623
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Sphingomyelin regulation of plasma membrane asymmetry, efflux and reverse cholesterol transport

&
Pages 383-393 | Published online: 18 Jan 2017

References

  • Seigneuret M, Devaux PF. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc. Natl Acad. Sci. USA 81(12), 3751–3755 (1984).
  • Soupene E, Kemaladewi DU, Kuypers FA. ATP8A1 activity and phosphatidylserine transbilayer movement. J. Receptor Ligand Channel Res. 1, 1–10 (2008).
  • Coleman JA, Kwok MC, Molday RS. Localization, purification, and functional reconstitution of the P4-ATPase Atp8a2, a phosphatidylserine flippase in photoreceptor disc membranes. J. Biol. Chem. 284(47), 32670–32679 (2009).
  • Siggs OM, Schnabl B, Webb B, Beutler B. X-linked cholestasis in mouse due to mutations of the P4-ATPase ATP11C. Proc. Natl Acad. Sci. USA 108(19), 7890–7895 (2011).
  • Van Der Mark VA, Elferink RP, Paulusma CC. P4 ATPases: flippases in health and disease. Int. J. Mol. Sci. 14(4), 7897–7922 (2013).
  • Pomorski T, Holthuis JC, Herrmann A, Van Meer G. Tracking down lipid flippases and their biological functions. J. Cell Sci. 117(Pt 6), 805–813 (2004).
  • Alder-Baerens N, Muller P, Pohl A et al. Headgroupspecific exposure of phospholipids in ABCA1-expressing cells. J. Biol. Chem. 280(28), 26321–26329 (2005).
  • Quazi F, Molday RS. Lipid transport by mammalian ABC proteins. Essays Biochem. 50(1), 265–290 (2011).
  • Quazi F, Molday RS. Differential phospholipid substrates and directional transport by ATP-binding cassette proteins ABCA1, ABCA7, and ABCA4 and disease-causing mutants. J. Biol. Chem. 288(48), 34414–34426 (2013).
  • Coleman JA, Quazi F, Molday RS. Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport. Biochim. Biophys. Acta 1831(3), 555–574 (2013).
  • Folmer DE, Elferink RP, Paulusma CC. P4 ATPases - lipid flippases and their role in disease. Biochim. Biophys. Acta 1791(7), 628–635 (2009).
  • Simons K, Toomre D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1(1), 31–39 (2000).
  • Contreras FX, Sanchez-Magraner L, Alonso A, Goni FM. Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett. 584(9), 1779–1786 (2010).
  • Zhu X, Owen JS, Wilson MD et al. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J. Lipid Res. 51(11), 3196–3206 (2010).
  • Landry YD, Denis M, Nandi S, Bell S, Vaughan AM, Zha X. ATP-binding cassette transporter A1 expression disrupts raft membrane microdomains through its ATPase-related functions. J. Biol. Chem. 281(47), 36091–36101 (2006).
  • Mendez AJ, Lin G, Wade DP, Lawn RM, Oram JF. Membrane lipid domains distinct from cholesterol/ sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway. J. Biol. Chem. 276(5), 3158–3166 (2001).
  • Drobnik W, Borsukova H, Bottcher A et al. Apo AI/ ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains. Traffic 3(4), 268–278 (2002).
  • Sorci-Thomas MG, Owen JS, Fulp B et al. Nascent high density lipoproteins formed by ABCA1 resemble lipid rafts and are structurally organized by three apoA-I monomers. J. Lipid Res. 53(9), 1890–1909 (2012).
  • Nagao K, Zhao Y, Takahashi K, Kimura Y, Ueda K. Sodium taurocholate-dependent lipid efflux by ABCA1: effects of W590S mutation on lipid translocation and apolipoprotein A-I dissociation. J. Lipid Res. 50(6), 1165–1172 (2009).
  • Fitzgerald ML, Morris AL, Rhee JS, Andersson LP, Mendez AJ, Freeman MW. Naturally occurring mutations in the largest extracellular loops of ABCA1 can disrupt its direct interaction with apolipoprotein A-I. J. Biol. Chem. 277(36), 33178–33187 (2002).
