293
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Determinants of Cardiovascular Gene Expression: Vascular Endothelium

, , &
Pages 959-979 | Received 27 Jan 2016, Accepted 25 Apr 2016, Published online: 06 Jul 2016

References

  • ENCODE Project Consortium . An integrated encyclopedia of DNA elements in the human genome . Nature489 ( 7414 ), 57 – 74 ( 2012 ).
  • Mattick JS , TaftRJ , FaulknerGJ . A global view of genomic information – moving beyond the gene and the master regulator . Trends Genet.26 ( 1 ), 21 – 28 ( 2010 ).
  • Takahashi K , TanabeK , OhnukiMet al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors . Cell131 ( 5 ), 861 – 872 ( 2007 ).
  • Onder TT , KaraN , CherryAet al. Chromatin-modifying enzymes as modulators of reprogramming . Nature483 ( 7391 ), 598 – 602 ( 2012 ).
  • Papp B , PlathK . Epigenetics of reprogramming to induced pluripotency . Cell152 ( 6 ), 1324 – 1343 ( 2013 ).
  • Yamamoto T , ShibataR , IshiiMet al. Therapeutic reendothelialization by induced pluripotent stem cells after vascular injury – brief report . Arterioscler. Thromb. Vasc. Biol.33 ( 9 ), 2218 – 2221 ( 2013 ).
  • Rufaihah AJ , HuangNF , JameSet al. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease . Arterioscler. Thromb. Vasc. Biol.31 ( 11 ), e72 – e79 ( 2011 ).
  • Newman PE . Can reduced folic acid and vitamin B12 levels cause deficient DNA methylation producing mutations which initiate atherosclerosis?Med. Hypotheses53 ( 5 ), 421 – 424 ( 1999 ).
  • Chen Z , KaraplisAC , AckermanSLet al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition . Hum. Mol. Genet.10 ( 5 ), 433 – 443 ( 2001 ).
  • Hiltunen MO , TurunenMP , HakkinenTPet al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions . Vasc. Med.7 ( 1 ), 5 – 11 ( 2002 ).
  • Castro R , RiveraI , StruysEAet al. Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease . Clin. Chem.49 ( 8 ), 1292 – 1296 ( 2003 ).
  • Lund G , AnderssonL , LauriaMet al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E . J. Biol. Chem.279 ( 28 ), 29147 – 29154 ( 2004 ).
  • Zaina S , HeynH , CarmonaFJet al. A DNA methylation map of human atherosclerosis . Circ. Cardiovasc. Genet.7 ( 5 ), 692 – 700 ( 2014 ).
  • Baccarelli A , WrightR , BollatiVet al. Ischemic heart disease and stroke in relation to blood DNA methylation . Epidemiology21 ( 6 ), 819 – 828 ( 2010 ).
  • Dunn J , QiuH , KimSet al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis . J. Clin. Invest.124 ( 7 ), 3187 – 3199 ( 2014 ).
  • Zhou J , LiYS , WangKC , ChienS . Epigenetic mechanism in regulation of endothelial function by disturbed flow: induction of DNA hypermethylation by DNMT1 . Cell. Mol. Bioeng.7 ( 2 ), 218 – 224 ( 2014 ).
  • Kumar A , KumarS , VikramAet al. Histone and DNA methylation-mediated epigenetic downregulation of endothelial Kruppel-like factor 2 by low-density lipoprotein cholesterol . Arterioscler. Thromb. Vasc. Biol.33 ( 8 ), 1936 – 1942 ( 2013 ).
  • Kaluza D , KrollJ , GesierichSet al. Histone deacetylase 9 promotes angiogenesis by targeting the antiangiogenic microRNA-17-92 cluster in endothelial cells . Arterioscler. Thromb. Vasc. Biol.33 ( 3 ), 533 – 543 .
  • Mottet D , BellahceneA , PirotteSet al. Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis . Circ. Res.101 ( 12 ), 1237 – 1246 ( 2007 ).
  • Michaelis M , MichaelisUR , FlemingIet al. Valproic acid inhibits angiogenesis in vitro and in vivo . Mol. Pharmacol.65 ( 3 ), 520 – 527 ( 2004 ).
  • Deroanne CF , BonjeanK , ServotteSet al. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling . Oncogene21 ( 3 ), 427 – 436 ( 2002 ).
