1,188
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Development and clinical applications of siRNA-encapsulated lipid nanoparticles in cancer

, &
Pages 317-331 | Published online: 18 Jan 2017

References

  • GLOBOCAN 2008: Cancer Incidence and Mortality Worldwide. www.iarc.fr/en/media-centre/iarcnews/2010/globocan2008.php
  • WHO fact sheet. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
  • Canadian Cancer Society. www.cancer.ca
  • Davis JC, Furstenthal L, Desai AA et al. The microeconomics of personalized medicine: today’s challenge and tomorrow’s promise. Nat. Rev. Drug Discov. 8(4), 279–286 (2009).
  • Chen R, Mias GI, Li-Pook-Than J et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148(6), 1293–1307 (2012).
  • Tian Q, Price ND, Hood L. Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine. J. Intern. Med. 271(2), 111–121 (2012).
  • Loscalzo J, Barabasi AL. Systems biology and the future of medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 3(6), 619–627 (2011).
  • Manoharan M. RNA interference and chemically modified siRNAs. Nucleic Acids Res. Suppl. (3), 115–116 (2003).
  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 391(6669), 806–811 (1998).
  • Parrish S, Fleenor J, Xu S, Mello C, Fire A. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol. Cell 6(5), 1077–1087 (2000).
  • Jackson AL, Burchard J, Leake D et al. Position-specific chemical modification of siRNAs reduces ‘off-target’ transcript silencing. RNA 12(7), 1197–1205 (2006).
  • Behlke MA. Chemical modification of siRNAs for in vivo use. Oligonucleotides 18(4), 305–319 (2008).
  • Judge AD, Bola G, Lee AC, Maclachlan I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13(3), 494–505 (2006).
  • Judge AD, Robbins M, Tavakoli I et al. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J. Clin. Invest. 119(3), 661–673 (2009).
  • Bramsen JB, Kjems J. Chemical modification of small interfering RNA. Meth. Mol. Biol. 721, 77–103 (2011).
  • Deleavey GF, Damha MJ. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 19(8), 937–954 (2012).
  • Schlee M, Hornung V, Hartmann G. siRNA and isRNA: two edges of one sword. Mol. Ther. 14(4), 463–470 (2006).
  • Whitehead KA, Dahlman JE, Langer RS, Anderson DG. Silencing or stimulation? siRNA delivery and the immune system. Annu. Rev. Chem. Biomol. Eng. 2, 77–96 (2011).
  • Hornung V, Barchet W, Schlee M, Hartmann G. RNA recognition via TLR7 and TLR8. Handb. Exp. Pharmacol. (183), 71–86 (2008).
  • Robbins M, Judge A, Ambegia E et al. Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum. Gene Ther. 19(10), 991–999 (2008).
  • Nakayama T, Butler JS, Sehgal A et al. Harnessing a physiologic mechanism for siRNA delivery with mimetic lipoprotein particles. Mol. Ther. 20(8), 1582–1589 (2012).
  • Wolfrum C, Shi S, Jayaprakash KN et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol. 25(10), 1149–1157 (2007).
  • Querbes W, Ge P, Zhang W et al. Direct CNS delivery of siRNA mediates robust silencing in oligodendrocytes. Oligonucleotides 19(1), 23–29 (2009).
  • Chen Q, Butler D, Querbes W et al. Lipophilic siRNAs mediate efficient gene silencing in oligodendrocytes with direct CNS delivery. J. Control. Release 144(2), 227–232 (2010).
  • Yamada T, Peng CG, Matsuda S et al. Versatile site-specific conjugation of small molecules to siRNA using click chemistry. J. Org. Chem. 76(5), 1198–1211 (2011).
  • Alnylam. www.alnylam.com/web/wp-content/uploads/2012/08/IRTNNNConjugate080612.pdf
  • Alnylam Pharmaceuticals. www.alnylam.com
  • Alnylam Pharmaceuticals. www.alnylam.com/web/wp-content/uploads/2013/07/ALN-AT3-preclin-ISTH-July2013.pdf
  • Akin Akinc. An RNAi therapeutic targeting antithrombinincreases thrombin generation and improves hemostasis. Presented at: XXIV Congress of the ISTH. Amsterdam, The Netherlands, 2 July 2013.
  • Jayaraman M, Ansell SM, Mui BL et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem. Int. Ed. Engl. 51(34), 8529–8533 (2012). ▪ Authors Carry Studies To Learn The Structure–Activity Relationship And Pinpoint The Crucial Requirement To Effective Gene Silencing Capabilities.
  • Santel A, Aleku M, Keil O et al. RNA interference in the mouse vascular endothelium by systemic administration of siRNA-lipoplexes for cancer therapy. Gene Ther. 13(18), 1360–1370 (2006).
  • Santel A, Aleku M, Keil O et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther. 13(16), 1222–1234 (2006).
