by group 1 CD1 molecules. Eur. J. Immunol. 38(8), 2351–2359 (2008).
  • Zeissig S, Dougan SK, Barral DC et al. Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function. J. Clin. Invest. 120(8), 2889–2899 (2010).
  • Zhou D, Cantu C 3rd, Sagiv Y et al. Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303, 523–527 (2004).
  • Kaser A, Hava DL, Dougan SK et al. Microsomal triglyceride transfer protein regulates endogenous and exogenous antigen presentation by group 1 CD1 molecules. Eur. J. Immunol. 38, 2351–2359 (2008).
  • Zeissig S, Dougan SK, Barral DC et al. Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function. J. Clin. Invest. 120, 2889–2899 (2010).
  • Uller L, Mathiesen JM, Alenmyr L et al. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation. Respir. Res. 8, 16 (2007).
  • Ryder T, Walker GS, Goosen TC et al. Insights into the novel hydrolytic mechanism of a diethyl 2-phenyl-2-(2-arylacetoxy)methyl malonate ester-based microsomal triglyceride transfer protein (MTP) inhibitor. Chem. Res. Toxicol. 25(10), 2138–2152 (2012).
  • Hata T, Mera Y, Ishii Y et al. JTT-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, suppresses food intake and gastric emptying with the elevation of plasma peptide YY and glucagon-like peptide-1 in a dietary fat-dependent manner. J. Pharmacol. Exp. Ther. 336(3), 850–856 (2011); erratum: 336(3), 321–322 (2011).
  • Mera Y, Odani N, Kawai T et al. Pharmacological characterization of diethyl-2-({3-dimethylcarbamoyl-4-[(4’-trifluoromethylbiphenyl-2-carbonyl)amino]phenyl} acetyloxymethyl)-2-phenylmalonate (JTT-130), an intestine-specific inhibitor of microsomal triglyceride transfer protein. J. Pharmacol. Exp. Ther. 336(2), 321–327 (2011).
  • Luo Y, Shelly L, Sand T, Chang G, Jiang XC. Identification and characterization of dual inhibitors for phospholipid transfer protein and microsomal triglyceride transfer protein. J. Pharmacol. Exp. Ther. 335(3), 653–658 (2010).
  • Vu CB, Milne JC, Carney DP et al. Discovery of benzothiazole derivatives as efficacious and enterocytespecific MTP inhibitors. Bioorg. Med. Chem. Lett. 19(5), 1416–1420 (2009).
  • Iqbal J, Dai K, Seimon T et al. IRE1beta inhibits chylomicron production by selectively degrading MTP mRNA. Cell. Metab. 7(5), 445–455 (2008).
  • Miyazaki, , Miwa S, Kodama H, et al. Hepatic and intestinal changes in rats treated with T-0126, a microsomal triglyceride transfer protein (mtp) inhibitor. J. Toxicol. Sci. 32(2), 161–177 (2007).
  • Li J, Bronk BS, Dirlam JP et al. In vitro and in vivo profile of 5-[(4’-trifluoromethyl-biphenyl-2-carbonyl)-amino]-1H-indole-2-carboxylic acid benzylmethyl carbamoylamide (dirlotapide), a novel potent MTP inhibitor for obesity. Bioorg. Med. Chem. Lett. 17(7), 1996–1999 (2007).
  • Ueshima K, Akihisa-Umeno H, Nagayoshi A, Takakura S, Matsuo M, Mutoh S. Implitapide, a microsomal triglyceride transfer protein inhibitor, reduces progression of atherosclerosis in apolipoprotein E knockout mice fed a western-type diet: involvement of the inhibition of postprandial triglyceride elevation. Biol. Pharm. Bull. 28(2), 247–252 (2005).
  • Sulsky R, Robl JA, Biller SA et al. 5-carboxamido-1,3,2-dioxaphosphorinanes, potent inhibitors of MTP. Bioorg. Med. Chem. Lett. 14(20), 5067–5070 (2004).