  • Diehl F , RossigL , ZeiherAM , DimmelerS , UrbichC . The histone methyltransferase MLL is an upstream regulator of endothelial-cell sprout formation . Blood109 ( 4 ), 1472 – 1478 ( 2007 ).
  • Ohtani K , VlachojannisGJ , KoyanagiMet al. Epigenetic regulation of endothelial lineage committed genes in pro-angiogenic hematopoietic and endothelial progenitor cells . Circ. Res.109 ( 11 ), 1219 – 1229 ( 2011 ).
  • Rossig L , UrbichC , BruhlTet al. Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells . J. Exp. Med.201 ( 11 ), 1825 – 1835 ( 2005 ).
  • Hu M , SunXJ , ZhangYLet al. Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling . Proc. Natl Acad. Sci. USA107 ( 7 ), 2956 – 2961 ( 2010 ).
  • Zampetaki A , ZengL , MargaritiAet al. Histone deacetylase 3 is critical in endothelial survival and atherosclerosis development in response to disturbed flow . Circulation121 ( 1 ), 132 – 142 ( 2010 ).
  • Ploplis VA . Effects of altered plasminogen activator inhibitor-1 expression on cardiovascular disease . Curr. Drug Targets12 ( 12 ), 1782 – 1789 ( 2011 ).
  • Stein S , SchaferN , BreitensteinAet al. SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice . Aging (Albany NY).2 ( 6 ), 353 – 360 ( 2010 ).
  • Chen W , BacanamwoM , HarrisonDG . Activation of p300 histone acetyltransferase activity is an early endothelial response to laminar shear stress and is essential for stimulation of endothelial nitric-oxide synthase mRNA transcription . J. Biol. Chem.283 ( 24 ), 16293 – 16298 ( 2008 ).
  • Fish JE , YanMS , MatoukCCet al. Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones . J. Biol. Chem.285 ( 2 ), 810 – 826 ( 2010 ).
  • Robb GB , CarsonAR , TaiSCet al. Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript . J. Biol. Chem.279 ( 36 ), 37982 – 37996 ( 2004 ).
  • Fish JE , MatoukCC , YeboahEet al. Hypoxia-inducible expression of a natural cis-antisense transcript inhibits endothelial nitric-oxide synthase . J. Biol. Chem.282 ( 21 ), 15652 – 15666 ( 2007 ).
  • Li K , BlumY , VermaAet al. A noncoding antisense RNA in tie-1 locus regulates tie-1 function in vivo . Blood115 ( 1 ), 133 – 139 ( 2010 ).
  • Li K , ChowdhuryT , VakeelP , KocejaC , SampathV , RamchandranR . Delta-like 4 mRNA is regulated by adjacent natural antisense transcripts . Vasc. Cell.7 , 3 ( 2015 ).
  • Ji P , DiederichsS , WangWet al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small-cell lung cancer . Oncogene22 ( 39 ), 8031 – 8041 ( 2003 ).
  • Yan B , YaoJ , LiuJYet al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA . Circ. Res.116 ( 7 ), 1143 – 1156 ( 2015 ).
  • Grote P , WittlerL , HendrixDet al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse . Dev. Cell.24 ( 2 ), 206 – 214 ( 2013 ).
  • Klattenhoff CA , ScheuermannJC , SurfaceLEet al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment . Cell152 ( 3 ), 570 – 583 ( 2013 ).
  • Sauvageau M , GoffLA , LodatoSet al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development . eLife2 , e01749 ( 2013 ).
  • Yang KC , YamadaKA , PatelAYet al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support . Circulation129 ( 9 ), 1009 – 1021 ( 2014 ).
  • Zangrando J , ZhangL , VausortMet al. Identification of candidate long non-coding RNAs in response to myocardial infarction . BMC Genomics15 , 460 ( 2014 ).
  • Ounzain S , MichelettiR , BeckmannTet al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs . Eur. Heart J.36 ( 6 ), a353 – a368 ( 2015 ).
  • Vausort M , WagnerDR , DevauxY . Long noncoding RNAs in patients with acute myocardial infarction . Circ. Res.115 ( 7 ), 668 – 677 ( 2014 ).
  • McPherson R , PertsemlidisA , KavaslarNet al. A common allele on chromosome 9 associated with coronary heart disease . Science316 ( 5830 ), 1488 – 1491 ( 2007 ).