  • Aleku M, Schulz P, Keil O et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res. 68(23), 9788–9798 (2008).
  • Santel A, Aleku M, Roder N et al. Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models. Clin. Cancer Res. 16(22), 5469–5480 (2010).
  • Strumberg D, Schultheis B, Traugott U et al. Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors. Int. J. Clin. Pharmacol. Ther. 50(1), 76–78 (2012).
  • Silence Therapeutics. www.silence-therapeutics.com
  • Landen CN Jr, Chavez-Reyes A, Bucana C et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 65(15), 6910–6918 (2005).
  • Landen CN, Merritt WM, Mangala LS et al. Intraperitoneal delivery of liposomal siRNA for therapy of advanced ovarian cancer. Cancer Biol. Ther. 5(12), 1708–1713 (2006).
  • Mangala LS, Han HD, Lopez-Berestein G, Sood AK. Liposomal siRNA for ovarian cancer. Methods Mol. Biol. 555, 29–42 (2009).
  • Tanaka T, Mangala LS, Vivas-Mejia PE et al. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res. 70(9), 3687–3696 (2010).
  • Shahzad MM, Lu C, Lee JW et al. Dual targeting of EphA2 and FAK in ovarian carcinoma. Cancer Biol. Ther. 8(11), 1027–1034 (2009).
  • Hatakeyama H, Ito E, Akita H et al. A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J. Control. Release 139(2), 127–132 (2009).
  • Hou KK, Pan H, Lanza GM, Wickline SA. Melittin derived peptides for nanoparticle based siRNA transfection. Biomaterials 34(12), 3110–3119 (2013).
  • Frank-Kamenetsky M, Grefhorst A, Anderson NN et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl Acad. Sci. USA 105(33), 11915–11920 (2008).
  • Li J, Chen YC, Tseng YC, Mozumdar S, Huang L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J. Control. Release 142(3), 416–421 (2010).
  • Li J, Yang Y, Huang L. Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J. Control. Release 158(1), 108–114 (2012).
  • Yang Y, Li J, Liu F, Huang L. Systemic delivery of siRNA via LCP nanoparticle efficiently inhibits lung metastasis. Mol. Ther. 20(3), 609–615 (2012).
  • Kapoor M, Burgess DJ. Efficient and safe delivery of siRNA using anionic lipids: formulation optimization studies. Int. J. Pharma. 432(1–2), 80–90 (2012).
  • Kapoor M, Burgess DJ. Cellular uptake mechanisms of novel anionic siRNA lipoplexes. Pharm. Res. 30(4), 1161–1175 (2013).
  • Kong F, Liu G, Sun B et al. Phosphorylatable short peptide conjugated low molecular weight chitosan for efficient siRNA delivery and target gene silencing. Int. J. Pharma. 422(1–2), 445–453 (2012).
  • Heidel JD. Linear cyclodextrin-containing polymers and their use as delivery agents. Expert Opin. Drug Deliv. 3(5), 641–646 (2006).
  • Maurer N, Fenske DB, Cullis PR. Developments in liposomal drug delivery systems. Expert Opin. Biol. Ther. 1(6), 923–947 (2001).
  • Allen TM, P.R. Cullis: Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).
  • Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin. Drug Deliv. 5(1), 25–44 (2008).
  • Felgner PL, Gadek TR, Holm M et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84(21), 7413–7417 (1987).
  • Wheeler JJ, Palmer L, Ossanlou M et al. Stabilized plasmid–lipid particles: construction and characterization. Gene Ther. 6(2), 271–281 (1999).
  • Maurer N, Wong KF, Stark H et al. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys. J. 80(5), 2310–2326 (2001).
  • Mok KW, Cullis PR. Structural and fusogenic properties of cationic liposomes in the presence of plasmid DNA. Biophys. J. 73(5), 2534–2545 (1997).
  • Mok KW, Lam AM, Cullis PR. Stabilized plasmid-lipid particles: factors influencing plasmid entrapment and transfection properties. Biochim. Biophys. Acta 1419(2), 137–150 (1999).
  • Leonetti C, Biroccio A, Benassi B et al. Encapsulation of c-myc antisense oligodeoxynucleotides in lipid particles improves antitumoral efficacy in vivo in a human melanoma line. Cancer Gene Ther. 8(6), 459–468 (2001).
  • Mui B, Raney SG, Semple SC, Hope MJ. Immune stimulation by a CpG-containing oligodeoxynucleotide is enhanced when encapsulated and delivered in lipid particles. J. Pharmacol. Exp. Ther. 298(3), 1185–1192 (2001).
  • Semple SC, Klimuk SK, Harasym TO et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta 1510(1–2), 152–166 (2001).
  • Morrissey DV, Lockridge JA, Shaw L et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23(8), 1002–1007 (2005).
