555
Views
0
CrossRef citations to date
0
Altmetric
Review

Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency

, , , , , & show all
Pages 1131-1149 | Received 17 Mar 2016, Accepted 20 May 2016, Published online: 15 Jul 2016

References

  • Gurdon JB . The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles . J. Embryol. Exp. Morphol.10 , 622 – 640 ( 1962 ).
  • Wilmut I , SchniekeAE , McWhirJ , KindAJ , CampbellKH . Viable offspring derived from fetal and adult mammalian cells . Nature385 ( 6619 ), 810 – 813 ( 1997 ).
  • Markoulaki S , MeissnerA , JaenischR . Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse . Methods45 ( 2 ), 101 – 114 ( 2008 ).
  • Cowan CA , AtienzaJ , MeltonDA , EgganK . Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells . Science309 ( 5739 ), 1369 – 1373 ( 2005 ).
  • Tada M , TakahamaY , AbeK , NakatsujiN , TadaT . Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells . Curr. Biol.11 ( 19 ), 1553 – 1558 ( 2001 ).
  • Takahashi K , YamanakaS . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors . Cell126 ( 4 ), 663 – 676 ( 2006 ).
  • Okita K , IchisakaT , YamanakaS . Generation of germline-competent induced pluripotent stem cells . Nature448 ( 7151 ), 313 – 317 ( 2007 ).
  • Wernig M , MeissnerA , ForemanRet al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state . Nature448 ( 7151 ), 318 – 324 ( 2007 ).
  • Mikkelsen TS , HannaJ , ZhangXet al. Dissecting direct reprogramming through integrative genomic analysis . Nature454 ( 7200 ), 49 – 55 ( 2008 ).
  • Guenther MG , FramptonGM , SoldnerFet al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells . Cell Stem Cell7 ( 2 ), 249 – 257 ( 2010 ).
  • Hawkins RD , HonGC , LeeLKet al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells . Cell Stem Cell6 ( 5 ), 479 – 491 ( 2010 ).
  • Maherali N , SridharanR , XieWet al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution . Cell Stem Cell1 ( 1 ), 55 – 70 ( 2007 ).
  • Koche RP , SmithZD , AdliMet al. Reprogramming factor expression initiates widespread targeted chromatin remodeling . Cell Stem Cell8 ( 1 ), 96 – 105 ( 2011 ).
  • Mattout A , BiranA , MeshorerE . Global epigenetic changes during somatic cell reprogramming to iPS cells . J. Mol. Cell. Biol.3 ( 6 ), 341 – 350 ( 2011 ).
  • Huangfu D , MaehrR , GuoWet al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds . Nat. Biotechnol.26 ( 7 ), 795 – 797 ( 2008 ).
  • Huangfu D , OsafuneK , MaehrRet al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2 . Nat. Biotechnol.26 ( 11 ), 1269 – 1275 ( 2008 ).
  • Shi Y , DespontsC , DoJT , HahmHS , ScholerHR , DingS . Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds . Cell Stem Cell3 ( 5 ), 568 – 574 ( 2008 ).
  • Hou P , LiY , ZhangXet al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds . Science341 ( 6146 ), 651 – 654 ( 2013 ).
  • Hanna J , SahaK , PandoBet al. Direct cell reprogramming is a stochastic process amenable to acceleration . Nature462 ( 7273 ), 595 – 601 ( 2009 ).
  • Papapetrou EP , TomishimaMJ , ChambersSMet al. Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation . Proc. Natl Acad. Sci. USA106 ( 31 ), 12759 – 12764 ( 2009 ).
  • Carey BW , MarkoulakiS , HannaJHet al. Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells . Cell Stem Cell9 ( 6 ), 588 – 598 ( 2011 ).
  • Eminli S , FoudiA , StadtfeldMet al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells . Nat. Genet.41 ( 9 ), 968 – 976 ( 2009 ).
  • Kim JB , ZaehresH , WuGet al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors . Nature454 ( 7204 ), 646 – 650 ( 2008 ).
  • Bar-Nur O , BrumbaughJ , VerheulCet al. Small molecules facilitate rapid and synchronous iPSC generation . Nat. Methods11 ( 11 ), 1170 – 1176 ( 2014 ).
