108
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular profiling in colorectal cancer: current state of play and future directions

&
Pages 41-56 | Published online: 31 Jan 2014

References

  • Center MM , JemalA, WardE. International trends in colorectal cancer incidence rates. Cancer Epidemiol. Biomarkers Prev.18(6), 1688–1694 (2009).
  • Center MM , JemalA, SmithRA, WardE. Worldwide variations in colorectal cancer. CA Cancer J. Clin.59(6), 366–378 (2009).
  • Jemal A , BrayF, CenterMM, FerlayJ, WardE, FormanD. Global cancer statistics. CA Cancer J. Clin.61(2), 69–90 (2011).
  • WHO Classification of Tumours of the Digestive System. Bosman FT, Carnerio F, Hruban RH, Theise ND (Eds). International Agency for Research on Cancer Press, Lyon, France (2010).
  • World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart. Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC (Eds). International Agency for Research on Cancer Press, Lyon, France (2004).
  • Grady WM , CarethersJM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology135(4), 1079–1099 (2008).
  • Jass JR . Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology50(1), 113–130 (2007).
  • Walther A , HoulstonR, TomlinsonI. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut57(7), 941–950 (2008).
  • Hughes LA , Khalid-De Bakker CA, Smits KMet al. The CpG island methylator phenotype in colorectal cancer: progress and problems. Biochim. Biophys. Acta1825(1), 77–85 (2012).
  • Patai AV , MolnarB, KalmarA, SchollerA, TothK, TulassayZ. Role of DNA methylation in colorectal carcinogenesis. Dig. Dis.30(3), 310–315 (2012).
  • Cunningham D , AtkinW, LenzHJet al. Colorectal cancer. Lancet 375(9719), 1030–1047 (2010).
  • Fearon ER . Molecular genetics of colorectal cancer. Annu. Rev. Pathol.6, 479–507 (2011).
  • Simons CC , HughesLA, SmitsKMet al. A novel classification of colorectal tumors based on microsatellite instability, the CpG island methylator phenotype and chromosomal instability: implications for prognosis. Ann. Oncol. 24(8), 2048–2056 (2013).
  • Vogelstein B , FearonER, HamiltonSRet al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319(9), 525–532 (1988).
  • Fensterer H , RadlwimmerB, StraterJet al. Matrix-comparative genomic hybridization from multicenter formalin-fixed paraffin-embedded colorectal cancer tissue blocks. BMC Cancer 7, 58 (2007).
  • Watanabe T , Kobunai T, Yamamoto Yet al. Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer. J. Clin. Oncol.30(18), 2256–2264 (2012).
  • Davies JM , GoldbergRM. Treatment of metastatic colorectal cancer. Semin. Oncol.38(4), 552–560 (2011).
  • Hewish M , LordCJ, MartinSA, CunninghamD, AshworthA. Mismatch repair deficient colorectal cancer in the era of personalized treatment. Nat. Rev. Clin. Oncol.7(4), 197–208 (2010).
  • Poulogiannis G , FraylingIM, ArendsMJ. DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch syndrome. Histopathology56(2), 167–179 (2010).
  • Boland CR , GoelA. Microsatellite instability in colorectal cancer. Gastroenterology138(6), 2073.e3–2087.e3 (2010).
  • Greenson JK , BonnerJD, Ben-YzhakOet al. Phenotype of microsatellite unstable colorectal carcinomas: well-differentiated and focally mucinous tumors and the absence of dirty necrosis correlate with microsatellite instability. Am. J. Surg. Pathol. 27(5), 563–570 (2003).
  • Ribic CM , SargentDJ, MooreMJet al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 349(3), 247–257 (2003).
  • Deng G , BellI, CrawleySet al. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin. Cancer Res.10(1 Pt 1), 191–195 (2004).
  • Domingo E , LaihoP, OllikainenMet al. BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J. Med. Genet. 41(9), 664–668 (2004).
  • Bedeir A , KrasinskasAM. Molecular diagnostics of colorectal cancer. Arch. Pathol. Lab. Med.135(5), 578–587 (2011).
  • Boland CR , ThibodeauSN, HamiltonSRet al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58(22), 5248–5257 (1998).
