50
Views
0
CrossRef citations to date
0
Altmetric
Management Perspective

Deficient mismatch repair in colorectal cancer: current perspectives on patient management and future directions

, &
Pages 69-83 | Published online: 16 Apr 2015

References

  • Leggett B , WhitehallV. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology138(6), 2088–2100 (2010).
  • Peltomaki P , AaltonenLA, SistonenPet al. Genetic mapping of a locus predisposing to human colorectal cancer. Science260(5109), 810–812 (1993).
  • Fishel R , LescoeMK, RaoMRet al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell75(5), 1027–1038 (1993).
  • Leach FS , NicolaidesNC, PapadopoulosNet al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell75(6), 1215–1225 (1993).
  • Aaltonen LA , SalovaaraR, KristoPet al. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N. Engl. J. Med.338(21), 1481–1487 (1998).
  • Young J , SimmsLA, BidenKGet al. Features of colorectal cancers with high-level microsatellite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis. Am. J. Pathol.159(6), 2107–2116 (2001).
  • Bronner CE , BakerSM, MorrisonPTet al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature368(6468), 258–261 (1994).
  • Nicolaides NC , PapadopoulosN, LiuBet al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature371(6492), 75–80 (1994).
  • Akiyama Y , SatoH, YamadaTet al. Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res.57(18), 3920–3923 (1997).
  • Miyaki M , KonishiM, TanakaKet al. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat. Genet.17(3), 271–272 (1997).
  • Ligtenberg MJ , KuiperRP, ChanTLet al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat. Genet.41(1), 112–117 (2009).
  • Suter CM , MartinDI, WardRL. Germline epimutation of MLH1 in individuals with multiple cancers. Nat. Genet.36(5), 497–501 (2004).
  • Sheridan TB , FentonH, LewinMRet al. Sessile serrated adenomas with low- and high-grade dysplasia and early carcinomas: an immunohistochemical study of serrated lesions “caught in the act”. Am. J. Clin. Pathol.126(4), 564–571 (2006).
  • Goldstein NS . Small colonic microsatellite unstable adenocarcinomas and high-grade epithelial dysplasias in sessile serrated adenoma polypectomy specimens: a study of eight cases. Am. J. Clin. Pathol.125(1), 132–145 (2006).
  • Rajagopalan H , BardelliA, LengauerC, KinzlerKW, VogelsteinB, VelculescuVE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature418(6901), 934 (2002).
  • Mcgivern A , WynterCV, WhitehallVLet al. Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam. Cancer3(2), 101–107 (2004).
  • Toyota M , AhujaN, Ohe-ToyotaM, HermanJG, BaylinSB, IssaJP. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA96(15), 8681–8686 (1999).
  • Bond CE , NancarrowDJ, WocknerLFet al. Microsatellite stable colorectal cancers stratified by the BRAF V600E mutation show distinct patterns of chromosomal instability. PLoS One9(3), e91739 (2014).
  • Bond CE , UmapathyA, RamsnesIet al. p53 mutation is common in microsatellite stable, BRAF mutant colorectal cancers. Int. J. Cancer130(7), 1567–1576 (2012).
  • Samowitz WS , SweeneyC, HerrickJet al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res.65(14), 6063–6069 (2005).
  • Bettington ML , WalkerNI, RostyCet al. A clinicopathological and molecular analysis of 200 traditional serrated adenomas. Mod. Pathol. doi:10.1038/modpathol.2014.122 (2014) ( Epub ahead of print).
  • Whitehall VL , WynterCV, WalshMDet al. Morphological and molecular heterogeneity within nonmicrosatellite instability-high colorectal cancer. Cancer Res.62(21), 6011–6014 (2002).
  • Nosho K , IraharaN, ShimaKet al. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One3(11), e3698 (2008).
  • Weisenberger DJ , SiegmundKD, CampanMet al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet.38(7), 787–793 (2006).
  • Hinoue T , WeisenbergerDJ, LangeCPet al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res.22(2), 271–282 (2012).
  • Cancer Genome Atlas N . Comprehensive molecular characterization of human colon and rectal cancer. Nature487(7407), 330–337 (2012).
  • Fang M , OuJ, HutchinsonL, GreenMR. The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG island methylator phenotype. Mol. Cell55(6), 904–915 (2014).