  • Zimmermann TS, Lee AC, Akinc A et al. RNAi-mediated gene silencing in non-human primates. Nature 441(7089), 111–114 (2006).
  • Maier MA, Jayaraman M, Matsuda S et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 21(8), 1570–1578 (2013). ▪ New Generation Of Ionizable Cationic Lipids With Biodegradable Moieties Were Synthesized And Shown To Have Equal Or Better Potency To Current Gold Standard Lipid.
  • Semple SC, Akinc A, Chen J et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28(2), 172–176 (2010). ▪ Demonstrates That Activity Of Lnp Systems Can Be Drastically Improved By Changes To The Head Group Or Linkers Of Ionizable Lipids.
  • Hafez IM, Cullis PR. Roles of lipid polymorphism in intracellular delivery. Adv. Drug Rev. 47(2–3), 139–148 (2001).
  • Hafez IM, Maurer N, Cullis PR. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 8(15), 1188–1196 (2001).
  • Alabi CA, Love KT, Sahay G et al. Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery. Proc. Natl Acad. Sci. USA 110(32), 12881–12886 (2013).
  • Gilleron J, Querbes W, Zeigerer A et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31(7), 638–646 (2013). ▪ Demonstrates That <2% Of Sirna Delivered By Lnps Is Released To Cytosol.
  • Coelho T, Adams D, Silva A et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369(9), 819–829 (2013). ▪ Clinical Studies Of Dlinmc3Dma Lnp Systems Showing Tolerability And Gene Silencing Of Transthyretin.
  • Tabernero J, Shapiro GI, Lorusso PM et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 3(4), 406–417 (2013). ▪ Clinical Studies Of Dlindma Lnp Systems Showing Tolerability And Gene Silencing In Cancer Patients.
  • Tekmira Pharmaceuticals Corporation. http://investor.tekmirapharm.com/releasedetail.cfm?ReleaseID=755333
  • Tekmira Pharmaceuticals. www.tekmira.com
  • Akinc A, Zumbuehl A, Goldberg M et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26(5), 561–569 (2008).
  • Akinc A, Lynn DM, Anderson DG, Langer R. Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J. Am. Chem. Soc. 125(18), 5316–5323 (2003).
  • Anderson DG, Peng W, Akinc A et al. A polymer library approach to suicide gene therapy for cancer. Proc. Natl Acad. Sci. USA 101(45), 16028–16033 (2004).
  • Akinc A, Goldberg M, Qin J et al. Development of lipidoidsiRNA formulations for systemic delivery to the liver. Mol. Ther. 17(5), 872–879 (2009).
  • Love KT, Mahon KP, Levins CG et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107(5), 1864–1869 (2010).
  • Mahon KP, Love KT, Whitehead KA et al. Combinatorial approach to determine functional group effects on lipidoid-mediated siRNA delivery. Bioconjug. Chem. 21(8), 1448–1454 (2010).
  • Svensson RU, Shey MR, Ballas ZK et al. Assessing siRNA pharmacodynamics in a luciferase-expressing mouse. Mol. Ther. 16(12), 1995–2001 (2008).
  • Lin PJ, Tam YY, Hafez I et al. Influence of cationic lipid composition on uptake and intracellular processing of lipid nanoparticle formulations of siRNA. Nanomedicine 9(2), 233–246 (2013).
  • Sahay G, Querbes W, Alabi C et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31(7), 653–658 (2013).
  • Lee JB, Zhang K, Tam YY et al. Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer in vivo. Int. J. Cancer 131(5), E781–790 (2012).
  • Basha G, Novobrantseva TI, Rosin N et al. Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigenpresenting cells. Mol. Ther. 19(12), 2186–2200 (2011).
  • Belliveau NM, Huft J, Lin PJ et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids 1, e37 (2012).
  • Zhigaltsev IV, Belliveau N, Hafez I et al. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir 28(7), 3633–3640 (2012).
  • Leung AK, Hafez IM, Baoukina S et al. Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. J. Phys. Chem. C Nanomater. Interfaces 116(34), 18440–18450 (2012).
  • Akinc A, Querbes W, De S et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18(7), 1357–1364 (2010). ▪ Demonstrates That Ionizable Cationic Lipid Lnp Systems Require Association With Apoe For Uptake Into Hepatocytes.
  • Asai T, Matsushita S, Kenjo E et al. Dicetyl phosphatetetraethylenepentamine-based liposomes for systemic siRNA delivery. Bioconjug. Chem. 22(3), 429–435 (2011).
  • Schiffelers RM, Bakker-Woudenberg IA, Storm G et al. Localization of sterically stabilized liposomes in experimental rat Klebsiella pneumoniae pneumonia: dependence on circulation kinetics and presence of poly(ethylene)glycol coating. Biochim Biophys Acta 1468(1-2), 253–261 (2000).