  • Rodriguez-Bigas MA , BolandCR, HamiltonSRet al. A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J. Natl Cancer Inst. 89(23), 1758–1762 (1997).
  • Baudhuin LM , BurgartLJ, LeontovichO, ThibodeauSN. Use of microsatellite instability and immunohistochemistry testing for the identification of individuals at risk for Lynch syndrome. Fam. Cancer4(3), 255–265 (2005).
  • Popat S , HubnerR, HoulstonRS. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol.23(3), 609–618 (2005).
  • Vilar E , GruberSB. Microsatellite instability in colorectal cancer – the stable evidence. Nat. Rev. Clin. Oncol.7(3), 153–162 (2010).
  • Jones PA , BaylinSB. The epigenomics of cancer. Cell128(4), 683–692 (2007).
  • Bird A . DNA methylation patterns and epigenetic memory. Genes Dev.16(1), 6–21 (2002).
  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet.13(7), 484–492 (2012).
  • Chan TL , YuenST, KongCKet al. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat. Genet. 38(10), 1178–1183 (2006).
  • Hitchins M , WilliamsR, CheongKet al. MLH1 germline epimutations as a factor in hereditary nonpolyposis colorectal cancer. Gastroenterology129(5), 1392–1399 (2005).
  • Horsthemke B . Heritable germline epimutations in humans. Nat. Genet.39(5), 573–574; author reply 575–576 (2007).
  • Suter CM , MartinDI, WardRL. Germline epimutation of MLH1 in individuals with multiple cancers. Nat. Genet.36(5), 497–501 (2004).
  • Issa JP , OttavianoYL, CelanoP, HamiltonSR, DavidsonNE, BaylinSB. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat. Genet.7(4), 536–540 (1994).
  • Park SJ , RashidA, LeeJH, KimSG, HamiltonSR, WuTT. Frequent CpG island methylation in serrated adenomas of the colorectum. Am. J. Pathol.162(3), 815–822 (2003).
  • Weisenberger DJ , SiegmundKD, CampanMet al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 38(7), 787–793 (2006).
  • Ogino S , KawasakiT, KirknerGJ, KraftP, LodaM, FuchsCS. Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J. Mol. Diagn.9(3), 305–314 (2007).
  • Shen L , ToyotaM, KondoYet al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc. Natl Acad. Sci. USA 104(47), 18654–18659 (2007).
  • Ogino S , KawasakiT, NoshoKet al. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int. J. Cancer122(12), 2767–2773 (2008).
  • Nosho K , IraharaN, ShimaKet al. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS ONE 3(11), e3698 (2008).
  • Silver A , SenguptaN, PropperDet al. A distinct DNA methylation profile associated with microsatellite and chromosomal stable sporadic colorectal cancers. Int. J. Cancer 130(5), 1082–1092 (2012).
  • Samowitz WS , AlbertsenH, HerrickJet al. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 129(3), 837–845 (2005).
  • Samowitz WS , AlbertsenH, SweeneyCet al. Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer. J. Natl Cancer Inst. 98(23), 1731–1738 (2006).
  • Ogino S , NoshoK, KirknerGJet al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut 58(1), 90–96 (2009).
  • Shen L , CatalanoPJ, BensonAB 3rd, O‘Dwyer P, Hamilton SR, Issa JP. Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5-fluorouracil based chemotherapy. Clin. Cancer Res.13(20), 6093–6098 (2007).
  • Bibeau F , Boissiere-MichotF, SabourinJCet al. Assessment of epidermal growth factor receptor (EGFR) expression in primary colorectal carcinomas and their related metastases on tissue sections and tissue microarray. Virchows Arch. 449(3), 281–287 (2006).
  • Goldstein NS , ArminM. Epidermal growth factor receptor immunohistochemical reactivity in patients with American Joint Committee on Cancer stage IV colon adenocarcinoma: implications for a standardized scoring system. Cancer92(5), 1331–1346 (2001).
  • Amado RG , WolfM, PeetersMet al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26(10), 1626–1634 (2008).
  • Karapetis CS , Khambata-FordS, JonkerDJet al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med.359(17), 1757–1765 (2008).
  • Van Cutsem E , KohneCH, LangIet al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J. Clin. Oncol. 29(15), 2011–2019 (2011).
