785
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Challenges to determining whether DHA can protect against age-related cognitive decline

, , , , , , & show all
Pages 91-102 | Published online: 18 Jan 2017

References

  • Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 368(9533), 387–403 (2006).
  • Gauthier S, Reisberg B, Zaudig M et al. Mild cognitive impairment. Lancet 367(9518), 1262–1270 (2006).
  • Corder EH, Saunders AM, Strittmatter WJ et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123), 921–923 (1993).
  • Alles B, Samieri C, Feart C, Jutand MA, Laurin D, Barberger-Gateau P. Dietary patterns: a novel approach to examine the link between nutrition and cognitive function in older individuals. Nutr. Res. Rev. 25(2), 207–222 (2012).
  • Gomez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat. Rev. Neurosci. 9(7), 568–578 (2008).
  • Sastry PS. Lipids of nervous tissue: composition and metabolism. Prog. Lipid Res. 24(2), 69–176 (1985).
  • Su HM. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J. Nutr. Biochem. 21(5), 364–373 (2010).
  • Hooijmans CR, Pasker-de Jong PC, de Vries RB, Ritskes-Hoitinga M. The effects of long-term omega-3 fatty acid supplementation on cognition and Alzheimer’s pathology in animal models of Alzheimer’s disease: a systematic review and meta-analysis. J. Alzheimers Dis. 28(1), 191–209 (2012).
  • Grimm MO, Zimmer VC, Lehmann J, Grimm HS, Hartmann T. The impact of cholesterol, DHA, and sphingolipids on Alzheimer’s disease. Biomed. Res. Int. 2013, 814390 (2013).
  • Hashimoto M, Hossain S. Neuroprotective and ameliorative actions of polyunsaturated fatty acids against neuronal diseases: beneficial effect of docosahexaenoic acid on cognitive decline in Alzheimer’s disease. J. Pharmacol. Sci. 116(2), 150–162 (2011).
  • Veszelka S, Toth AE, Walter FR et al. Docosahexaenoic acid reduces amyloid-beta induced toxicity in cells of the neurovascular unit. J. Alzheimers Dis. 36(3), 487–501 (2013).
  • Grimm MO, Kuchenbecker J, Grosgen S et al. Docosahexaenoic acid reduces amyloid beta production via multiple pleiotropic mechanisms. J. Biol. Chem. 286(16), 14028–14039 (2011).
  • Hjorth E, Zhu M, Toro VC et al. Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloidbeta42 by human microglia and decrease inflammatory markers. J. Alzheimers Dis. 35(4), 697–713 (2013).
  • Hashimoto M, Shahdat HM, Yamashita S et al. Docosahexaenoic acid disrupts in vitro amyloid beta(1–40) fibrillation and concomitantly inhibits amyloid levels in cerebral cortex of Alzheimer’s disease model rats. J. Neurochem. 107(6), 1634–1646 (2008).
  • Hossain S, Hashimoto M, Katakura M, Miwa K, Shimada T, Shido O. Mechanism of docosahexaenoic acid-induced inhibition of in vitro Abeta1–42 fibrillation and Abeta1–42-induced toxicity in SH-S5Y5 cells. J. Neurochem. 111(2), 568–579 (2009).
  • Ehehalt R, Keller P, Haass C, Thiele C, Simons K. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160(1), 113–123 (2003).
  • Stark DT, Bazan NG. Neuroprotectin D1 induces neuronal survival and downregulation of amyloidogenic processing in Alzheimer’s disease cellular models. Mol. Neurobiol. 43(2), 131–138 (2011).
  • Zhao Y, Calon F, Julien C et al. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARgamma-mediated mechanisms in Alzheimer’s disease models. PLoS ONE 6(1), e15816 (2011).
  • TorRes. M, Price SL, Fiol-Deroque MA et al. Membrane lipid modifications and therapeutic effects mediated by hydroxydocosahexaenoic acid on Alzheimer’s disease. Biochim. Biophys. Acta 1838(6), 1680–1692 (2014).
  • Green KN, Martinez-Coria H, Khashwji H et al. Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. J. Neurosci. 27(16), 4385–4395 (2007).
  • Lebbadi M, Julien C, Phivilay A et al. Endogenous conversion of omega-6 into omega-3 fatty acids improves neuropathology in an animal model of Alzheimer’s disease. J. Alzheimers Dis. 27(4), 853–869 (2011).
  • Ma QL, Yang F, Rosario ER et al. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J. Neurosci. 29(28), 9078–9089 (2009).