  • Samani NJ , ErdmannJ , HallASet al. Genomewide association analysis of coronary artery disease . N. Engl. J. Med.357 ( 5 ), 443 – 453 ( 2007 ).
  • Helgadottir A , ThorleifssonG , MagnussonKPet al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm . Nat. Genet.40 ( 2 ), 217 – 224 ( 2008 ).
  • Holdt LM , BeutnerF , ScholzMet al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21 . Arterioscler. Thromb. Vasc. Biol.30 ( 3 ), 620 – 627 ( 2010 ).
  • Congrains A , KamideK , OguroRet al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B . Atherosclerosis220 ( 2 ), 449 – 455 ( 2012 ).
  • Ishii N , OzakiK , SatoHet al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction . J. Hum. Genet.51 ( 12 ), 1087 – 1099 ( 2006 ).
  • He S , GuW , LiY , ZhuH . ANRIL/CDKN2B-AS shows two-stage clade-specific evolution and becomes conserved after transposon insertions in simians . BMC Evol. Biol.13 , 247 ( 2013 ).
  • Zhang J , LianQ , ZhuGet al. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects . Cell Stem Cell8 ( 1 ), 31 – 45 ( 2011 ).
  • Lo CY , TjongYW , HoJCet al. An upregulation in the expression of vanilloid transient potential channels 2 enhances hypotonicity-induced cytosolic Ca2+ rise in human induced pluripotent stem cell model of Hutchinson–Gillford Progeria . PLoS ONE9 ( 1 ), e87273 ( 2014 ).
  • Prasain N , LeeMR , VemulaSet al. Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells . Nat. Biotechnol.32 ( 11 ), 1151 – 1157 ( 2014 ).
  • Mikkelsen TS , HannaJ , ZhangXet al. Dissecting direct reprogramming through integrative genomic analysis . Nature454 ( 7200 ), 49 – 55 ( 2008 ).
  • Koche RP , SmithZD , AdliMet al. Reprogramming factor expression initiates widespread targeted chromatin remodeling . Cell Stem Cell8 ( 1 ), 96 – 105 ( 2011 ).
  • Huangfu D , MaehrR , GuoWet al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds . Nat. Biotechnol.26 ( 7 ), 795 – 797 ( 2008 ).
  • Snykers S , HenkensT , De RopEet al. Role of epigenetics in liver-specific gene transcription, hepatocyte differentiation and stem cell reprogrammation . J. Hepatol.51 ( 1 ), 187 – 211 ( 2009 ).
  • Matouk CC , MarsdenPA . Epigenetic regulation of vascular endothelial gene expression . Circ. Res.102 ( 8 ), 873 – 887 ( 2008 ).
  • Yan MS , MatoukCC , MarsdenPA . Epigenetics of the vascular endothelium . J. Appl. Physiol.109 ( 3 ), 916 – 926 ( 1985 ).
  • Teichert AM , MillerTL , TaiSCet al. In vivo expression profile of an endothelial nitric oxide synthase promoter-reporter transgene . Am. J. Physiol. Heart Circ. Physiol.278 ( 4 ), H1352 – H1361 ( 2000 ).
  • Shirodkar AV , St BernardR , GavryushovaAet al. A mechanistic role for DNA methylation in endothelial cell (EC)-enriched gene expression: relationship with DNA replication timing . Blood121 ( 17 ), 3531 – 3540 ( 2013 ).
  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond . Nat. Rev. Genet.13 ( 7 ), 484 – 492 ( 2012 ).
  • Song J , RechkoblitO , BestorTH , PatelDJ . Structure of DNMT1–DNA complex reveals a role for autoinhibition in maintenance DNA methylation . Science331 ( 6020 ), 1036 – 1040 ( 2011 ).
  • Pollack Y , SteinR , RazinA , CedarH . Methylation of foreign DNA sequences in eukaryotic cells . Proc. Natl Acad. Sci. USA77 ( 11 ), 6463 – 6467 ( 1980 ).
  • Stein R , GruenbaumY , PollackY , RazinA , CedarH . Clonal inheritance of the pattern of DNA methylation in mouse cells . Proc. Natl Acad. Sci. USA79 ( 1 ), 61 – 65 ( 1982 ).
  • Klose RJ , BirdAP . Genomic DNA methylation: the mark and its mediators . Trends. Biochem. Sci.31 ( 2 ), 89 – 97 ( 2006 ).