  • Smith JD, Waelde C, Horwitz A, Zheng P. Evaluation of the role of phosphatidylserine translocase activity in ABCA1-mediated lipid efflux. J. Biol. Chem. 277(20), 17797–17803 (2002).
  • Hornemann T, Richard S, Rutti MF, Wei Y, Von Eckardstein A. Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J. Biol. Chem. 281(49), 37275–37281 (2006).
  • Milhas D, Clarke CJ, Hannun YA. Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett. 584(9), 1887–1894 (2010).
  • Worgall TS. Sphingolipid synthetic pathways are major regulators of lipid homeostasis. Adv. Exp. Med. Biol. 721, 139–148 (2011).
  • Scheek S, Brown MS, Goldstein JL. Sphingomyelin depletion in cultured cells blocks proteolysis of sterol regulatory element binding proteins at site 1. Proc. Natl Acad. Sci. USA 94(21), 11179–11183 (1997).
  • Perry RJ,, Ridgway ND. Oxysterol-binding protein and vesicle-associated membrane protein-associated protein are required for sterol-dependent activation of the ceramide transport protein. Mol. Biol. Cell. 17(6), 2604–2616 (2006).
  • Bowden K, Ridgway ND. OSBP negatively regulates ABCA1 protein stability. J. Biol. Chem. 283(26), 18210–18217 (2008).
  • Yan D, Mayranpaa MI, Wong J et al. OSBP-related protein 8 (ORP8) suppresses ABCA1 expression and cholesterol efflux from macrophages. J. Biol. Chem. 283(1), 332–340 (2008).
  • Du X, Kumar J, Ferguson C et al. A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking. J. Cell Biol. 192(1), 121–135 (2011).
  • Shibata N, Glass CK. Macrophages, oxysterols and atherosclerosis. Circ. J. 74(10), 2045–2051 (2010).
  • Kinnunen PK, Holopainen JM. Sphingomyelinase activity of LDL: a link between atherosclerosis, ceramide, and apoptosis? Trends Cardiovasc. Med. 12(1), 37–42 (2002).
  • Jeong T, Schissel SL, Tabas I, Pownall HJ, Tall AR, Jiang X. Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase. J. Clin. Invest. 101(4), 905–912 (1998).
  • Guarino AJ, Tulenko TN, Wrenn SP. Sphingomyelinaseto-LDL molar ratio determines low density lipoprotein aggregation size: biological significance. Chem. Phys. Lipids 142(1–2), 33–42 (2006).
  • Schissel SL, Jiang X, Tweedie-Hardman J et al. Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J. Biol. Chem. 273(5), 2738–2746 (1998).
  • Timmins JM, Lee JY, Boudyguina E et al. Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J. Clin. Invest. 115(5), 1333–1342 (2005).
  • Toth PP, Barter PJ, Rosenson RS et al. High-density lipoproteins: a consensus statement from the National Lipid Association. J. Clin. Lipidol. 7(5), 484–525 (2013).
  • Vaisar T, Pennathur S, Green PS et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest. 117(3), 746–756 (2007).
  • Davidson WS, Rodrigueza WV, Lund-Katz S, Johnson WJ, Rothblat GH, Phillips MC. Effects of acceptor particle size on the efflux of cellular free cholesterol. J. Biol. Chem. 270(29), 17106–17113 (1995).
  • Slotte JP. Biological functions of sphingomyelins. Prog. Lipid Res. 52(4), 424–437 (2013).
  • Rye KA, Hime NJ, Barter PJ. The influence of sphingomyelin on the structure and function of reconstituted high density lipoproteins. J. Biol. Chem. 271(8), 4243–4250 (1996).
  • Chakraborty M, Jiang XC. Sphingomyelin and its role in cellular signaling. Adv. Exp. Med. Biol. 991, 1–14 (2013).
  • Nilsson A, Duan RD. Absorption and lipoprotein transport of sphingomyelin. J. Lipid Res. 47(1), 154–171 (2006).