  • Wang PY, Chen JJ, Su HM. Docosahexaenoic acid supplementation of primary rat hippocampal neurons attenuates the neurotoxicity induced by aggregated amyloid beta protein(42) and up-regulates cytoskeletal protein expression. J. Nutr. Biochem. 21(4), 345–350 (2010).
  • Nugent S, Castellano CA, Goffaux P et al. Glucose hypometabolism is highly localized but lower cortical thickness and brain atrophy are widespread in cognitively normal older adults. Am. J. Physiol. Endocrinol. Metab. 306(11), E1315–E1321 (2014).
  • Kalpouzos G, Chetelat G, Baron JC et al. Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. NeuroBiol. Aging 30(1), 112–124 (2009).
  • Nugent S, Tremblay S, Chen KW et al. Brain glucose and acetoacetate metabolism: a comparison of young and older adults. NeuroBiol. Aging 35(6), 1386–1395 (2014).
  • Kalpouzos G, Eustache F, de la Sayette V, Viader F, Chetelat G, Desgranges B. Working memory and FDG-PET dissociate early and late onset Alzheimer disease patients. J. Neurol. 252(5), 548–558 (2005).
  • Landau SM, Harvey D, Madison CM et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. NeuroBiol. Aging 32(7), 1207–1218 (2011).
  • Habeck C, Risacher S, Lee GJ et al. Relationship between baseline brain metabolism measured using [(1)(8)F]FDG PET and memory and executive function in prodromal and early Alzheimer’s disease. Brain Imaging Behav. 6(4), 568–583 (2012).
  • Cunnane S, Nugent S, Roy M et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 27(1), 3–20 (2011).
  • Leybaert L, De Bock M, Van Moorhem M, Decrock E, De Vuyst E. Neurobarrier coupling in the brain: adjusting glucose entry with demand. J. Neurosci. Res. 85(15), 3213–3220 (2007).
  • Harbeby E, Jouin M, Alessandri JM et al. n-3 PUFA status affects expression of genes involved in neuroenergetics differently in the fronto-parietal cortex compared with the CA1 area of the hippocampus: effect of rest and neuronal activation in the rat. Prostaglandins Leukot. Essent. Fatty Acids 86(6), 211–220 (2012).
  • Pifferi F, Roux F, Langelier B et al. (n-3) polyunsaturated fatty acid deficiency reduces the expression of both isoforms of the brain glucose transporter GLUT1 in rats. J. Nutr. 135(9), 2241–2246 (2005).
  • Pifferi F, Jouin M, Alessandri JM et al. n-3 long-chain fatty acids and regulation of glucose transport in two models of rat brain endothelial cells. Neurochem. Int. 56(5), 703–710 (2010).
  • Pifferi F, Jouin M, Alessandri JM et al. n-3 Fatty acids modulate brain glucose transport in endothelial cells of the blood-brain barrier. Prostaglandins Leukot. Essent. Fatty Acids 77(5–6), 279–286 (2007).
  • Freemantle E, Vandal M, Tremblay-Mercier J et al. Omega-3 fatty acids, energy substrates, and brain function during aging. Prostaglandins Leukot. Essent. Fatty Acids 75(3), 213–220 (2006).
  • Nugent S, Croteau E, Pifferi F et al. Brain and systemic glucose metabolism in the healthy elderly following fish oil supplementation. Prostaglandins Leukot. Essent. Fatty Acids 85(5), 287–291 (2011).
  • Plourde M, Cunnane SC. Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Appl. Physiol. Nutr. Metab. 32(4), 619–634 (2007).
  • Cunnane SC, Plourde M, Pifferi F, Begin M, Feart C, Barberger-Gateau P. Fish, docosahexaenoic acid and Alzheimer’s disease. Prog. Lipid Res. 48(5), 239–256 (2009).
  • Huang TL. Omega-3 fatty acids, cognitive decline, and Alzheimer’s disease: a critical review and evaluation of the literature. J. Alzheimers Dis. 21(3), 673–690 (2010).
  • Fotuhi M, Mohassel P, Yaffe K. Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. Nat. Clin. Pract. Neurol. 5(3), 140–152 (2009).
  • Solfrizzi V, Colacicco AM, D’Introno A et al. Dietary intake of unsaturated fatty acids and age-related cognitive decline: a 8.5-year follow-up of the Italian Longitudinal Study on Aging. NeuroBiol. Aging 27(11), 1694–1704 (2006).
  • Gu Y, Schupf N, Cosentino SA, Luchsinger JA, Scarmeas N. Nutrient intake and plasma beta-amyloid. Neurology 78(23), 1832–1840 (2012).