  • Dodge JE , RamsahoyeBH , WoZG , OkanoM , LiE . De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation . Gene289 ( 1–2 ), 41 – 48 ( 2002 ).
  • Lister R , MukamelEA , NeryJRet al. Global epigenomic reconfiguration during mammalian brain development . Science341 ( 6146 ), 1237905 ( 2013 ).
  • Schubeler D . Function and information content of DNA methylation . Nature517 ( 7534 ), 321 – 326 ( 2015 ).
  • Yan MS , MarsdenPA . Epigenetics in the vascular endothelium: looking from a different perspective in the epigenomics era . Arterioscler. Thromb. Vasc. Biol.35 ( 11 ), 2297 – 2306 ( 2015 ).
  • Domcke S , BardetAF , Adrian GinnoP , HartlD , BurgerL , SchubelerD . Competition between DNA methylation and transcription factors determines binding of NRF1 . Nature528 ( 7583 ), 575 – 579 ( 2015 ).
  • Kohli RM , ZhangY . TET enzymes, TDG and the dynamics of DNA demethylation . Nature502 ( 7472 ), 472 – 479 ( 2013 ).
  • Udali S , GuariniP , MoruzziS , ChoiSW , FrisoS . Cardiovascular epigenetics: from DNA methylation to microRNAs . Mol. Aspects Med.34 ( 4 ), 883 – 901 ( 2013 ).
  • Davies PF , ManduchiE , StoeckertCJ , JimenezJM , JiangYZ . Emerging topic: flow-related epigenetic regulation of endothelial phenotype through DNA methylation . Vascul. Pharmacol.62 ( 2 ), 88 – 93 ( 2014 ).
  • Boyes J , BirdA . DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein . Cell64 ( 6 ), 1123 – 1134 ( 1991 ).
  • Wilcox JN , SubramanianRR , SundellCLet al. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels . Arterioscler. Thromb. Vasc. Biol.17 ( 11 ), 2479 – 2488 ( 1997 ).
  • Movassagh M , ChoyMK , GoddardM , BennettMR , DownTA , FooRS . Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure . PLoS ONE5 ( 1 ), e8564 ( 2010 ).
  • Chan Y , FishJE , D’abreoCet al. The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation . J. Biol. Chem.279 ( 33 ), 35087 – 35100 ( 2004 ).
  • Rao X , ZhongJ , ZhangSet al. Loss of methyl-CpG-binding domain protein 2 enhances endothelial angiogenesis and protects mice against hind-limb ischemic injury . Circulation123 ( 25 ), 2964 – 2974 ( 2011 ).
  • Fukumura D , GohongiT , KadambiAet al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability . Proc. Natl Acad. Sci. USA98 ( 5 ), 2604 – 2609 ( 2001 ).
  • Pasipoularides A . Mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations: part 1 . J. Cardiovasc. Transl. Res.8 ( 1 ), 76 – 87 ( 2015 ).
  • Chatzizisis YS , CoskunAU , JonasM , EdelmanER , FeldmanCL , StonePH . Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior . J. Am. Coll. Cardiol.49 ( 25 ), 2379 – 2393 ( 2007 ).
  • Malek AM , AlperSL , IzumoS . Hemodynamic shear stress and its role in atherosclerosis . JAMA282 ( 21 ), 2035 – 2042 ( 1999 ).
  • Jiang YZ , ManduchiE , JimenezJM , DaviesPF . Endothelial epigenetics in biomechanical stress: disturbed flow-mediated epigenomic plasticity in vivo and in vitro . Arterioscler. Thromb. Vasc. Biol.35 ( 6 ), 1317 – 1326 ( 2015 ).
  • Dunn J , ThabetS , JoH . Flow-dependent epigenetic DNA methylation in endothelial gene expression and atherosclerosis . Arterioscler. Thromb. Vasc. Biol.35 ( 7 ), 1562 – 1569 ( 2015 ).
  • Davies PF , CivelekM , FangY , FlemingI . The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo . Cardiovasc. Res.99 ( 2 ), 315 – 327 ( 2013 ).
  • Conway DE , WilliamsMR , EskinSG , McIntireLV . Endothelial cell responses to atheroprone flow are driven by two separate flow components: low time-average shear stress and fluid flow reversal . Am. J. Physiol. Heart Circ. Physiol.298 ( 2 ), H367 – H374 ( 2010 ).