  • Martinez-Beamonte R, Lou-Bonafonte JM, Martinez-Gracia MV, Osada J. Sphingomyelin in high-density lipoproteins: structural role and biological function. Int. J. Mol. Sci. 14(4), 7716–7741 (2013).
  • Bolin DJ, Jonas A. Sphingomyelin inhibits the lecithincholesterol acyltransferase reaction with reconstituted high density lipoproteins by decreasing enzyme binding. J. Biol. Chem. 271(32), 19152–19158 (1996).
  • Horter MJ, Sondermann S, Reinecke H et al. Associations of HDL phospholipids and paraoxonase activity with coronary heart disease in postmenopausal women. Acta Physiol. Scand. 176(2), 123–130 (2002).
  • Hergenc G, Onat A, Sari I, Yazici M, Eryonucu B, Can G. Serum total and high-density lipoprotein phospholipid levels in a population-based study and relationship to risk of metabolic syndrome and coronary disease. Angiology 59(1), 26–35 (2008).
  • Kobayashi A, Takanezawa Y, Hirata T et al. Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J. Lipid Res. 47(8), 1791–1802 (2006).
  • Hirayama H, Kimura Y, Kioka N, Matsuo M, Ueda K. ATPase activity of human ABCG1 is stimulated by cholesterol and sphingomyelin. J. Lipid Res. 54(2), 496–502 (2013).
  • Bots ML, Visseren FL, Evans GW et al. Torcetrapib and carotid intima–media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet 370(9582), 153–160 (2007).
  • Barter PJ, Caulfield M, Eriksson M et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357(21), 2109–2122 (2007).
  • Nissen SE, Tardif JC, Nicholls SJ et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 356(13), 1304–1316 (2007).
  • Tall AR, Yvan-Charvet L, Wang N. The failure of torcetrapib: was it the molecule or the mechanism? Arterioscler. Thromb. Vasc. Biol. 27(2), 257–260 (2007).
  • Voight BF, Peloso GM, Orho-Melander M et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380(9841), 572–580 (2012).
  • Li XM, Tang WH, Mosior MK et al. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler. Thromb. Vasc. Biol. 33(7), 1696–1705 (2013).
  • Zheng L, Nukuna B, Brennan ML et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest. 114(4), 529–541 (2004).
  • Undurti A, Huang Y, Lupica JA, Smith JD, Didonato JA, Hazen SL. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J. Biol. Chem. 284(45), 30825–30835 (2009).
  • Huang Y, Didonato JA, Levison BS et al. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat. Med. 20(2), 193–203 (2014).
  • Didonato JA, Aulak K, Huang Y et al. Site-specific nitration of apolipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional. J. Biol. Chem. 289(15), 10276–10292 (2014).
  • Rust S, Rosier M, Funke H et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat. Genet. 22(4), 352–355 (1999).
  • Brooks-Wilson A, Marcil M, Clee SM et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat. Genet. 22(4), 336–345 (1999).
  • Bodzioch M, Orso E, Klucken J et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat. Genet. 22(4), 347–351 (1999).
  • Wang S, Gulshan K, Brubaker G, Hazen SL, Smith JD. ABCA1 mediates unfolding of apolipoprotein AI N terminus on the cell surface before lipidation and release of nascent high-density lipoprotein. Arterioscler. Thromb. Vasc. Biol. 33(6), 1197–1205 (2013).
  • Xu XX, Tabas I. Sphingomyelinase enhances low density lipoprotein uptake and ability to induce cholesteryl ester accumulation in macrophages. J. Biol. Chem. 266(36), 24849–24858 (1991).
  • Gupta AK, Rudney H. Sphingomyelinase treatment of low density lipoprotein and cultured cells results in enhanced processing of LDL which can be modulated by sphingomyelin. J. Lipid Res. 33(12), 1741–1752 (1992).
  • Park TS, Rosebury W, Kindt EK, Kowala MC, Panek RL. Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice. Pharmacol. Res. 58(1), 45–51 (2008).
  • Glaros EN, Kim WS, Quinn CM, Jessup W, Rye KA, Garner B. Myriocin slows the progression of established atherosclerotic lesions in apolipoprotein E gene knockout mice. J. Lipid Res. 49(2), 324–331 (2008).