  • Titova OE, Sjogren P, Brooks SJ et al. Dietary intake of eicosapentaenoic and docosahexaenoic acids is linked to gray matter volume and cognitive function in elderly. Age (Dordr). 35(4), 1495–1505 (2013).
  • Samieri C, Maillard P, Crivello F et al. Plasma long-chain omega-3 fatty acids and atrophy of the medial temporal lobe. Neurology 79(7), 642–650 (2012).
  • Lopez LB, Kritz-Silverstein D, Barrett Connor E. High dietary and plasma levels of the omega-3 fatty acid docosahexaenoic acid are associated with decreased dementia risk: the Rancho Bernardo study. J. Nutr. Health Aging 15(1), 25–31 (2011).
  • Phillips MA, Childs CE, Calder PC, Rogers PJ. Lower omega-3 fatty acid intake and status are associated with poorer cognitive function in older age: A comparison of individuals with and without cognitive impairment and Alzheimer’s disease. Nutr. Neurosci. (2012) (Epub ahead of print).
  • Roberts RO, Cerhan JR, Geda YE et al. Polyunsaturated fatty acids and reduced odds of MCI: the Mayo Clinic Study of Aging. J. Alzheimers Dis. 21(3), 853–865 (2010).
  • Albanese E, Dangour AD, Uauy R et al. Dietary fish and meat intake and dementia in Latin America, China, and India: a 10/66 Dementia Research Group population-based study. Am. J. Clin. Nutr. 90(2), 392–400 (2009).
  • Barberger-Gateau P, Letenneur L, Deschamps V, PeRes K, Dartigues JF, Renaud S. Fish, meat, and risk of dementia: cohort study. BMJ 325(7370), 932–933 (2002).
  • Kalmijn S, Launer LJ, Ott A, Witteman JC, Hofman A, Breteler MM. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann. Neurol. 42(5), 776–82 (1997).
  • Morris MC, Evans DA, Bienias JL et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch. Neurol. 60(7), 940–946 (2003).
  • Huang TL, Zandi PP, Tucker KL et al. Benefits of fatty fish on dementia risk are stronger for those without APOE epsilon4. Neurology 65(9), 1409–1414 (2005).
  • Barberger-Gateau P, Raffaitin C, Letenneur L et al. Dietary patterns and risk of dementia: the Three-City cohort study. Neurology 69(20), 1921–1930 (2007).
  • Schaefer EJ, Bongard V, Beiser AS et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch. Neurol. 63(11), 1545–1550 (2006).
  • Devore EE, Grodstein F, van Rooij FJ et al. Dietary intake of fish and omega-3 fatty acids in relation to long-term dementia risk. Am. J. Clin. Nutr. 90(1), 170–176 (2009).
  • Engelhart MJ, Geerlings MI, Ruitenberg A et al. Diet and risk of dementia: Does fat matter?: The Rotterdam Study. Neurology 59(12), 1915–1921 (2002).
  • Barberger-Gateau P, Samieri C, Feart C, Plourde M. Dietary omega 3 polyunsaturated fatty acids and Alzheimer’s disease: interaction with apolipoprotein E genotype. Curr. Alzheimer Res. 8(5), 479–491 (2011).
  • Hennebelle M, Plourde M, Chouinard-Watkins R, Castellano CA, Barberger-Gateau P, Cunnane SC. Ageing and apoE change DHA homeostasis: relevance to age-related cognitive decline. Proc. Nutr. Soc. 73(1), 80–86 (2014).
  • Samieri C, Lorrain S, Buaud B et al. Relationship between diet and plasma long-chain n-3 PUFAs in older people: impact of apolipoprotein E genotype. J. Lipid Res. 54(9), 2559–2567 (2013).
  • Flock MR, Skulas-Ray AC, Harris WS, Etherton TD, Fleming JA, Kris-Etherton PM. Determinants of erythrocyte omega-3 fatty acid content in response to fish oil supplementation: a dose-response randomized controlled trial. J. Am. Heart Assoc. 2(6), e000513 (2013).
  • Prasad MR, Lovell MA, Yatin M, Dhillon H, Markesbery WR. Regional membrane phospholipid alterations in Alzheimer’s disease. Neurochem. Res. 23(1), 81–88 (1998).
  • Soderberg M, Edlund C, Kristensson K, Dallner G. Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26(6), 421–425 (1991).
  • Lukiw WJ, Cui JG, Marcheselli VL et al. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest. 115(10), 2774–2783 (2005).