  • Whitehall V , DumenilT, MckeoneDet al. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype. Epigenetics9(11), 1454–1460 (2014).
  • Hearne CM , GhoshS, ToddJA. Microsatellites for linkage analysis of genetic traits. Trends Genet.8(8), 288–294 (1992).
  • Ripley LS . Frameshift mutation: determinants of specificity. Annu. Rev. Genet.24, 189–213 (1990).
  • Kunkel TA . Frameshift mutagenesis by eucaryotic DNA polymerases in vitro. J. Biol. Chem.261(29), 13581–13587 (1986).
  • Perucho M . Cancer of the microsatellite mutator phenotype. Biol. Chem.377(11), 675–684 (1996).
  • Boland CR , ThibodeauSN, HamiltonSRet al. A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res.58(22), 5248–5257 (1998).
  • Markowitz S , WangJ, MyeroffLet al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science268(5215), 1336–1338 (1995).
  • Mori Y , YinJ, RashidAet al. Instabilotyping: comprehensive identification of frameshift mutations caused by coding region microsatellite instability. Cancer Res.61(16), 6046–6049 (2001).
  • Rampino N , YamamotoH, IonovYet al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science275(5302), 967–969 (1997).
  • Souza RF , AppelR, YinJet al. Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat. Genet.14(3), 255–257 (1996).
  • Lindor NM , BurgartLJ, LeontovichOet al. Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J. Clin. Oncol.20(4), 1043–1048 (2002).
  • Giardiello FM , AllenJI, AxilbundJEet al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterology147(2), 502–526 (2014).
  • Bacher JW , FlanaganLA, SmalleyRLet al. Development of a fluorescent multiplex assay for detection of MSI-High tumors. Dis. Markers20(4–5), 237–250 (2004).
  • Pinol V , CastellsA, AndreuMet al. Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA293(16), 1986–1994 (2005).
  • Whitehall VL , WalshMD, YoungJ, LeggettBA, JassJR. Methylation of O-6-methylguanine DNA methyltransferase characterizes a subset of colorectal cancer with low-level DNA microsatellite instability. Cancer Res.61(3), 827–830 (2001).
  • Hendriks YM , WagnerA, MorreauHet al. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology127(1), 17–25 (2004).
  • Plaschke J , EngelC, KrugerSet al. Lower incidence of colorectal cancer and later age of disease onset in 27 families with pathogenic MSH6 germline mutations compared with families with MLH1 or MSH2 mutations: the German Hereditary Nonpolyposis Colorectal Cancer Consortium. J. Clin. Oncol.22(22), 4486–4494 (2004).
  • Wu Y , BerendsMJ, MensinkRGet al. Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am. J. Hum. Genet.65(5), 1291–1298 (1999).
  • Berends MJ , WuY, SijmonsRHet al. Molecular and clinical characteristics of MSH6 variants: an analysis of 25 index carriers of a germline variant. Am. J. Hum. Genet.70(1), 26–37 (2002).
  • Vilar E , MorkME, CuddyAet al. Role of microsatellite instability-low as a diagnostic biomarker of Lynch syndrome in colorectal cancer. Cancer Genet.207(10–12), 495–502 (2014).
  • Hampel H , FrankelWL, MartinEet al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J. Clin. Oncol.26(35), 5783–5788 (2008).
  • Ward RL , HicksS, HawkinsNJ. Population-based molecular screening for Lynch syndrome: implications for personalized medicine. J. Clin. Oncol.31(20), 2554–2562 (2013).
  • Moertel CG , FlemingTR, MacdonaldJSet al. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N. Engl. J. Med.322(6), 352–358 (1990).
  • Haller DG , CatalanoPJ, MacdonaldJSet al. Phase III study of fluorouracil, leucovorin, and levamisole in high-risk stage II and III colon cancer: final report of Intergroup 0089. J. Clin. Oncol.23(34), 8671–8678 (2005).
  • Andre T , BoniC, NavarroMet al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J. Clin. Oncol.27(19), 3109–3116 (2009).
  • Taieb J , TaberneroJ, MiniEet al. Oxaliplatin, fluorouracil, and leucovorin with or without cetuximab in patients with resected stage III colon cancer (PETACC-8): an open-label, randomised phase 3 trial. Lancet Oncol.15(8), 862–873 (2014).