  • Nigro P , AbeJ , BerkBC . Flow shear stress and atherosclerosis: a matter of site specificity . Antioxid. Redox. Signal.15 ( 5 ), 1405 – 1414 ( 2011 ).
  • Baeyens N , BandyopadhyayC , CoonBG , YunS , SchwartzMA . Endothelial fluid shear stress sensing in vascular health and disease . J. Clin. Invest.126 ( 3 ), 821 – 828 ( 2016 ).
  • Chiu JJ , ChienS . Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives . Physiol. Rev.91 ( 1 ), 327 – 387 ( 2011 ).
  • Davies PF , ManduchiE , StoeckertCJ , JimenezJM , JiangYZ . Emerging topic: flow-related epigenetic regulation of endothelial phenotype through DNA methylation . Vascul. Pharmacol.62 ( 2 ), 88 – 93 ( 2014 ).
  • Heyn H , EstellerM . DNA methylation profiling in the clinic: applications and challenges . Nat. Rev. Genet.13 ( 10 ), 679 – 692 ( 2012 ).
  • Cao Q , WangX , JiaLet al. Inhibiting DNA methylation by 5-aza-2′-deoxycytidine ameliorates atherosclerosis through suppressing macrophage inflammation . Endocrinology155 ( 12 ), 4925 – 4938 ( 2014 ).
  • Kriaucionis S , HeintzN . The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain . Science324 ( 5929 ), 929 – 930 ( 2009 ).
  • Tahiliani M , KohKP , ShenYet al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 . Science324 ( 5929 ), 930 – 935 ( 2009 ).
  • Liu R , JinY , TangWHet al. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity . Circulation128 ( 18 ), 2047 – 2057 ( 2013 ).
  • Vardabasso C , HassonD , RatnakumarK , ChungCY , DuarteLF , BernsteinE . Histone variants: emerging players in cancer biology . Cell. Mol. Life Sci.71 ( 3 ), 379 – 404 ( 2014 ).
  • Kamakaka RT , BigginsS . Histone variants: deviants?Genes Dev.19 ( 3 ), 295 – 310 ( 2005 ).
  • Barski A , CuddapahS , CuiKet al. High-resolution profiling of histone methylations in the human genome . Cell129 ( 4 ), 823 – 837 ( 2007 ).
  • Ernst J , KheradpourP , MikkelsenTSet al. Mapping and analysis of chromatin state dynamics in nine human cell types . Nature473 ( 7345 ), 43 – 49 ( 2011 ).
  • Carrozza MJ , LiB , FlorensLet al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription . Cell123 ( 4 ), 581 – 592 ( 2005 ).
  • Zhang H , RobertsDN , CairnsBR . Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss . Cell123 ( 2 ), 219 – 231 ( 2005 ).
  • Jin C , ZangC , WeiGet al. H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions . Nat. Genet.41 ( 8 ), 941 – 945 ( 2009 ).
  • Valdes-Mora F , SongJZ , StathamALet al. Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer . Genome Res.22 ( 2 ), 307 – 321 ( 2012 ).
  • Wang Z , ZangC , RosenfeldJAet al. Combinatorial patterns of histone acetylations and methylations in the human genome . Nat. Genet.40 ( 7 ), 897 – 903 ( 2008 ).
  • Wang Z , ZangC , CuiKet al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes . Cell138 ( 5 ), 1019 – 1031 ( 2009 ).
  • Kristjuhan A , WalkerJ , SukaNet al. Transcriptional inhibition of genes with severe histone h3 hypoacetylation in the coding region . Mol. Cell10 ( 4 ), 925 – 933 ( 2002 ).
  • Govind CK , ZhangF , QiuH , HofmeyerK , HinnebuschAG . Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions . Mol. Cell25 ( 1 ), 31 – 42 ( 2007 ).
  • Govind CK , QiuH , GinsburgDSet al. Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes . Mol. Cell39 ( 2 ), 234 – 246 ( 2010 ).
  • Keogh MC , KurdistaniSK , MorrisSAet al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex . Cell123 ( 4 ), 593 – 605 ( 2005 ).
  • Cheng J , BlumR , BowmanCet al. A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers . Mol. Cell53 ( 6 ), 979 – 992 ( 2014 ).
  • Vermeulen M , MulderKW , DenissovSet al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4 . Cell131 ( 1 ), 58 – 69 ( 2007 ).
  • Wysocka J , SwigutT , XiaoHet al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling . Nature442 ( 7098 ), 86 – 90 ( 2006 ).