  • Hochedlinger K , PlathK . Epigenetic reprogramming and induced pluripotency . Development136 ( 4 ), 509 – 523 ( 2009 ).
  • Papp B , PlathK . Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape . Cell Res.21 ( 3 ), 486 – 501 ( 2011 ).
  • Liang G , ZhangY . Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective . Cell Res.23 ( 1 ), 49 – 69 ( 2013 ).
  • Bhutani K , NazorKL , WilliamsRet al. Whole-genome mutational burden analysis of three pluripotency induction methods . Nat. Commun.7 , 10536 ( 2016 ).
  • Boyer LA , LeeTI , ColeMFet al. Core transcriptional regulatory circuitry in human embryonic stem cells . Cell122 ( 6 ), 947 – 956 ( 2005 ).
  • Loh YH , WuQ , ChewJLet al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells . Nat. Genet.38 ( 4 ), 431 – 440 ( 2006 ).
  • Babaie Y , HerwigR , GreberBet al. Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells . Stem Cells25 ( 2 ), 500 – 510 ( 2007 ).
  • Sato N , SanjuanIM , HekeM , UchidaM , NaefF , BrivanlouAH . Molecular signature of human embryonic stem cells and its comparison with the mouse . Dev. Biol.260 ( 2 ), 404 – 413 ( 2003 ).
  • Daheron L , OpitzSL , ZaehresHet al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells . Stem Cells22 ( 5 ), 770 – 778 ( 2004 ).
  • Thomson JA , Itskovitz-EldorJ , ShapiroSSet al. Embryonic stem cell lines derived from human blastocysts . Science282 ( 5391 ), 1145 – 1147 ( 1998 ).
  • Xu RH , ChenX , LiDSet al. BMP4 initiates human embryonic stem cell differentiation to trophoblast . Nat. Biotechnol.20 ( 12 ), 1261 – 1264 ( 2002 ).
  • Takahashi K , TanabeK , OhnukiMet al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors . Cell131 ( 5 ), 861 – 872 ( 2007 ).
  • Lowry WE , RichterL , YachechkoRet al. Generation of human induced pluripotent stem cells from dermal fibroblasts . Proc. Natl Acad. Sci. USA105 ( 8 ), 2883 – 2888 ( 2008 ).
  • Park IH , ZhaoR , WestJAet al. Reprogramming of human somatic cells to pluripotency with defined factors . Nature451 ( 7175 ), 141 – 146 ( 2008 ).
  • Anokye-Danso F , TrivediCM , JuhrDet al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency . Cell Stem Cell8 ( 4 ), 376 – 388 ( 2011 ).
  • Suh MR , LeeY , KimJYet al. Human embryonic stem cells express a unique set of microRNAs . Dev. Biol.270 ( 2 ), 488 – 498 ( 2004 ).
  • Card DA , HebbarPB , LiLet al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells . Mol. Cell. Biol.28 ( 20 ), 6426 – 6438 ( 2008 ).
  • Schnerch A , CerdanC , BhatiaM . Distinguishing between mouse and human pluripotent stem cell regulation: the best laid plans of mice and men . Stem Cells28 ( 3 ), 419 – 430 ( 2010 ).
  • Brambrink T , ForemanR , WelsteadGGet al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells . Cell Stem Cell2 ( 2 ), 151 – 159 ( 2008 ).
  • Stadtfeld M , MaheraliN , BreaultDT , HochedlingerK . Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse . Cell Stem Cell2 ( 3 ), 230 – 240 ( 2008 ).
  • Polo JM , AnderssenE , WalshRMet al. A molecular roadmap of reprogramming somatic cells into iPS cells . Cell151 ( 7 ), 1617 – 1632 ( 2012 ).
  • Li R , LiangJ , NiSet al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts . Cell Stem Cell7 ( 1 ), 51 – 63 ( 2010 ).
  • Samavarchi-Tehrani P , GolipourA , DavidLet al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming . Cell Stem Cell7 ( 1 ), 64 – 77 ( 2010 ).
  • Smith ZD , NachmanI , RegevA , MeissnerA . Dynamic single-cell imaging of direct reprogramming reveals an early specifying event . Nat. Biotechnol.28 ( 5 ), 521 – 526 ( 2010 ).
  • Golipour A , DavidL , LiuYet al. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network . Cell Stem Cell11 ( 6 ), 769 – 782 ( 2012 ).
