755
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Utilizing liposomes and lipid nanoparticles to overcome challenges in breast cancer treatment

, , , , &
Pages 571-585 | Published online: 18 Jan 2017

References

  • Latest world cancer statistics. IARC Press Releases, Press Releases (2013). www.iarc.fr/en/media-centre/pr/2013/index.php
  • Breast Cancer: Estimated Incidence, Mortality and Prevalence Worldwide in 2012 http://Globocan.Iarc.Fr/Pages/Fact_Sheets_Cancer.Aspx.
  • Genetics of Breast and Ovarian Cancer (PDQ®) (2014). www.Cancer.Gov/Cancertopics/Pdq/Genetics/Breast-and-Ovarian/Healthprofessional/Page1 (2014).
  • Standard Treatment & Clinical Trials (2012). www.Nationalbreastcancer.Org/Breast-Cancer-Clinical-Trials.
  • Wood AJ, Hortobagyi GN. Treatment of breast cancer. N. Engl. J. Med. 339(14), 974–984 (1998).
  • Dhankhar R, Vyas SP, Jain AK, Arora S, Rath G, Goyal AK. Advances in novel drug delivery strategies for breast cancer therapy. Artif. Cells Blood Substit. Biotechnol. 38(5), 230–249 (2010).
  • Elhazzat J, El-Sayed ME. Advances in targeted breast cancer therapy. Curr. Breast Cancer Rep. 2(3), 146–151 (2010).
  • Treatment & Side Effects (2014). www.Breastcancer.Org/Treatment: Treatment & SideEffects.
  • Lage H. Drug resistance in breast cancer. Cancer Ther. 1, 81–91 (2003).
  • Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 4(3), 95 (2002).
  • Tagne J-B, Kakumanu S, Ortiz D, Shea T, Nicolosi RJ. A nanoemulsion formulation of tamoxifen increases its efficacy in a breast cancer cell line. Mol. Pharm. 5(2), 280–286 (2008).
  • Puri A, Loomis K, Smith B et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 26(6), 523–580 (2009).
  • Lim Sb, Banerjee A, Onyuksel H. Improvement of drug safety by the use of lipid-based nanocarriers. J. Control. Release 163(1), 34–45 (2012). • A Good Review That Discussed On The Application Of Lipid Nanoparticles In Medical Purposes And Their Safety.
  • Dinarvand R, Varshochian R, Kamalinia G, Goodarzi N, Atyabi F. Recent approaches to overcoming multiple drug resistance in breast cancer using modified liposomes. Clin. Lipidol. 8(4), 391–394 (2013).
  • Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer control 10(2), 159–159 (2003).
  • Zhou T, Duan J, Wang Y et al. Fluoxetine synergys with anticancer drugs to overcome multidrug resistance in breast cancer cells. Tumor Biol. 33(5), 1299–1306 (2012).
  • Dong X, Mattingly CA, Tseng MT et al. Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res. 69(9), 3918–3926 (2009).
  • Seelig A, Gerebtzoff G. Enhancement of drug absorption by noncharged detergents through membrane and P-glycoprotein binding. Expert Opin. Drug Metab. Toxicol. 2(5), 733–752 (2006).
  • Lao J, Madani J, Puértolas T et al. Liposomal doxorubicin in the treatment of breast cancer patients: a review. J. Drug Deliv. 2013, 1–2 (2013).
  • Kulkarni PR, Yadav J, Vaidya KA. Liposomes: a novel drug delivery system. Int. J. Curr. Pharm. Res. 3(2), 10–18 (2011).
  • Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 30(11), 592–599 (2009).
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013). •• A Good Review Paper On Investigating The Liposomal Formulation As The First Nanoparticulate Delivery System To Make The Transition From Concept To Clinic In Medical Applications.
  • Dua J, Rana A, Bhandari A. Liposome: methods of preparation and applications. Int. J. Pharm. Stud. Res. 3(2), 14–20 (2012).