  • Chandler CE, Wilder DE, Pettini JL et al. CP-346086: an MTP inhibitor that lowers plasma cholesterol and triglycerides in experimental animals and in humans. J. Lipid Res. 44(10), 1887–1901 (2003).
  • Cuchel M, Bloedon LT, Szapary PO et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N. Engl. J. Med. 356(2), 148–156 (2007).
  • Sorbera LA, Martin L, Silvestre J, Castaner J. Implitapide. Drugs Future 25, 1138–1144 (2000).
  • Samaha FF, McKenney J, Bloedon LT, Sasiela WJ, Rader DJ. Inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia. Nat. Clin. Pract. Cardiovasc. Med. 5(8), 497–505 (2008).
  • Rizzo M. Lomitapide, a microsomal triglyceride transfer protein inhibitor for the treatment of hypercholesterolemia. IDrugs 13(2), 103–111 (2010).
  • Stefanutti C, Julius U. Lipoprotein apheresis: state of the art and novelties. Atheroscler. Suppl. 14(1), 19–27 (2013).
  • Stern L, Iqbal N, Seshadri P et al. The effects of lowcarbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann. Intern. Med. 140, 778–785 (2004).
  • Martens EA, Westerterp-Plantenga MS. Protein diets, body weight loss and weight maintenance. Curr. Opin. Clin. Nutr. Metab. Care 17(1), 75–79 (2014).
  • Berthier MT, Houde A, Paradis AM et al. Molecular screening of the microsomal triglyceride transfer protein: association between polymorphisms and both abdominal obesity and plasma apolipoprotein B concentration. J. Hum. Genet. 49(12), 684–690 (2004).
  • Schaefer EJ, Asztalos BF. Cholesteryl ester transfer protein inhibition, high-density lipoprotein metabolism and heart disease risk reduction. Curr. Opin. Lipidol. 17(4), 394–398 (2006).
  • Ikewaki K, Rader DJ, Zech LA, Brewer HB Jr. In vivo metabolism of apolipoproteins A-I and E in patients with abetalipoproteinemia: implications for the roles of apolipoproteins B and E in HDL metabolism. J. Lipid Res. 35, 1809–1819 (1994).
  • Temel RE, Tang W, Ma Y et al. Hepatic Niemann-Pick C1–like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J. Clin. Invest. 117, 1968–1978 (2007).
  • Cuchel M, Meagher EA, du Toit Theron H et al.; Phase 3 HoFH Lomitapide Study investigators. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, Phase 3 study. Lancet 381(9860), 40–46 (2013).
  • Sacks FM, Stanesa M, Hegele RA. Severe hypertriglyceridemia with pancreatitis: thirteen years’ treatment with lomitapide. JAMA Intern. Med. 174(3), 443–447 (2014).
  • Nielsen LB, Veniant M, Boren J et al. Genes for apolipoprotein B and microsomal triglyceride transfer protein are expressed in the heart: evidence that the heart has the capacity to synthesize and secrete lipoproteins. Circulation 98, 13–16 (1998).
  • Cuchel M, Rader DJ. Microsomal transfer protein inhibition in humans. Curr. Opin. Lipidol. 24(3), 246–250 (2013).
  • Chang G, Ruggeri RB, Harwood HJ Jr. Microsomal triglyceride transfer protein (MTP) inhibitors: discovery of clinically active inhibitors using high-throughput screening and parallel synthesis paradigms. Curr. Opin. Drug Discov. Devel. 5(4), 562–570 (2002).
  • Marais AD, Blom DJ. Recent advances in the treatment of homozygous familial hypercholesterolaemia. Curr. Opin. Lipidol. 24(4), 288–294 (2013).
  • FDA approves new orphan drug for rare cholesterol disorder. www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm333285.htm
  • EMA: Lojuxta. www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002578/human_med_001668.jsp&mid=WC0b01ac058001d124
  • Zaiss S, Sander E. BAY 13-9952 (implitapide), an inhibitor of the microsomal triglyceride transfer protein (MTP), inhibits atherosclerosis and prolongs lifetime in apo-E knockout mice. Atherosclerosis 151(1), 135 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.