  • Sridharan R , TchieuJ , MasonMJet al. Role of the murine reprogramming factors in the induction of pluripotency . Cell136 ( 2 ), 364 – 377 ( 2009 ).
  • O’Malley J , SkylakiS , IwabuchiKAet al. High-resolution analysis with novel cell-surface markers identifies routes to iPS cells . Nature499 ( 7456 ), 88 – 91 ( 2013 ).
  • Buganim Y , FaddahDA , ChengAWet al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase . Cell150 ( 6 ), 1209 – 1222 ( 2012 ).
  • Orkin SH , HochedlingerK . Chromatin connections to pluripotency and cellular reprogramming . Cell145 ( 6 ), 835 – 850 ( 2011 ).
  • Apostolou E , HochedlingerK . Chromatin dynamics during cellular reprogramming . Nature502 ( 7472 ), 462 – 471 ( 2013 ).
  • Ho L , RonanJL , WuJet al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency . Proc. Natl Acad. Sci. USA106 ( 13 ), 5181 – 5186 ( 2009 ).
  • Liang J , WanM , ZhangYet al. Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells . Nat. Cell Biol.10 ( 6 ), 731 – 739 ( 2008 ).
  • Wang J , RaoS , ChuJet al. A protein interaction network for pluripotency of embryonic stem cells . Nature444 ( 7117 ), 364 – 368 ( 2006 ).
  • Wen B , WuH , ShinkaiY , IrizarryRA , FeinbergAP . Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells . Nat. Genet.41 ( 2 ), 246 – 250 ( 2009 ).
  • Krejci J , UhlirovaR , GaliovaG , KozubekS , SmigovaJ , BartovaE . Genome-wide reduction in H3K9 acetylation during human embryonic stem cell differentiation . J. Cell. Physiol.219 ( 3 ), 677 – 687 ( 2009 ).
  • Meshorer E , YellajoshulaD , GeorgeE , ScamblerPJ , BrownDT , MisteliT . Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells . Dev. Cell10 ( 1 ), 105 – 116 ( 2006 ).
  • Gaetz J , CliftKL , FernandesCJet al. Evidence for a critical role of gene occlusion in cell fate restriction . Cell Res.22 ( 5 ), 848 – 858 ( 2012 ).
  • Fussner E , DjuricU , StraussMet al. Constitutive heterochromatin reorganization during somatic cell reprogramming . EMBO J.30 ( 9 ), 1778 – 1789 ( 2011 ).
  • Soufi A , DonahueG , ZaretKS . Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome . Cell151 ( 5 ), 994 – 1004 ( 2012 ).
  • Chen J , LiuH , LiuJet al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs . Nat. Genet.45 ( 1 ), 34 – 42 ( 2013 ).
  • Silva J , BarrandonO , NicholsJ , KawaguchiJ , TheunissenTW , SmithA . Promotion of reprogramming to ground state pluripotency by signal inhibition . PLoS Biol.6 ( 10 ), e253 ( 2008 ).
  • Schuettengruber B , ChourroutD , VervoortM , LeblancB , CavalliG . Genome regulation by polycomb and trithorax proteins . Cell128 ( 4 ), 735 – 745 ( 2007 ).
  • Pan G , TianS , NieJet al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells . Cell Stem Cell1 ( 3 ), 299 – 312 ( 2007 ).
  • Mikkelsen TS , KuM , JaffeDBet al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells . Nature448 ( 7153 ), 553 – 560 ( 2007 ).
  • Bernstein BE , MikkelsenTS , XieXet al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells . Cell125 ( 2 ), 315 – 326 ( 2006 ).
  • Meissner A , MikkelsenTS , GuHet al. Genome-scale DNA methylation maps of pluripotent and differentiated cells . Nature454 ( 7205 ), 766 – 770 ( 2008 ).
  • Ang YS , TsaiSY , LeeDFet al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network . Cell145 ( 2 ), 183 – 197 ( 2011 ).
  • O’Carroll D , ErhardtS , PaganiM , BartonSC , SuraniMA , JenuweinT . The polycomb-group gene Ezh2 is required for early mouse development . Mol. Cell. Biol.21 ( 13 ), 4330 – 4336 ( 2001 ).