  • Allegra CJ , YothersG, O'ConnellMJet al. Bevacizumab in stage II–III colon cancer: 5-year update of the National Surgical Adjuvant Breast and Bowel Project C-08 trial. J. Clin. Oncol.31(3), 359–364 (2013).
  • Sauer R , LierschT, MerkelSet al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J. Clin. Oncol.30(16), 1926–1933 (2012).
  • Nordlinger B , SorbyeH, GlimeliusBet al. Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol.14(12), 1208–1215 (2013).
  • Heinemann V , Von WeikersthalLF, DeckerTet al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol.15(10), 1065–1075 (2014).
  • Price TJ , SegelovE, BurgeMet al. Current opinion on optimal systemic treatment for metastatic colorectal cancer: outcome of the ACTG/AGITG expert meeting ECCO 2013. Expert Rev. Anticancer Ther.14(12), 1477–1493 (2014).
  • Douillard JY , OlinerKS, SienaSet al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med.369(11), 1023–1034 (2013).
  • Thibodeau SN , BrenG, SchaidD. Microsatellite instability in cancer of the proximal colon. Science260(5109), 816–819 (1993).
  • Sargent DJ , MarsoniS, MongesGet al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J. Clin. Oncol.28(20), 3219–3226 (2010).
  • Martin CM , GuzmanEC. DNA replication initiation as a key element in thymineless death. DNA Repair (Amst.)10(1), 94–101 (2011).
  • Zhang H , RichardsB, WilsonTet al. Apoptosis induced by overexpression of hMSH2 or hMLH1. Cancer Res.59(13), 3021–3027 (1999).
  • Gryfe R , KimH, HsiehETet al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N. Engl. J. Med.342(2), 69–77 (2000).
  • Sinicrope FA , FosterNR, ThibodeauSNet al. DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J. Natl Cancer Inst.103(11), 863–875 (2011).
  • Wright CM , DentOF, BarkerMet al. Prognostic significance of extensive microsatellite instability in sporadic clinicopathological stage C colorectal cancer. Br. J. Surg.87(9), 1197–1202 (2000).
  • Jernvall P , MakinenMJ, KarttunenTJ, MakelaJ, VihkoP. Microsatellite instability: impact on cancer progression in proximal and distal colorectal cancers. Eur. J. Cancer35(2), 197–201 (1999).
  • Kim GP , ColangeloLH, WieandHSet al. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute–National Surgical Adjuvant Breast and Bowel Project collaborative study. J. Clin. Oncol.25(7), 767–772 (2007).
  • Westra JL , SchaapveldM, HollemaHet al. Determination of TP53 mutation is more relevant than microsatellite instability status for the prediction of disease-free survival in adjuvant-treated stage III colon cancer patients. J. Clin. Oncol.23(24), 5635–5643 (2005).
  • Hutchins G , SouthwardK, HandleyKet al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J. Clin. Oncol.29(10), 1261–1270 (2011).
  • Sargent DJ , ShiQ, YothersGet al. Prognostic impact of deficient mismatch repair (dMMR) in 7,803 stage II/III colon cancer (CC) patients (pts): a pooled individual pt data analysis of 17 adjuvant trials in the ACCENT database. J. Clin. Oncol.32(5s), Abstract 3507 (2014).
  • Roth AD , DelorenziM, TejparSet al. Integrated analysis of molecular and clinical prognostic factors in stage II/III colon cancer. J. Natl Cancer Inst.104(21), 1635–1646 (2012).
  • Bertagnolli MM , RedstonM, ComptonCCet al. Microsatellite instability and loss of heterozygosity at chromosomal location 18q: prospective evaluation of biomarkers for stages II and III colon cancer – a study of CALGB 9581 and 89803. J. Clin. Oncol.29(23), 3153–3162 (2011).
  • Sinicrope FA , MahoneyMR, SmyrkTCet al. Prognostic impact of deficient DNA mismatch repair in patients with stage III colon cancer from a randomized trial of FOLFOX-based adjuvant chemotherapy. J. Clin. Oncol.31(29), 3664–3672 (2013).
  • Gavin PG , ColangeloLH, FumagalliDet al. Mutation profiling and microsatellite instability in stage II and III colon cancer: an assessment of their prognostic and oxaliplatin predictive value. Clin. Cancer Res.18(23), 6531–6541 (2012).