  • Strahl BD , AllisCD . The language of covalent histone modifications . Nature403 ( 6765 ), 41 – 45 ( 2000 ).
  • Rothbart SB , DicksonBM , OngMSet al. Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation . Genes Dev.27 ( 11 ), 1288 – 1298 ( 2013 ).
  • Hertel J , HircheC , WissmannC , EbertMP , HockerM . Transcription of the vascular endothelial growth factor receptor-3 (VEGFR3) gene is regulated by the zinc finger proteins Sp1 and Sp3 and is under epigenetic control: transcription of vascular endothelial growth factor receptor 3 . Cell. Oncol. (Dordr)37 ( 2 ), 131 – 145 ( 2014 ).
  • Wu J , IwataF , GrassJAet al. Molecular determinants of NOTCH4 transcription in vascular endothelium . Mol. Cell. Biol.25 ( 4 ), 1458 – 1474 ( 2005 ).
  • Fish JE , MatoukCC , RachlisAet al. The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code . J. Biol. Chem.280 ( 26 ), 24824 – 24838 ( 2005 ).
  • Chan Y , FishJE , D’AbreoCet al. The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation . J. Biol. Chem.279 ( 33 ), 35087 – 35100 ( 2004 ).
  • Won D , ZhuSN , ChenMet al. Relative reduction of endothelial nitric-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in an in vitro model of disturbed flow . Am. J. Pathol.171 ( 5 ), 1691 – 1704 ( 2007 ).
  • Teichert AM , ScottJA , RobbGBet al. Endothelial nitric oxide synthase gene expression during murine embryogenesis: commencement of expression in the embryo occurs with the establishment of a unidirectional circulatory system . Circ. Res.103 ( 1 ), 24 – 33 ( 2008 ).
  • Marsch E , SluimerJC , DaemenMJ . Hypoxia in atherosclerosis and inflammation . Curr. Opin. Lipidol.24 ( 5 ), 393 – 400 .
  • Moudgil R , MichelakisED , ArcherSL . Hypoxic pulmonary vasoconstriction . J. Appl. Physiol. (1985)98 ( 1 ), 390 – 403 ( 2005 ).
  • Cech TR , SteitzJA . The noncoding RNA revolution-trashing old rules to forge new ones . Cell.157 ( 1 ), 77 – 94 ( 2014 ).
  • Lander ES , LintonLM , BirrenBet al. Initial sequencing and analysis of the human genome . Nature409 ( 6822 ), 860 – 921 ( 2001 ).
  • Venter JC , AdamsMD , MyersEWet al. The sequence of the human genome . Science291 ( 5507 ), 1304 – 1351 ( 2001 ).
  • Ha M , KimVN . Regulation of microRNA biogenesis . Nat. Rev. Mol. Cell Biol15 ( 8 ), 509 – 524 ( 2014 ).
  • Bartel DP . MicroRNAs: target recognition and regulatory functions . Cell136 ( 2 ), 215 – 233 ( 2009 ).
  • Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function . Cell116 ( 2 ), 281 – 297 ( 2004 ).
  • Eichhorn SW , GuoH , McGearySEet al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues . Mol. Cell56 ( 1 ), 104 – 115 ( 2014 ).
  • Suarez Y , Fernandez-HernandoC , PoberJS , SessaWC . Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells . Circ. Res.100 ( 8 ), 1164 – 1173 ( 2007 ).
  • Ho JJ , MetcalfJL , YanMSet al. Functional importance of Dicer protein in the adaptive cellular response to hypoxia . J. Biol Chem.287 ( 34 ), 29003 – 29020 ( 2012 ).
  • Ho JJ , RobbGB , TaiSCet al. Active stabilization of human endothelial nitric oxide synthase mRNA by hnRNP E1 protects against antisense RNA and microRNAs . Mol. Cell. Biol.33 ( 10 ), 2029 – 2046 ( 2013 ).
  • Weber M , BakerMB , MooreJP , SearlesCD . MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity . Biochem. Biophys. Res. Commun.393 ( 4 ), 643 – 648 ( 2010 ).
  • Fang Y , DaviesPF . Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium . Arterioscler. Thromb. Vasc. Biol.32 ( 4 ), 979 – 987 ( 2012 ).
  • Loyer X , PotteauxS , VionACet al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice . Circ. Res.114 ( 3 ), 434 – 443 ( 2014 ).