  • Boyer LA , PlathK , ZeitlingerJet al. Polycomb complexes repress developmental regulators in murine embryonic stem cells . Nature441 ( 7091 ), 349 – 353 ( 2006 ).
  • Lee TI , JennerRG , BoyerLAet al. Control of developmental regulators by Polycomb in human embryonic stem cells . Cell125 ( 2 ), 301 – 313 ( 2006 ).
  • Pasini D , BrackenAP , HansenJB , CapilloM , HelinK . The polycomb group protein Suz12 is required for embryonic stem cell differentiation . Mol. Cell. Biol.27 ( 10 ), 3769 – 3779 ( 2007 ).
  • Ding X , WangX , SontagSet al. The polycomb protein Ezh2 impacts on induced pluripotent stem cell generation . Stem Cells Dev23 ( 9 ), 931 – 940 ( 2014 ).
  • Onder TT , KaraN , CherryAet al. Chromatin-modifying enzymes as modulators of reprogramming . Nature483 ( 7391 ), 598 – 602 ( 2012 ).
  • Azuara V , PerryP , SauerSet al. Chromatin signatures of pluripotent cell lines . Nat. Cell Biol.8 ( 5 ), 532 – 538 ( 2006 ).
  • Jia J , ZhengX , HuGet al. Regulation of pluripotency and self- renewal of ESCs through epigenetic-threshold modulation and mRNA pruning . Cell151 ( 3 ), 576 – 589 ( 2012 ).
  • Zhao Y , YinX , QinHet al. Two supporting factors greatly improve the efficiency of human iPSC generation . Cell Stem Cell3 ( 5 ), 475 – 479 ( 2008 ).
  • Saxonov S , BergP , BrutlagDL . A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters . Proc. Natl Acad. Sci. USA103 ( 5 ), 1412 – 1417 ( 2006 ).
  • Fouse SD , ShenY , PellegriniMet al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation . Cell Stem Cell2 ( 2 ), 160 – 169 ( 2008 ).
  • Imamura M , MiuraK , IwabuchiKet al. Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells . BMC Dev. Biol.6 , 34 ( 2006 ).
  • Mohn F , WeberM , RebhanMet al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors . Mol. Cell30 ( 6 ), 755 – 766 ( 2008 ).
  • Okano M , XieS , LiE . Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases . Nat. Genet.19 ( 3 ), 219 – 220 ( 1998 ).
  • Jackson M , KrassowskaA , GilbertNet al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells . Mol. Cell. Biol.24 ( 20 ), 8862 – 8871 ( 2004 ).
  • Tsumura A , HayakawaT , KumakiYet al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b . Genes Cells11 ( 7 ), 805 – 814 ( 2006 ).
  • Pawlak M , JaenischR . De novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent state . Genes Dev.25 ( 10 ), 1035 – 1040 ( 2011 ).
  • Lister R , PelizzolaM , DowenRHet al. Human DNA methylomes at base resolution show widespread epigenomic differences . Nature462 ( 7271 ), 315 – 322 ( 2009 ).
  • Ramsahoye BH , BiniszkiewiczD , LykoF , ClarkV , BirdAP , JaenischR . Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a . Proc. Natl Acad. Sci. USA97 ( 10 ), 5237 – 5242 ( 2000 ).
  • Lister R , PelizzolaM , KidaYSet al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells . Nature471 ( 7336 ), 68 – 73 ( 2011 ).
  • Ziller MJ , MullerF , LiaoJet al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types . PLoS Genet7 ( 12 ), e1002389 ( 2011 ).
  • Guo JU , SuY , ShinJHet al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain . Nat. Neurosci.17 ( 2 ), 215 – 222 ( 2014 ).
  • Tahiliani M , KohKP , ShenYet al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 . Science324 ( 5929 ), 930 – 935 ( 2009 ).
  • Guo JU , SuY , ZhongC , MingGL , SongH . Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain . Cell145 ( 3 ), 423 – 434 ( 2011 ).
  • Ito S , ShenL , DaiQet al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine . Science333 ( 6047 ), 1300 – 1303 ( 2011 ).
  • Ito S , D’AlessioAC , TaranovaOV , HongK , SowersLC , ZhangY . Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification . Nature466 ( 7310 ), 1129 – 1133 ( 2010 ).
  • Huang Y , ChavezL , ChangXet al. Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells . Proc. Natl Acad. Sci. USA111 ( 4 ), 1361 – 1366 ( 2014 ).