  • Sharma G, Anabousi S, Ehrhardt C, Ravi Kumar M. Liposomes as targeted drug delivery systems in the treatment of breast cancer. J. Drug Target. 14(5), 301–310 (2006).
  • Rivera E. Liposomal anthracyclines in metastatic breast cancer: clinical update. Oncologist 8(Suppl. 2), 3–9 (2003).
  • Wang C, Feng L, Yang X, Wang F, Lu W. Folic acidconjugated liposomal vincristine for multidrug resistant cancer therapy. Asian J. Pharm. Sci. 8(2), 118–127 (2013).
  • Allen TM, Hansen CB, De Menezes DEL. Pharmacokinetics of long-circulating liposomes. Adv. Drug Deliv. Rev. 16(2), 267–284 (1995).
  • Johnston MJ, Semple SC, Klimuk SK et al. Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. Biochim. Biophys. Acta 1758(1), 55–64 (2006).
  • Johnston MJ, Edwards K, Karlsson GR, Cullis PR. Influence of drug-to-lipid ratio on drug release properties and liposome integrity in liposomal doxorubicin formulations. J. Liposome Res. 18(2), 145–157 (2008).
  • Treat J, Damjanov N, Huang C, Zrada S, Rahman A. Liposomal-encapsulated chemotherapy: preliminary results of a Phase I study of a novel liposomal paclitaxel. Oncology 15(5 Suppl. 7), 44–48 (2001).
  • Cancer therapy. In:Medical Applications of Liposomes. Lasic DD, Papahadjopoulos D (Eds). Elsevier Science B.V., The Netherlands 221–230 (1998).
  • Gabizon A, Papahadjopoulos D. The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochim. Biophys. Acta 1103(1), 94–100 (1992).
  • Wang M, Thanou M. Targeting nanoparticles to cancer. Pharm. Res. 62(2), 90–99 (2010).
  • Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev. 51(4), 691–744 (1999).
  • Mamot C, Drummond DC, Hong K, Kirpotin DB, Park JW. Liposome-based approaches to overcome anticancer drug resistance. Drug Resist. Updat. 6(5), 271–279 (2003).
  • Fan D, Bucana CD, O’brian CA, Zwelling LA, Seid C, Fidler IJ. Enhancement of murine tumor cell sensitivity to adriamycin by presentation of the drug in phosphatidylcholine-phosphatidylserine liposomes. Cancer Res. 50(12), 3619–3626 (1990).
  • Gubernator J, Chwastek G, Korycičska M et al. The encapsulation of idarubicin within liposomes using the novel EDTA ion gradient method ensures improved drug retention in vitro and in vivo. J. Control. Release 146(1), 68–75 (2010).
  • Gabizon Aa. Liposomal anthracyclines. Hematol. Oncol. Clin. N. Am. 8(2), 431–450 (1994).
  • Gabizon A, Catane R, Uziely B et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 54(4), 987–992 (1994).
  • Yousefi A, Esmaeili F, Rahimian S, Atyabi F, Dinarvand R. Preparation and In vitro evaluation of a pegylated nano-liposomal formulation containing docetaxel. Sci. Pharm. 77(2), 453–464 (2009).
  • Gabizon AA, Shmeeda H, Zalipsky S. Pros and cons of the liposome platform in cancer drug targeting. J. Liposome Res. 16(3), 175–183 (2006).
  • Atyabi F, Farkhondehfai A, Esmaeili F, Dinarvand R. Preparation of pegylated nano-liposomal formulation containing SN-38: in vitro characterization and in vivo biodistribution in mice. Acta Pharm. 59(2), 133–144 (2009).
  • Krishna R, Webb MS, Onge GS, Mayer LD. Liposomal and nonliposomal drug pharmacokinetics after administration of liposome-encapsulated vincristine and their contribution to drug tissue distribution properties. J. Pharmacol. Exper. Ther. 298(3), 1206–1212 (2001).