  • Wang S , AuroraAB , JohnsonBAet al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis . Dev. Cell.15 ( 2 ), 261 – 271 ( 2008 ).
  • Zernecke A , BidzhekovK , NoelsHet al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection . Sci. Signal.2 ( 100 ), ra81 ( 2009 ).
  • Schober A , Nazari-JahantighM , WeiYet al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1 . Nat. Med.20 ( 4 ), 368 – 376 ( 2014 ).
  • Endo-Takahashi Y , NegishiY , NakamuraAet al. Systemic delivery of miR-126 by miRNA-loaded Bubble liposomes for the treatment of hindlimb ischemia . Sci. Rep.4 , 3883 ( 2014 ).
  • Cao WJ , RosenblatJD , RothNCet al. Therapeutic angiogenesis by ultrasound-mediated microRNA-126-3p delivery . Arterioscler. Thromb. Vasc. Biol.35 ( 11 ), 2401 – 2411 ( 2015 ).
  • Mattick JS , RinnJL . Discovery and annotation of long noncoding RNAs . Nat. Struct. Mol. Biol.22 ( 1 ), 5 – 7 ( 2015 ).
  • Derrien T , JohnsonR , BussottiGet al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression . Genome Res.22 ( 9 ), 1775 – 1789 ( 2012 ).
  • Cabili MN , TrapnellC , GoffLet al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses . Genes Dev.25 ( 18 ), 1915 – 1927 ( 2011 ).
  • Hezroni H , KoppsteinD , SchwartzMG , AvrutinA , BartelDP , UlitskyI . Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species . Cell. Rep.11 ( 7 ), 1110 – 1122 ( 2015 ).
  • Guttman M , DonagheyJ , CareyBWet al. lincRNAs act in the circuitry controlling pluripotency and differentiation . Nature477 ( 7364 ), 295 – 300 ( 2011 ).
  • Ulitsky I , ShkumatavaA , JanCH , SiveH , BartelDP . Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution . Cell147 ( 7 ), 1537 – 1550 ( 2011 ).
  • Schorderet P , DubouleD . Structural and functional differences in the long non-coding RNA hotair in mouse and human . PLoS Genet.7 ( 5 ), e1002071 ( 2011 ).
  • Liu G , MattickJS , TaftRJ . A meta-analysis of the genomic and transcriptomic composition of complex life . Cell Cycle12 ( 13 ), 2061 – 2072 ( 2013 ).
  • Huarte M , GuttmanM , FeldserDet al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response . Cell142 ( 3 ), 409 – 419 ( 2010 ).
  • Xing Z , LinA , LiCet al. lncRNA directs cooperative epigenetic regulation downstream of chemokine signals . Cell159 ( 5 ), 1110 – 1125 ( 2014 ).
  • Kouzarides T . Chromatin modifications and their function . Cell128 ( 4 ), 693 – 705 ( 2007 ).
  • Mercer TR , DingerME , MattickJS . Long non-coding RNAs: insights into functions . Nat. Rev. Genet.10 ( 3 ), 155 – 159 ( 2009 ).
  • Rinn JL , KerteszM , WangJKet al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs . Cell129 ( 7 ), 1311 – 1323 ( 2007 ).
  • Tsai MC , ManorO , WanYet al. Long noncoding RNA as modular scaffold of histone modification complexes . Science329 ( 5992 ), 689 – 693 ( 2010 ).
  • Zhao J , SunBK , ErwinJA , SongJJ , LeeJT . Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome . Science322 ( 5902 ), 750 – 756 ( 2008 ).
  • Khalil AM , GuttmanM , HuarteMet al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression . Proc. Natl Acad. Sci. USA106 ( 28 ), 11667 – 11672 ( 2009 ).
  • Kaneko S , BonasioR , Saldana-MeyerRet al. Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin . Mol. Cell53 ( 2 ), 290 – 300 ( 2014 ).
  • Mercer TR , MattickJS . Structure and function of long noncoding RNAs in epigenetic regulation . Nat. Struct. Mol. Biol.20 ( 3 ), 300 – 307 ( 2013 ).
  • Yap KL , LiS , Munoz-CabelloAMet al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a . Mol. Cell38 ( 5 ), 662 – 674 ( 2010 ).