  • Szwagierczak A , BultmannS , SchmidtCS , SpadaF , LeonhardtH . Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA . Nucleic Acids Res.38 ( 19 ), e181 ( 2010 ).
  • Ruzov A , TsenkinaY , SerioAet al. Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development . Cell Res.21 ( 9 ), 1332 – 1342 ( 2011 ).
  • Koh KP , YabuuchiA , RaoSet al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells . Cell Stem Cell8 ( 2 ), 200 – 213 ( 2011 ).
  • Freudenberg JM , GhoshS , LackfordBLet al. Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity . Nucleic Acids Res.40 ( 8 ), 3364 – 3377 ( 2012 ).
  • Dawlaty MM , GanzK , PowellBEet al. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development . Cell Stem Cell9 ( 2 ), 166 – 175 ( 2011 ).
  • Dawlaty MM , BreilingA , LeTet al. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development . Dev. Cell24 ( 3 ), 310 – 323 ( 2013 ).
  • Ficz G , BrancoMR , SeisenbergerSet al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation . Nature473 ( 7347 ), 398 – 402 ( 2011 ).
  • Williams K , ChristensenJ , PedersenMTet al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity . Nature473 ( 7347 ), 343 – 348 ( 2011 ).
  • Pastor WA , PapeUJ , HuangYet al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells . Nature473 ( 7347 ), 394 – 397 ( 2011 ).
  • Xu Y , WuF , TanLet al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells . Mol. Cell42 ( 4 ), 451 – 464 ( 2011 ).
  • Wu H , D’AlessioAC , ItoSet al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells . Nature473 ( 7347 ), 389 – 393 ( 2011 ).
  • Yildirim O , LiR , HungJHet al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells . Cell147 ( 7 ), 1498 – 1510 ( 2011 ).
  • Morey L , BrennerC , FaziFet al. MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks . Mol. Cell. Biol.28 ( 19 ), 5912 – 5923 ( 2008 ).
  • Zhang Y , NgHH , Erdjument-BromageH , TempstP , BirdA , ReinbergD . Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation . Genes Dev.13 ( 15 ), 1924 – 1935 ( 1999 ).
  • Valinluck V , SowersLC . Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1 . Cancer Res.67 ( 3 ), 946 – 950 ( 2007 ).
  • Hashimoto H , LiuY , UpadhyayAKet al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation . Nucleic Acids Res.40 ( 11 ), 4841 – 4849 ( 2012 ).
  • Otani J , KimuraH , SharifJet al. Cell cycle-dependent turnover of 5-hydroxymethyl cytosine in mouse embryonic stem cells . PLoS ONE8 ( 12 ), e82961 ( 2013 ).
  • He YF , LiBZ , LiZet al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA . Science333 ( 6047 ), 1303 – 1307 ( 2011 ).
  • Maiti A , DrohatAC . Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites . J. Biol. Chem.286 ( 41 ), 35334 – 35338 ( 2011 ).
  • Xu S , LiW , ZhuJet al. Crystal structures of isoorotate decarboxylases reveal a novel catalytic mechanism of 5-carboxyl-uracil decarboxylation and shed light on the search for DNA decarboxylase . Cell Res.23 ( 11 ), 1296 – 1309 ( 2013 ).
  • Schiesser S , HacknerB , PfaffenederTet al. Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing . Angew. Chem. Int. Ed. Engl.51 ( 26 ), 6516 – 6520 ( 2012 ).
  • Pfaffeneder T , SpadaF , WagnerMet al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA . Nat. Chem. Biol.10 ( 7 ), 574 – 581 ( 2014 ).
  • Nan X , NgHH , JohnsonCAet al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex . Nature393 ( 6683 ), 386 – 389 ( 1998 ).
  • Valinluck V , TsaiHH , RogstadDK , BurdzyA , BirdA , SowersLC . Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2) . Nucleic Acids Res.32 ( 14 ), 4100 – 4108 ( 2004 ).
  • Fuks F , BurgersWA , BrehmA , Hughes-DaviesL , KouzaridesT . DNA methyltransferase Dnmt1 associates with histone deacetylase activity . Nat. Genet.24 ( 1 ), 88 – 91 ( 2000 ).