  • Flejou JF , AndreT, ChibaudelBet al. Effect of adding oxaliplatin to adjuvant 5-fluorouracil/leucovorin (5FU/LV) in patients with defective mismatch repair (dMMR) colon cancer stage II and III included in the MOSIAC study. J. Clin. Oncol.31, Abstract 3524 (2013).
  • Tournigand C , AndreT, BonnetainFet al. Adjuvant therapy with fluorouracil and oxaliplatin in stage II and elderly patients (between ages 70 and 75 years) with colon cancer: subgroup analyses of the multicenter international study of oxaliplatin, fluorouracil, and leucovorin in the adjuvant treatment of colon cancer trial. J. Clin. Oncol.30(27), 3353–3360 (2012).
  • Popat S , HubnerR, HoulstonRS. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol.23(3), 609–618 (2005).
  • Ribic CM , SargentDJ, MooreMJet al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med.349(3), 247–257 (2003).
  • Bertagnolli MM , NiedzwieckiD, ComptonCCet al. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J. Clin. Oncol.27(11), 1814–1821 (2009).
  • Sinicrope FA , SmyrkTC, TougeronDet al. Mutation-specific antibody detects mutant BRAFV600E protein expression in human colon carcinomas. Cancer119(15), 2765–2770 (2013).
  • Labianca R , NordlingerB, BerettaGDet al. Early colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol.24(Suppl. 6), vi64–vi72 (2013).
  • Papamichael D , AudisioRA, GlimeliusBet al. Treatment of colorectal cancer in older patients: International Society of Geriatric Oncology (SIOG) consensus recommendations 2013. Ann. Oncol. pii: mdu253 (2014) ( Epub ahead of print).
  • Tran B , KopetzS, TieJet al. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer117(20), 4623–4632 (2011).
  • Goldstein J , TranB, EnsorJet al. Multicenter retrospective analysis of metastatic colorectal cancer (CRC) with high-level microsatellite instability (MSI-H). Ann. Oncol.25(5), 1032–1038 (2014).
  • Venderbosch S , NagtegaalID, MaughanTSet al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin. Cancer Res.20(20), 5322–5330 (2014).
  • Des Guetz G , UzzanB, NicolasP, SchischmanoffO, PerretGY, MorereJF. Microsatellite instability does not predict the efficacy of chemotherapy in metastatic colorectal cancer. A systematic review and meta-analysis. Anticancer Res.29(5), 1615–1620 (2009).
  • Loupakis F , CremoliniC, LonardiSet al. Subgroup analyses in RAS mutant, BRAF mutant and all-wt mCRC pts treated with FOLFOXIRI plus bevacizumab (bev) or FOLFIRI plus bev in the TRIBE study. J. Clin. Oncol.32(5s), Abstract 3519 (2014).
  • Liu L , ShiH, BleamMRet al. Antitumor effects of dabrafenib, trametinib, and panitumumab as single agents and in combination in BRAF-mutant colorectal carcinoma (CRC) models. J. Clin. Oncol.32(5s), Abstract 3513 (2014).
  • Van Geel R , ElezE, BendellJCet al. Phase I study of the selective BRAFV600 inhibitor encorafenib (LGX818) combined with cetuximab and with or without the a-specific PI3K inhibitor BYL719 in patients with advanced BRAF-mutant colorectal cancer. J. Clin. Oncol.32(5s), Abstract 3514 (2014).
  • Van Cutsem E , KohneCH, LangIet al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J. Clin. Oncol.29(15), 2011–2019 (2011).
  • Di Nicolantonio F , MartiniM, MolinariFet al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J. Clin. Oncol.26(35), 5705–5712 (2008).
  • Dienstmann R , GuinneyJ, DelorenziMet al. Coloretcal Cancer Subtyping Consortium (CRCSC) identification of a consnesus of molecular subtypes. J. Clin. Oncol.32(5s), Abstract 3511 (2014).
  • Mclornan DP , ListA, MuftiGJ. Applying synthetic lethality for the selective targeting of cancer. N. Engl. J. Med.371(18), 1725–1735 (2014).
  • Venderbosch S , NagtegaalID, MaughanTSet al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin. Cancer Res.20(20), 5322–5330 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.