  • Zhao J , OhsumiTK , KungJTet al. Genome-wide identification of polycomb-associated RNAs by RIP-seq . Mol. Cell40 ( 6 ), 939 – 953 ( 2010 ).
  • Pandey RR , MondalT , MohammadFet al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation . Mol. Cell32 ( 2 ), 232 – 246 ( 2008 ).
  • Ho JJ , RobbGB , TaiSCet al. Active stabilization of human endothelial nitric oxide synthase mRNA by hnRNP E1 protects against antisense RNA and microRNAs . Mol. Cell. Biol.33 ( 10 ), 2029 – 2046 ( 2013 ).
  • Bell RD , LongX , LinMet al. Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA . Arterioscler. Thromb. Vasc. Biol.34 ( 6 ), 1249 – 1259 ( 2014 ).
  • Hutchinson JN , EnsmingerAW , ClemsonCM , LynchCR , LawrenceJB , ChessA . A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains . BMC Genomics8 , 39 ( 2007 ).
  • Tripathi V , EllisJD , ShenZet al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation . Mol. Cell39 ( 6 ), 925 – 938 ( 2010 ).
  • Eissmann M , GutschnerT , HammerleMet al. Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development . RNA Biol.9 ( 8 ), 1076 – 1087 ( 2012 ).
  • Michalik KM , YouX , ManavskiYet al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth . Circ. Res.114 ( 9 ), 1389 – 1397 ( 2014 ).
  • Guttman M , AmitI , GarberMet al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals . Nature458 ( 7235 ), 223 – 227 ( 2009 ).
  • Schonrock N , HarveyRP , MattickJS . Long noncoding RNAs in cardiac development and pathophysiology . Circ. Res.111 ( 10 ), 1349 – 1362 ( 2012 ).
  • Steenman M , ChenYW , Le CunffMet al. Transcriptomal analysis of failing and nonfailing human hearts . Physiol. Genomics12 ( 2 ), 97 – 112 ( 2003 ).
  • Nanni L , RomualdiC , MaseriA , LanfranchiG . Differential gene expression profiling in genetic and multifactorial cardiovascular diseases . J. Mol. Cell Cardiol.41 ( 6 ), 934 – 948 ( 2006 ).
  • Skroblin P , MayrM . ‘Going long’: long non-coding RNAs as biomarkers . Circ. Res.115 ( 7 ), 607 – 609 ( 2014 ).
  • Cheetham SW , GruhlF , MattickJS , DingerME . Long noncoding RNAs and the genetics of cancer . Br. J. Cancer108 ( 12 ), 2419 – 2425 ( 2013 ).
  • Ning S , ZhaoZ , YeJet al. LincSNP: a database of linking disease-associated SNPs to human large intergenic non-coding RNAs . BMC Bioinformatics15 , 152 ( 2014 ).
  • Gong J , LiuW , ZhangJ , MiaoX , GuoAY . lncRNASNP: a database of SNPs in lncRNAs and their potential functions in human and mouse . Nucleic Acids Res.43 , D181 – D186 ( 2015 ).
  • Dandona S , RobertsR . The role of genetic risk factors in coronary artery disease . Curr. Cardiol. Rep.16 ( 5 ), 479 ( 2014 ).
  • Wahlestedt C . Targeting long non-coding RNA to therapeutically upregulate gene expression . Nat. Rev. Drug Discov.12 ( 6 ), 433 – 446 ( 2013 ).
  • Konermann S , BrighamMD , TrevinoAEet al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex . Nature.517 ( 7536 ), 583 – 588 ( 2015 ).
  • Kole R , KrainerAR , AltmanS . RNA therapeutics: beyond RNA interference and antisense oligonucleotides . Nat. Rev. Drug Discov.11 ( 2 ), 125 – 140 ( 2012 ).
  • Battistella M , MarsdenPA . Advances, nuances, and potential pitfalls when exploiting the therapeutic potential of RNA interference . Clin. Pharmacol. Ther.97 ( 1 ), 79 – 87 ( 2015 ).
  • Fatemi RP , VelmeshevD , FaghihiMA . De-repressing lncRNA-targeted genes to upregulate gene expression: focus on small molecule therapeutics . Mol. Ther. Nucleic Acids3 , e196 ( 2014 ).
  • Ho JJ , MarsdenPA . Competition and collaboration between RNA-binding proteins and microRNAs . Wiley Interdiscip. Rev. RNA5 ( 1 ), 69 – 86 ( 2014 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.