  • Fuks F , HurdPJ , DeplusR , KouzaridesT . The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase . Nucleic Acids Res.31 ( 9 ), 2305 – 2312 ( 2003 ).
  • Esteve PO , ChinHG , SmallwoodAet al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication . Genes Dev.20 ( 22 ), 3089 – 3103 ( 2006 ).
  • Gao Y , ChenJ , LiKet al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming . Cell Stem Cell12 ( 4 ), 453 – 469 ( 2013 ).
  • Doege CA , InoueK , YamashitaTet al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2 . Nature488 ( 7413 ), 652 – 655 ( 2012 ).
  • Rais Y , ZviranA , GeulaSet al. Deterministic direct reprogramming of somatic cells to pluripotency . Nature502 ( 7469 ), 65 – 70 ( 2013 ).
  • Bock C , KiskinisE , VerstappenGet al. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines . Cell144 ( 3 ), 439 – 452 ( 2011 ).
  • Deng J , ShoemakerR , XieBet al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming . Nat. Biotechnol.27 ( 4 ), 353 – 360 ( 2009 ).
  • Doi A , ParkIH , WenBet al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts . Nat. Genet.41 ( 12 ), 1350 – 1353 ( 2009 ).
  • Ohi Y , QinH , HongCet al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells . Nat. Cell Biol.13 ( 5 ), 541 – 549 ( 2011 ).
  • Bar-Nur O , RussHA , EfratS , BenvenistyN . Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells . Cell Stem Cell9 ( 1 ), 17 – 23 ( 2011 ).
  • Polo JM , LiuS , FigueroaMEet al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells . Nat. Biotechnol.28 ( 8 ), 848 – 855 ( 2010 ).
  • Kim K , DoiA , WenBet al. Epigenetic memory in induced pluripotent stem cells . Nature467 ( 7313 ), 285 – 290 ( 2010 ).
  • Kim K , ZhaoR , DoiAet al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells . Nat. Biotechnol.29 ( 12 ), 1117 – 1119 ( 2011 ).
  • Ruiz S , DiepD , GoreAet al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells . Proc. Natl Acad. Sci. USA109 ( 40 ), 16196 – 16201 ( 2012 ).
  • Nishino K , ToyodaM , Yamazaki-InoueMet al. DNA methylation dynamics in human induced pluripotent stem cells over time . PLoS Genet7 ( 5 ), e1002085 ( 2011 ).
  • Stadtfeld M , ApostolouE , AkutsuHet al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells . Nature465 ( 7295 ), 175 – 181 ( 2010 ).
  • Chin MH , MasonMJ , XieWet al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures . Cell Stem Cell5 ( 1 ), 111 – 123 ( 2009 ).
  • Marchetto MC , YeoGW , KainohanaO , MarsalaM , GageFH , MuotriAR . Transcriptional signature and memory retention of human-induced pluripotent stem cells . PLoS ONE4 ( 9 ), e7076 ( 2009 ).
  • Ghosh Z , WilsonKD , WuY , HuS , QuertermousT , WuJC . Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells . PLoS ONE5 ( 2 ), e8975 ( 2010 ).
  • Liu L , LuoGZ , YangWet al. Activation of the imprinted Dlk1–Dio3 region correlates with pluripotency levels of mouse stem cells . J. Biol. Chem.285 ( 25 ), 19483 – 19490 ( 2010 ).
  • Tonge PD , CorsoAJ , MonettiCet al. Divergent reprogramming routes lead to alternative stem-cell states . Nature516 ( 7530 ), 192 – 197 ( 2014 ).
  • Hussein SM , PuriMC , TongePDet al. Genome-wide characterization of the routes to pluripotency . Nature516 ( 7530 ), 198 – 206 ( 2014 ).
  • Lee DS , ShinJY , TongePDet al. An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator . Nat. Commun.5 , 5619 ( 2014 ).
  • Clancy JL , PatelHR , HusseinSMet al. Small RNA changes en route to distinct cellular states of induced pluripotency . Nat. Commun.5 , 5522 ( 2014 ).
  • Benevento M , TongePD , PuriMCet al. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks . Nat. Commun.5 , 5613 ( 2014 ).
  • Angermueller C , ClarkSJ , LeeHJet al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity . Nat. Methods13 ( 3 ), 229 – 232 ( 2016 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.