  • Mui BL, Tam YK, Jayaraman M et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids 2, e139 (2013). ▪ Demonstrates The Importance Of Peg In Prolonging Lnp Circulation And Its Role In Gene Silencing Activity.
  • Tam YY, Chen S, Zaifman J et al. Small molecule ligands for enhanced intracellular delivery of lipid nanoparticle formulations of siRNA. Nanomedicine 9(5), 665–674 (2013).
  • Low PS, Kularatne SA. Folate-targeted therapeutic and imaging agents for cancer. Curr. Opin. Chem. Biol. 13(3), 256–262 (2009).
  • Kularatne SA, Low PS. Targeting of nanoparticles: folate receptor. Methods Mol. Biol. 624, 249–265 (2010).
  • Yoshizawa T, Hattori Y, Hakoshima M, Koga K, Maitani Y. Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Eur. J. Pharm. Biopharm. 70(3), 718–725 (2008).
  • Kularatne SA, Venkatesh C, Santhapuram HK et al. Synthesis and biological analysis of prostate-specific membrane antigen-targeted anticancer prodrugs. J. Med. Chem. 53(21), 7767–7777 (2010).
  • Kularatne SA, Zhou Z, Yang J, Post CB, Low PS. Design, synthesis, and preclinical evaluation of prostate-specific membrane antigen targeted (99m)Tc-radioimaging agents. Mol. Pharm. 6(3), 790–800 (2009).
  • Kularatne SA, Wang K, Santhapuram HK, Low PS. Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand. Mol. Pharm. 6(3), 780–789 (2009).
  • Gomes-Da-Silva LC, Santos AO, Bimbo LM et al. Toward a siRNA-containing nanoparticle targeted to breast cancer cells and the tumor microenvironment. Int. J. Pharma. 434(1–2), 9–19 (2012).
  • Mokhtarieh AA, Cheong S, Kim S, Chung BH, Lee MK. Asymmetric liposome particles with highly efficient encapsulation of siRNA and without nonspecific cell penetration suitable for target-specific delivery. Biochim. Biophys. Acta 1818(7), 1633–1641 (2012).
  • Takasaki J, Raney SG, Chikh G et al. Methods for the preparation of protein-oligonucleotide-lipid constructs. Bioconjug. Chem. 17(2), 451–458 (2006).
  • Takasaki J, Ansell SM. Micelles as intermediates in the preparation of protein–liposome conjugates. Bioconjug. Chem. 17(2), 438–450 (2006).
  • Shen M, Gong F, Pang P et al. An MRI-visible non-viral vector for targeted Bcl-2 siRNA delivery to neuroblastoma. Int. J. Nanomed. 7, 3319–3332 (2012).
  • Adrian JE, Wolf A, Steinbach A, Rossler J, Suss R. Targeted delivery to neuroblastoma of novel siRNA-anti-GD2-liposomes prepared by dual asymmetric centrifugation and sterol-based post-insertion method. Pharm. Res. 28(9), 2261–2272 (2011).
  • Sonoke S, Ueda T, Fujiwara K, Kuwabara K, Yano J. Galactose-modified cationic liposomes as a liver-targeting delivery system for small interfering RNA. Biol. Pharm. Bull. 34(8), 1338–1342 (2011).
  • Kobayashi E, Iyer AK, Hornicek FJ, Amiji MM, Duan Z. Lipid-functionalized dextran nanosystems to overcome multidrug resistance in cancer: a pilot study. Clin. Orthop. Relat. Res. 471(3), 915–925 (2013).
  • Wang Y, Xu Z, Guo S et al. Intravenous delivery of siRNA targeting CD47 effectively inhibits melanoma tumor growth and lung metastasis. Mol. Ther. 21(10), 1919–1929 (2013).
  • Glucksam-Galnoy Y, Zor T, Margalit R. Hyaluronanmodified and regular multilamellar liposomes provide sub-cellular targeting to macrophages, without eliciting a pro-inflammatory response. J. Control. Release 160(2), 388–393 (2012).
  • Cheng J, Teply BA, Sherifi I et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28(5), 869–876 (2007).
  • Yang L, Zhang X, Ye M et al. Aptamer-conjugated nanomaterials and their applications. Adv. Drug Rev. 63(14–15), 1361–1370 (2011).
  • Banerjee R, Tyagi P, Li S, Huang L. Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells. Int. J. Cancer 112(4), 693–700 (2004).
  • Li SD, Chono S, Huang L. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol. Ther. 16(5), 942–946 (2008).
  • Li SD, Chono S, Huang L. Efficient gene silencing in metastatic tumor by siRNA formulated in surface-modified nanoparticles. J. Control. Release 126(1), 77–84 (2008).
  • Chono S, Li SD, Conwell CC, Huang L. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J. Control. Release 131(1), 64–69 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.