  • De Roock W , ClaesB, BernasconiDet al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 11(8), 753–762 (2010).
  • Troiani T , ZappavignaS, MartinelliEet al. Optimizing treatment of metastatic colorectal cancer patients with anti-EGFR antibodies: overcoming the mechanisms of cancer cell resistance. Expert Opin. Biol. Ther. 13(2), 241–255 (2013).
  • Wiesweg M , TingS, ReisHet al. Feasibility of preemptive biomarker profiling for personalised early clinical drug development at a Comprehensive Cancer Center. Eur. J. Cancer 49(15), 3076–3082 (2013).
  • Bertotti A , MigliardiG, GalimiFet al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1(6), 508–523 (2011).
  • Ooi A , TakehanaT, LiXet al. Protein overexpression and gene amplification of HER-2 and EGFR in colorectal cancers: an immunohistochemical and fluorescent in situ hybridization study. Mod. Pathol. 17(8), 895–904 (2004).
  • Comprehensive molecular characterization of human colon and rectal cancer. Nature487(7407), 330–337 (2012).
  • Migliore L , MigheliF, SpisniR, CoppedeF. Genetics, cytogenetics, and epigenetics of colorectal cancer. J. Biomed. Biotechnol.2011, 792362 (2011).
  • Lurje G , ZhangW, LenzHJ. Molecular prognostic markers in locally advanced colon cancer. Clin. Colorectal Cancer6(10), 683–690 (2007).
  • Thibodeau SN , BrenG, SchaidD. Microsatellite instability in cancer of the proximal colon. Science260(5109), 816–819 (1993).
  • Jacobs B , De Roock W, Piessevaux Het al. Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J. Clin. Oncol.27(30), 5068–5074 (2009).
  • Khambata-Ford S , GarrettCR, MeropolNJet al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol. 25(22), 3230–3237 (2007).
  • Ramaswamy S , TamayoP, RifkinRet al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl Acad. Sci. USA 98(26), 15149–15154 (2001).
  • Su AI , WelshJB, SapinosoLMet al. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res. 61(20), 7388–7393 (2001).
  • Lascorz J , ChenB, HemminkiK, ForstiA. Consensus pathways implicated in prognosis of colorectal cancer identified through systematic enrichment analysis of gene expression profiling studies. PLoS ONE6(4), e18867 (2011).
  • Lepesheva GI , WatermanMR. Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim. Biophys. Acta1770(3), 467–477 (2007).
  • Tsunedomi R , IizukaN, HamamotoYet al. Patterns of expression of cytochrome P450 genes in progression of hepatitis C virus-associated hepatocellular carcinoma. Int. J. Oncol. 27(3), 661–667 (2005).
  • Gimba ER , TilliTM. Human osteopontin splicing isoforms: known roles, potential clinical applications and activated signaling pathways. Cancer Lett.331(1), 11–17 (2013).
  • Weber GF , AshkarS, GlimcherMJ, CantorH. Receptor–ligand interaction between CD44 and osteopontin (Eta-1). Science271(5248), 509–512 (1996).
  • Chambers AF , WilsonSM, KerkvlietN, O‘MalleyFP, HarrisJF, CassonAG. Osteopontin expression in lung cancer. Lung Cancer15(3), 311–323 (1996).
  • Hotte SJ , WinquistEW, StittL, WilsonSM, ChambersAF. Plasma osteopontin: associations with survival and metastasis to bone in men with hormone-refractory prostate carcinoma. Cancer95(3), 506–512 (2002).
  • Tuck AB , ChambersAF. The role of osteopontin in breast cancer: clinical and experimental studies. J. Mammary Gland Biol. Neoplasia6(4), 419–429 (2001).
  • Roepman P , SchlickerA, TaberneroJet al. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int. J. Cancer 134(3), 552–562 (2013).
  • Spruessel A , SteimannG, JungMet al. Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision. Biotechniques 36(6), 1030–1037 (2004).
  • Reya T , MorrisonSJ, ClarkeMF, WeissmanIL. Stem cells, cancer, and cancer stem cells. Nature414(6859), 105–111 (2001).