  • Clinical Trials Website. www.Clinicaltrials.Gov.
  • O′Shaughnessy J. Liposomal anthracyclines for breast cancer: overview. Oncologist 8(Suppl. 2), 1–2 (2003).
  • Rom J, Bechstein S, Domschke C et al. Efficacy and toxicity profile of pegylated liposomal doxorubicin (Caelyx) in patients with advanced breast cancer. Anticancer Drugs 25(2), 219–224 (2014).
  • Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr. Drug Deliv. 4(4), 297–305 (2007).
  • Kraft JC, Freeling JP, Wang Z, Ho RJ. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci. 103(1), 29–52 (2014). •• Evaluates The Clinically Approved Lipidic Therapeutics, Scaleup Considerations, In Vivo Delivery And Current Advances In Drug Targeting.
  • Hsin-I C, Ming-Yen C, Ming-Kung Y. Clinically-proven liposome-based drug delivery: formulation, characterization and therapeutic efficacy. Open Access Sci. Rep. 1(3), 1–8 (2012).
  • Paliwal SR, Paliwal R, Agrawal GP, Vyas SP. Liposomal nanomedicine for breast cancer therapy. Nanomedicine 6(6), 1085–1100 (2011).
  • Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5(3), 219–234 (2006).
  • Huwyler J, Drewe J, Krahenbuhl S. Tumor targeting using liposomal antineoplastic drugs. Int. J. Nanomed. 3(1), 21 (2008).
  • Sapra P, Shor B. Monoclonal antibody-based therapies in cancer: Advances and challenges. Pharmacol. Ther. 138(3), 452–469 (2013).
  • Brown S, Khan DR. The treatment of breast cancer using liposome technology. J. Drug Deliv. 2012, 1–6 (2012).
  • Mei L, Fu L, Shi K et al. Increased tumor targeted delivery using a multistage liposome system functionalized with RGD, TAT and cleavable PEG. Int. J. Pharm. 468(1), 26–38 (2014).
  • Paszko E, Senge M. Immunoliposomes. Curr. Med. Chem. 19(31), 5239–5277 (2012).
  • Reynolds JG, Geretti E, Hendriks BS et al. HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity. Toxicol. Appl. Pharmacol. 262(1), 1–10 (2012). •• Reviews The Concept Of Immunoliposomes.
  • Mamot C, Drummond DC, Greiser U et al. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR-and EGFRvIII-overexpressing tumor cells. Cancer Res. 63(12), 3154–3161 (2003).
  • Mamot C, Drummond DC, Noble CO et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res. 65(24), 11631–11638 (2005).
  • Mamot C, Ritschard R, Wicki A et al. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a Phase 1 dose-escalation study. Lancet Oncol. 13(12), 1234–1241 (2012). • A Promising Phase I Clinical Research Intended For Investigating The Safety, Pharmacokinetics And Efficacy Of Doxorubicin-Loaded Anti-Egfr Ils In Advanced Solid Tumors.
  • Xu L, Tang WH, Huang CC et al. Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv. Mol. Med. 7(10), 723 (2001).
  • Pirollo KF, Rait A, Zhou Q et al. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res. 67(7), 2938–2943 (2007).
  • Hwang SH, Rait A, Pirollo KF et al. Tumor-targeting nanodelivery enhances the anticancer activity of a novel quinazolinone analog. Mol. Cancer Ther. 7(3), 559–568 (2008).
  • Moase E, Qi W, Ishida T et al. Anti-MUC-1 immunoliposomal doxorubicin in the treatment of murine models of metastatic breast cancer. Biochim. Biophys. Acta 1510(1), 43–55 (2001).
  • Noble CO, Guo Z, Hayes ME et al. Characterization of highly stable liposomal and immunoliposomal formulations of vincristine and vinblastine. Cancer Chemother. Pharm. 64(4), 741–751 (2009).