  • Glaros EN, Kim WS, Garner B. Myriocin-mediated upregulation of hepatocyte apoA-I synthesis is associated with ERK inhibition. Clin. Sci. 118(12), 727–736 (2010).
  • Park TS, Panek RL, Mueller SB et al. Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 110(22), 3465–3471 (2004).
  • Li Z, Park TS, Li Y et al. Serine palmitoyltransferase (SPT) deficient mice absorb less cholesterol. Biochim. Biophys. Acta 1791(4), 297–306 (2009).
  • Kasumov T, Willard B, Li L et al. 2H2O-based high-density lipoprotein turnover method for the assessment of dynamic high-density lipoprotein function in mice. Arterioscler. Thromb. Vasc. Biol. 33(8), 1994–2003 (2013).
  • Hojjati MR, Li Z, Zhou H et al. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J. Biol. Chem. 280(11), 10284–10289 (2005).
  • Glaros EN, Kim WS, Wu BJ et al. Inhibition of atherosclerosis by the serine palmitoyl transferase inhibitor myriocin is associated with reduced plasma glycosphingolipid concentration. Biochem. Pharmacol. 73(9), 1340–1346 (2007).
  • Liu J, Huan C, Chakraborty M et al. Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ. Res. 105(3), 295–303 (2009).
  • Chakraborty M, Lou C, Huan C et al. Myeloid cell-specific serine palmitoyltransferase subunit 2 haploinsufficiency reduces murine atherosclerosis. J. Clin. Invest. 123(4), 1784–1797 (2013).
  • Tamehiro N, Zhou S, Okuhira K et al. SPTLC1 binds ABCA1 to negatively regulate trafficking and cholesterol efflux activity of the transporter. Biochemistry 47(23), 6138–6147 (2008).
  • Yamauchi Y, Hayashi M, Abe-Dohmae S, Yokoyama S. Apolipoprotein A-I activates protein kinase C alpha signaling to phosphorylate and stabilize ATP binding cassette transporter A1 for the high density lipoprotein assembly. J. Biol. Chem. 278(48), 47890–47897 (2003).
  • Witting SR, Maiorano JN, Davidson WS. Ceramide enhances cholesterol efflux to apolipoprotein A-I by increasing the cell surface presence of ATP-binding cassette transporter A1. J. Biol. Chem. 278(41), 40121–40127 (2003).
  • Glaros EN, Kim WS, Quinn CM et al. Glycosphingolipid accumulation inhibits cholesterol efflux via the ABCA1/ apolipoprotein A-I pathway: 1-phenyl-2-decanoylamino-3-morpholino-1-propanol is a novel cholesterol efflux accelerator. J. Biol. Chem. 280(26), 24515–24523 (2005).
  • Glaros EN, Kim WS, Rye KA, Shayman JA, Garner B. Reduction of plasma glycosphingolipid levels has no impact on atherosclerosis in apolipoprotein E-null mice. J. Lipid Res. 49(8), 1677–1681 (2008).
  • Nagao K, Takahashi K, Hanada K, Kioka N, Matsuo M, Ueda K. Enhanced apoA-I-dependent cholesterol efflux by ABCA1 from sphingomyelin-deficient Chinese hamster ovary cells. J. Biol. Chem. 282(20), 14868–14874 (2007).
  • Park TS, Panek RL, Rekhter MD et al. Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice. Atherosclerosis 189(2), 264–272 (2006).
  • Gulshan K, Brubaker G, Wang S, Hazen SL, Smith JD. Sphingomyelin depletion impairs anionic phospholipid inward translocation and induces cholesterol efflux. J. Biol. Chem. 288(52), 37166–37179 (2013).
  • Pownall H, Pao Q, Hickson D, Sparrow JT,Kusserow SK, Massey JB. Kinetics and mechanism of association of human plasma apolipoproteins with dimyristoylphosphatidylcholine: effect of protein structure and lipid clusters on reaction rates. Biochemistry 20(23), 6630–6635 (1981).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.