  • Igarashi M, Ma K, Gao F, Kim HW, Rapoport SI, Rao JS. Disturbed choline plasmalogen and phospholipid fatty acid concentrations in Alzheimer’s disease prefrontal cortex. J. Alzheimers Dis. 24(3), 507–517 (2011).
  • Astarita G, Jung KM, Berchtold NC et al. Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer’s disease. PLoS ONE 5(9), e12538 (2010).
  • Cunnane SC, Schneider JA, Tangney C et al. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis. 29(3), 691–697 (2012).
  • Martin V, Fabelo N, Santpere G et al. Lipid alterations in lipid rafts from Alzheimer’s disease human brain cortex. J. Alzheimers Dis. 19(2), 489–502 (2010).
  • Fabelo N, Martin V, Marin R, Moreno D, Ferrer I, Diaz M. Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic Alzheimer’s disease and facilitates APP/BACE1 interactions. NeuroBiol. Aging 35(8), 1801–1812 (2014).
  • Fraser T, Tayler H, Love S. Fatty acid composition of frontal, temporal and parietal neocortex in the normal human brain and in Alzheimer’s disease. Neurochem. Res. 35(3), 503–513 (2010).
  • Skinner ER, Watt C, Besson JA, Best PV. Differences in the fatty acid composition of the grey and white matter of different regions of the brains of patients with Alzheimer’s disease and control subjects. Brain 116(Pt 3), 717–725 (1993).
  • Brooksbank BW, Martinez M. Lipid abnormalities in the brain in adult Down’s syndrome and Alzheimer’s disease. Mol. Chem. Neuropathol. 11(3), 157–185 (1989).
  • Guan Z, Wang Y, Cairns NJ, Lantos PL, Dallner G, Sindelar PJ. Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J. Neuropathol. Exp. Neurol. 58(7), 740–747 (1999).
  • Corrigan FM, Van Rhijn AG, Ijomah G et al. Tin and fatty acids in dementia. Prostaglandins Leukot. Essent. Fatty Acids 43(4), 229–238 (1991).
  • Gao Q, Niti M, Feng L, Yap KB, Ng TP. Omega-3 polyunsaturated fatty acid supplements and cognitive decline: Singapore Longitudinal Aging Studies. J. Nutr. Health Aging 15(1), 32–35 (2011).
  • Dangour AD, Andreeva VA, Sydenham E, Uauy R. Omega 3 fatty acids and cognitive health in older people. Br. J. Nutr. 107(Suppl. 2), S152–S158 (2012).
  • Sydenham E, Dangour AD, Lim WS. Omega 3 fatty acid for the prevention of cognitive decline and dementia. Cochrane Database Syst. Rev. 6, CD005379 (2012).
  • Mazereeuw G, Lanctot KL, Chau SA, Swardfager W, Herrmann N. Effects of omega-3 fatty acids on cognitive performance: a meta-analysis. NeuroBiol. Aging 33(7), 1482 e17–e29 (2012).
  • Vakhapova V, Cohen T, Richter Y, Herzog Y, Kam Y, Korczyn AD. Phosphatidylserine Containing Omega-3 Fatty Acids May Improve Memory Abilities in Nondemented Elderly Individuals with Memory Complaints: Results from an Open-Label Extension Study. Dement. Geriatr. Cogn. Disord. 38(1–2), 39–45 (2014).
  • Yurko-Mauro K, McCarthy D, Rom D et al. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement. 6(6), 456–464 (2010).
  • Lee LK, Shahar S, Chin AV, Yusoff NA. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): a 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl). 225(3), 605–612 (2013).
  • Sinn N, Milte CM, Street SJ et al. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. Br. J. Nutr. 107(11), 1682–9163 (2012).
  • Shinto L, Quinn J, Montine T et al. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J. Alzheimers Dis. 38(1), 111–120 (2014).
  • Quinn JF, Raman R, Thomas RG et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA 304(17), 1903–1911 (2010).
  • Chiu CC, Su KP, Cheng TC et al. The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study. Prog. NeuropsychoPharmacol. Biol. Psychiatry 32(6), 1538–1544 (2008).
  • Kotani S, Sakaguchi E, Warashina S et al. Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction. Neurosci. Res. 56(2), 159–164 (2006).
  • Lee LK, Shahar S, Rajab N, Yusoff NA, Jamal RA, Then SM. The role of long chain omega-3 polyunsaturated fatty acids in reducing lipid peroxidation among elderly patients with mild cognitive impairment: a case-control study. J. Nutr. Biochem. 24(5), 803–308 (2013).