  • Kikumori T, Kobayashi T, Sawaki M, Imai T. Anticancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes. Breast Cancer Res. Treat. 113(3), 435–441 (2009).
  • Shmeeda H, Tzemach D, Mak L, Gabizon A. Her2-targeted pegylated liposomal doxorubicin: retention of target-specific binding and cytotoxicity after in vivo passage. J. Control. Release 136(2), 155–160 (2009).
  • Gao J, Zhong W, He J et al. Tumor-targeted PE38KDEL delivery via PEGylated anti-HER2 immunoliposomes. Int. J. Pharm. 374(1), 145–152 (2009).
  • Drummond DC, Noble CO, Guo Z et al. Development of a highly stable and targetable nanoliposomal formulation of topotecan. J. Control. Release 141(1), 13–21 (2010).
  • Gao J, Sun J, Li H et al. Lyophilized HER2-specific PEGylated immunoliposomes for active siRNA gene silencing. Biomaterials 31(9), 2655–2664 (2010).
  • Barrajon-Catalan E, Menendez-Gutierrez MP, Falco A, Carrato A, Saceda M, Micol V. Selective death of human breast cancer cells by lytic immunoliposomes: correlation with their HER2 expression level. Cancer Lett. 290(2), 192–203 (2010).
  • Smith B, Lyakhov I, Loomis K et al. Hyperthermia-triggered intracellular delivery of anticancer agent to HER2+ cells by HER2-specific affibody (ZHER2-GS-Cys)-conjugated thermosensitive liposomes (HER2+ affisomes). J. Control. Release 153(2), 187–194 (2011).
  • Kullberg M, Mccarthy R, Anchordoquy TJ. Gene delivery to Her-2+ breast cancer cells using a two-component delivery system to achieve specificity. Nanomedicine 10(6), 1253–1262 (2014). • An Interesting Original Research On Two-Component Plasmid Dna Delivery System Utilizing Neutral Her2-Targeted Liposomes.
  • Guin S, Yao HP, Wang MH. RON receptor tyrosine kinase as a target for delivery of chemodrugs by antibody directed pathway for cancer cell cytotoxicity. Mol. Pharm. 7(2), 386–397 (2010).
  • Gao J, Liu W, Xia Y et al. The promotion of siRNA delivery to breast cancer overexpressing epidermal growth factor receptor through anti-EGFR antibody conjugation by immunoliposomes. Biomaterials 32(13), 3459–3470 (2011).
  • Mamot C, Ritschard R, Wicki A et al. Immunoliposomal delivery of doxorubicin can overcome multidrug resistance mechanisms in EGFR-overexpressing tumor cells. J. Drug Target. 20(5), 422–432 (2012).
  • Wicki A, Rochlitz C, Orleth A et al. Targeting tumorassociated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin. Cancer Res. 18(2), 454–464 (2012).
  • Koren E, Apte A, Jani A, Torchilin VP. Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J. Control. Release 160(2), 264–273 (2012).
  • Gomes-da-Silva LC, Santos AO, Bimbo LM et al. Toward a siRNA-containing nanoparticle targeted to breast cancer cells and the tumor microenvironment. Int. J. Pharm. 434(1), 9–19 (2012).
  • Nishikawa K, Asai T, Shigematsu H et al. Development of anti-HB-EGF immunoliposomes for the treatment of breast cancer. J. Control. Release 160(2), 274–280 (2012).
  • Govindarajan S, Sivakumar J, Garimidi P et al. Targeting human epidermal growth factor receptor 2 by a cellpenetrating peptide-affibody bioconjugate. Biomaterials 33(8), 2570–2582 (2012).
  • Shahin M, Soudy R, Aliabadi Hm, Kneteman N, Kaur K, Lavasanifar A. Engineered breast tumor targeting peptide ligand modified liposomal doxorubicin and the effect of peptide density on anticancer activity. Biomaterials 34(16), 4089–4097 (2013).