  • Horst D , ScheelSK, LiebmannSet al. The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. J. Pathol. 219(4), 427–434 (2009).
  • Vermeulen L , TodaroM, De Sousa Mello Fet al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl Acad. Sci. USA105(36), 13427–13432 (2008).
  • Chen S , SongX, ChenZet al. CD133 expression and the prognosis of colorectal cancer: a systematic review and meta-analysis. PLoS ONE 8(2), e56380 (2013).
  • Kemper K , VerslootM, CameronKet al. Mutations in the Ras–Raf axis underlie the prognostic value of CD133 in colorectal cancer. Clin. Cancer Res. 18(11), 3132–3141 (2012).
  • Ide T , KitajimaY, OhtakaK, MitsunoM, NakafusaY, MiyazakiK. Expression of the hMLH1 gene is a possible predictor for the clinical response to 5-fluorouracil after a surgical resection in colorectal cancer. Oncol. Rep.19(6), 1571–1576 (2008).
  • Jover R , NguyenTP, Perez-CarbonellLet al. 5-fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer. Gastroenterology 140(4), 1174–1181 (2011).
  • Van Rijnsoever M , ElsalehH, JosephD, MccaulK, IacopettaB. CpG island methylator phenotype is an independent predictor of survival benefit from 5-fluorouracil in stage III colorectal cancer. Clin. Cancer Res.9(8), 2898–2903 (2003).
  • De Maat MF , Van De Velde CJ, Benard Aet al. Identification of a quantitative MINT locus methylation profile predicting local regional recurrence of rectal cancer. Clin. Cancer Res.16(10), 2811–2818 (2010).
  • De Maat MF , Van De Velde CJ, Van Der Werff MPet al. Quantitative analysis of methylation of genomic loci in early-stage rectal cancer predicts distant recurrence. J. Clin. Oncol.26(14), 2327–2335 (2008).
  • Kuremsky JG , TepperJE, McleodHL. Biomarkers for response to neoadjuvant chemoradiation for rectal cancer. Int. J. Radiat. Oncol. Biol. Phys.74(3), 673–688 (2009).
  • Molinari C , Casadio V, Foca Fet al. Gene methylation in rectal cancer: predictive marker of response to chemoradiotherapy? J. Cell Physiol.228(12), 2343–2349 (2013).
  • Kim MS , LeeJ, SidranskyD. DNA methylation markers in colorectal cancer. Cancer Metastasis Rev.29(1), 181–206 (2010).
  • Ahn JB , ChungWB, MaedaOet al. DNA methylation predicts recurrence from resected stage III proximal colon cancer. Cancer 117(9), 1847–1854 (2011).
  • Antelo M , BalaguerF, ShiaJet al. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLoS ONE 7(9), e45357 (2012).
  • Ogino S , NoshoK, KirknerGJet al. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J. Natl Cancer Inst. 100(23), 1734–1738 (2008).
  • Sakamoto N , TeraiT, AjiokaYet al. Frequent hypermethylation of RASSF1A in early flat-type colorectal tumors. Oncogene 23(55), 8900–8907 (2004).
  • Ramirez N , BandresE, NavarroAet al. Epigenetic events in normal colonic mucosa surrounding colorectal cancer lesions. Eur. J. Cancer 44(17), 2689–2695 (2008).
  • Lee Y , AhnC, HanJet al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956), 415–419 (2003).
  • Calin GA , SevignaniC, DumitruCDet al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101(9), 2999–3004 (2004).
  • Pin AL , HouleF, HuotJ. Recent advances in colorectal cancer research: the microenvironment impact. Cancer Microenviron.4(2), 127–131 (2011).
  • Sun G , YanJ, NoltnerKet al. SNPs in human miRNA genes affect biogenesis and function. RNA 15(9), 1640–1651 (2009).
  • Hrasovec S , GlavacD. MicroRNAs as novel biomarkers in colorectal cancer. Front. Genet.3, 180 (2012).
  • Mazeh H , MizrahiI, IlyayevNet al. The diagnostic and prognostic role of microrna in colorectal cancer – a comprehensive review. J. Cancer 4(3), 281–295 (2013).
  • Lanza G , FerracinM, GafàRet al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol. Cancer 6, 54 (2007).