  • Vakhapova V, Cohen T, Richter Y, Herzog Y, Korczyn AD. Phosphatidylserine containing omega-3 fatty acids may improve memory abilities in non-demented elderly with memory complaints: a double-blind placebo-controlled trial. Dement. Geriatr. Cogn. Disord. 29(5), 467–474 (2010).
  • Mahmoudi MJ, Hedayat M, Sharifi F et al. Effect of low dose omega-3 poly unsaturated fatty acids on cognitive status among older people: a double-blind randomized placebo-controlled study. J. Diabetes Metab. Disord. 13, 34 (2014).
  • Freund-Levi Y, Eriksdotter-Jonhagen M, Cederholm T et al. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch. Neurol. 63(10), 1402–1408 (2006).
  • Suzuki H, Morikawa Y, Takahashi H. Effect of DHA oil supplementation on intelligence and visual acuity in the elderly. World Rev. Nutr. Diet. 88, 68–71 (2001).
  • Plourde M, Chouinard-Watkins R, Vandal M et al. Plasma incorporation, apparent retroconversion and beta-oxidation of 13C-docosahexaenoic acid in the elderly. Nutr. Metab. (Lond.) 8, 5 (2011).
  • Chouinard-Watkins R, Rioux-Perreault C, Fortier M et al. Disturbance in uniformly 13C-labelled DHA metabolism in elderly human subjects carrying the apoE epsilon4 allele. Br. J. Nutr. 110(10), 1751–1759 (2013).
  • Plourde M, Vohl MC, Vandal M, Couture P, Lemieux S, Cunnane SC. Plasma n-3 fatty acid response to an n-3 fatty acid supplement is modulated by apoE epsilon4 but not by the common PPAR-alpha L162V polymorphism in men. Br. J. Nutr. 102(8), 1121–1124 (2009).
  • Whalley LJ, Deary IJ, Starr JM et al. n-3 Fatty acid erythrocyte membrane content, APOE varepsilon4, and cognitive variation: an observational follow-up study in late adulthood. Am. J. Clin. Nutr. 87(2), 449–454 (2008).
  • Conway V, Larouche A, Alata W, Vandal M, Calon F, Plourde M. Apolipoprotein E isoforms disrupt long-chain fatty acid distribution in the plasma, the liver and the adipose tissue of mice. Prostaglandins Leukot. Essent. Fatty Acids 91(6), 261–267 (2014).
  • Chouinard-Watkins R, Plourde M. Fatty acid metabolism in carriers of apolipoprotein E epsilon 4 allele: is it contributing to higher risk of cognitive decline and coronary heart disease? Nutrients 6(10), 4452–44571 (2014).
  • Meyer BJ. Are we consuming enough long chain omega-3 polyunsaturated fatty acids for optimal health? Prostaglandins Leukot. Essent. Fatty Acids 85(5), 275–280 (2011).
  • Plourde M, Chouinard-Watkins R, Rioux-Perreault C et al. Kinetics of 13C-DHA before and during fish-oil supplementation in healthy older individuals. Am. J. Clin. Nutr. 100(1), 105–112 (2014).
  • Vandal M, Freemantle E, Tremblay-Mercier J et al. Plasma omega-3 fatty acid response to a fish oil supplement in the healthy elderly. Lipids 43(11), 1085–1089 (2008).
  • Umhau JC, Zhou W, Carson RE et al. Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron emission tomography. J. Lipid Res. 50(7), 1259–1268 (2009).
  • Basselin M, Ramadan E, Rapoport SI. Imaging brain signal transduction and metabolism via arachidonic and docosahexaenoic acid in animals and humans. Brain Res. Bull. 87(2–3), 154–171 (2012).
  • Vandal M, Alata W, Tremblay C et al. Reduction in DHA transport to the brain of mice expressing human APOE4 compared with APOE2. J. Neurochem. 129(3), 516–526 (2014).
  • Freund Levi Y, Vedin I, Cederholm T et al. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer’s disease: the OmegAD study. J. Intern. Med. 275(4), 428–36 (2014).
  • Nguyen LN, Ma D, Shui G et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509(7501), 503–506 (2014).
  • Montine TJ, Morrow JD. Fatty acid oxidation in the pathogenesis of Alzheimer’s disease. Am. J. Pathol. 166(5), 1283–1289 (2005).
  • Markesbery WR, Kryscio RJ, Lovell MA, Morrow JD. Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann. Neurol. 58(5), 730–735 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.