  • Shahin M, Soudy R, El-Sikhry H, Seubert JM, Kaur K, Lavasanifar A. Engineered peptides for the development of actively tumor targeted liposomal carriers of doxorubicin. Cancer Lett. 334(2), 284–292 (2013).
  • Wang Z, Yu Y, Dai W et al. The use of a tumor metastasis targeting peptide to deliver doxorubicin-containing liposomes to highly metastatic cancer. Biomaterials 33(33), 8451–8460 (2012).
  • Shroff K, Kokkoli E. PEGylated liposomal doxorubicin targeted to α5β1-expressing MDA-MB-231 breast cancer cells. Langmuir 28(10), 4729–4736 (2012).
  • Xing H, Tang L, Yang X et al. Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo. J. Mater. Chem. B. 1(39), 5288–5297 (2013).
  • Wu J, Lu Y, Lee A et al. Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J. Pharm. Pharmacol. Sci. 10(3), 350–357 (2007).
  • Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxorubicin via folatetargeted liposomes with bypass of multidrug-resistance efflux pump. Clin. Cancer Res. 6(5), 1949–1957 (2000).
  • Rait AS, Pirollo KF, Xiang L, Ulick D, Chang EH. Tumor-targeting, systemically delivered antisense HER-2 chemosensitizes human breast cancer xenografts irrespective of HER-2 levels. Mol. Med. 8(8), 475 (2002).
  • Surace C, Arpicco S, Dufay-Wojcicki AL et al. Lipoplexes targeting the CD44 hyaluronic acid receptor for efficient transfection of breast cancer cells. Mol. Pharm. 6(4), 1062–1073 (2009).
  • Rai S, Paliwal R, Vaidya B et al. Targeted delivery of doxorubicin via estrone-appended liposomes. J. Drug Target. 16(6), 455–463 (2008).
  • Paliwal SR, Paliwal R, Mishra N, Mehta A, Vyas SP. A novel cancer targeting approach based on estrone anchored stealth liposome for site-specific breast cancer therapy. Curr. Cancer Drug Targets 10(3), 343–353 (2010).
  • Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J. Control. Release 169(1), 112–125 (2013).
  • Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res. 60(5), 1197–1201 (2000).
  • Bibi S, Lattmann E, Mohammed AR, Perrie Y. Trigger release liposome systems: local and remote controlled delivery? J. Microencapsul. 29(3), 262–276 (2012).
  • Yavlovich A, Singh A, Blumenthal R, Puri A. A novel class of photo-triggerable liposomes containing DPPC. DC8, 9PC as vehicles for delivery of doxorubcin to cells. Biochim. Biophys. Acta 1808(1), 117–126 (2011).
  • Ferreira Ddos S, Lopes SC, Franco MS, Oliveira MC. pH-sensitive liposomes for drug delivery in cancer treatment. Ther. Deliv. 4(9), 1099–1123 (2013).
  • Karanth H, Murthy R. pH-sensitive liposomes – principle and application in cancer therapy. J. Pharm. Pharmacol. 59(4), 469–483 (2007).
  • Paliwal SR, Paliwal R, Pal HC et al. Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy. Mol. Pharm. 9(1), 176–186 (2011).
  • Chen D, Jiang X, Huang Y, Zhang C, Ping Q. pH-sensitive mPEG-Hz-cholesterol conjugates as a liposome delivery system. J. Bioact. Compat. Polymers 25 527–542 (2010).
  • Banerjee J, Hanson AJ, Gadam B et al. Release of liposomal contents by cell-secreted matrix metalloproteinase-9. Bioconjug. Chem. 20(7), 1332–1339 (2009).
  • Wissing S, Kayser O, Muller R. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 56(9), 1257–1272 (2004).