  • Balaguer F , MoreiraL, LozanoJJet al. Colorectal cancers with microsatellite instability display unique miRNA profiles. Clin. Cancer Res. 17(19), 6239–6249 (2011).
  • Chang K h, Miller N, Kheirelseid EH. MicroRNA signature analysis in colorectal cancer: identification of expression profiles in stage II tumors associated with aggressive disease. Int. J. Colorectal Dis.26(11), 1415–1422 (2011).
  • Nishida N , YamashitaS, MimoriKet al. MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann. Surg. Oncol. 19(9), 3065–3071 (2012).
  • Iorio MV , FerracinM, LiuCGet al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65(16), 7065–7070 (2005).
  • Yanaihara N , CaplenN, BowmanEet al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3), 189–198 (2006).
  • Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res.67(13), 6130–6135 (2007).
  • Park SY , LeeJH, HaM, NamJW, KimVN. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat. Struct. Mol. Biol.16(1), 23–29 (2009).
  • Weissmann-Brenner A , KushnirM, Lithwick Yanai Get al. Tumor microRNA-29a expression and the risk of recurrence in stage II colon cancer. Int. J. Oncol.40(6), 2097–2103 (2012).
  • Yang IP , TsaiHL, HuangCWet al. The functional significance of microRNA-29c in patients with colorectal cancer: a potential circulating biomarker for predicting early relapse. PLoS One 8(6), e66842 (2013).
  • Kuo TY , HsiE, YangIPet al. Computational analysis of mRNA expression profiles identifies microRNA-29a/c as predictor of colorectal cancer early recurrence. PLoS One 7(2), e31587 (2012).
  • Imperiale TF , RansohoffDF, ItzkowitzSH, TurnbullBA, RossME. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N. Engl. J. Med.351(26), 2704–2714 (2004).
  • Diaz LA Jr , Williams RT, Wu Jet al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature486(7404), 537–540 (2012).
  • Lecomte T , BergerA, ZinzindohoueFet al. Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int. J. Cancer 100(5), 542–548 (2002).
  • Heitzer E , AuerM, HoffmannEMet al. Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int. J. Cancer 133(2), 346–356 (2013).
  • Devos T , TetznerR, ModelFet al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin. Chem. 55(7), 1337–1346 (2009).
  • Grutzmann R , MolnarB, PilarskyCet al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS ONE 3(11), e3759 (2008).
  • Liu Y , ThamCK, OngSYet al. Serum methylation levels of TAC1. SEPT9 and EYA4 as diagnostic markers for early colorectal cancers: a pilot study. Biomarkers 18(5), 399–405 (2013).
  • Toth K , GalambO, SpisakSet al. The influence of methylated septin 9 gene on RNA and protein level in colorectal cancer. Pathol. Oncol. Res. 17(3), 503–509 (2011).
  • Toth K , SiposF, KalmarAet al. Detection of methylated SEPT9 in plasma is a reliable screening method for both left- and right-sided colon cancers. PLoS ONE 7(9), e46000 (2012).
  • Warren JD , Xiong W, Bunker AMet al. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med.9, 133 (2011).
  • Lofton-Day C , ModelF, DevosTet al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem. 54(2), 414–423 (2008).
  • Nagasaka T , TanakaN, CullingsHMet al. Analysis of fecal DNA methylation to detect gastrointestinal neoplasia. J. Natl Cancer Inst. 101(18), 1244–1258 (2009).
  • Bujanda L , SarasquetaC, CosmeAet al. Evaluation of alpha 1-antitrypsin and the levels of mRNA expression of matrix metalloproteinase 7, urokinase type plasminogen activator receptor and COX-2 for the diagnosis of colorectal cancer. PLoS ONE 8(1), e51810 (2013).
  • Davidson LA , LuptonJR, MiskovskyE, FieldsAP, ChapkinRS. Quantification of human intestinal gene expression profiles using exfoliated colonocytes: a pilot study. Biomarkers8(1), 51–61 (2003).
  • Kanaoka S , YoshidaK, MiuraN, SugimuraH, KajimuraM. Potential usefulness of detecting cyclooxygenase 2 messenger RNA in feces for colorectal cancer screening. Gastroenterology127(2), 422–427 (2004).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.