  • Rawat M, Singh D, Saraf S, Saraf S. Lipid carriers: a versatile delivery vehicle for proteins and peptides. Proteins 3, 2 (2008).
  • Kang KW, Chun M-K, Kim O et al. Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine 6(2), 210–213 (2010).
  • Zhang XG, Miao J, Dai YQ, Du YZ, Yuan H, Hu FQ. Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int. J. Pharm. 361(1), 239–244 (2008).
  • Zhuang YG, Xu B, Huang F, Wu JJ, Chen S. Solid lipid nanoparticles of anticancer drugs against MCF-7 cell line and a murine breast cancer model. Pharmazie 67(11), 925–929 (2012).
  • Jain A, Agarwal A, Majumder S et al. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anticancer drug. J. Control. Release 148(3), 359–367 (2013).
  • Xu P, Yin Q, Shen J et al. Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. Int. J. Pharm. 454(1), 21–30 (2013).
  • Lu B, Xiong SB, Yang H, Yin XD, Chao RB. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur. J. Pharm. Sci. 28(1), 86–95 (2006).
  • Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int. J. Pharm. 398(1), 190–203 (2010).
  • Aznar MA, Lasa-Saracibar B, Estella-Hermoso De Mendoza A, Blanco-Prieto MJ. Efficacy of edelfosine lipid nanoparticles in breast cancer cells. Int. J. Pharm. 454(2), 720–726 (2013).
  • Piao L, Li H, Teng L et al. Human serum albumin-coated lipid nanoparticles for delivery of siRNA to breast cancer. Nanomedicine 9(1), 122–129 (2013).
  • Okamoto A, Asai T, Kato H et al. Antibody-modified lipid nanoparticles for selective delivery of siRNA to tumors expressing membrane-anchored form of HB-EGF. Biochem. Biophys. Res. Commun. 449(4), 460–465 (2014).
  • How CW, Rasedee A, Manickam S, Rosli R. Tamoxifenloaded nanostructured lipid carrier as a drug delivery system: characterization, stability assessment and cytotoxicity. Colloids Surf. B Biointerfaces 112, 393–399 (2013).
  • Li S, Su Z, Sun M et al. An arginine derivative contained nanostructure lipid carriers with pH-sensitive membranolytic capability for lysosomolytic anticancer drug delivery. Int. J. Pharm. 436(1), 248–257 (2012).
  • Sun M, Nie S, Pan X, Zhang R, Fan Z, Wang S. Quercetinnanostructured lipid carriers: characteristics and anti-breast cancer activities in vitro. Colloids Surf. B Biointerfaces 113, 15–24 (2014).
  • Borrelli S, Christodoulou MS, Ficarra I et al. New class of squalene-based releasable nanoassemblies of paclitaxel, podophyllotoxin, camptothecin and epothilone A. Eur. J. Med. Chem. 85, 179–190 (2014).
  • Maksimenko A, Mougin J, Mura S et al. Polyisoprenoyl gemcitabine conjugates self assemble as nanoparticles, useful for cancer therapy. Cancer Lett. 334(2), 346–353 (2013).
  • Ma P, Rahima Benhabbour S, Feng L, Mumper RJ. 2′-Behenoyl-paclitaxel conjugate containing lipid nanoparticles for the treatment of metastatic breast cancer. Cancer Lett. 334(2), 253–262 (2013).
  • Ashok B, Arleth L, Hjelm RP, Rubinstein I, Onyuksel H. In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. J. Pharm. Sci. 93(10), 2476–2487 (2004).
  • Krishnadas A, Rubinstein I, Onyuksel H. Sterically stabilized phospholipid mixed micelles: in vitro evaluation as a novel carrier for water-insoluble drugs. Pharm. Res. 20(2), 297–302 (2003).
  • Jing X, Deng L, Gao B et al. A novel polyethylene glycol mediated lipid nanoemulsion as drug delivery carrier for paclitaxel. Nanomedicine 10(2), 371–380 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.