378
Views
0
CrossRef citations to date
0
Altmetric
Review

Yin–Yang Actions of Histone Methylation Regulatory Complexes in the Brain

, &
Pages 1689-1708 | Received 26 Jul 2016, Accepted 05 Oct 2016, Published online: 18 Nov 2016

References

  • Soshnev AA , JosefowiczSZ , AllisCD . Greater than the sum of parts: complexity of the dynamic epigenome . Mol. Cell62 ( 5 ), 681 – 694 ( 2016 ).
  • Deaton A , BirdA . CpG islands and the regulation of transcription . Genes Dev.25 ( 10 ), 1010 – 1022 ( 2011 ).
  • Ko M , AnJ , RaoA . DNA methylation and hydroxymethylation in hematologic differentiation and transformation . Curr. Opin. Cell Biol.37 , 91 – 101 ( 2015 ).
  • Pinney SE . Mammalian Non-CpG methylation: stem cells and beyond . Biology (Basel)3 ( 4 ), 739 – 751 ( 2014 ).
  • Luo GZ , BlancoMA , GreerEL , HeC , ShiY . DNA N(6)-methyladenine: a new epigenetic mark in eukaryotes?Nat. Rev. Mol. Cell Biol.16 ( 12 ), 705 – 710 ( 2015 ).
  • Zhao Y , GarciaBA . Comprehensive catalog of currently documented histone modifications . Cold Spring Harb. Perspect. Biol.7 ( 9 ), a025064 ( 2015 ).
  • Xu YM , DuJY , LauAT . Post-translational modifications of human histone H3: an update . Proteomics14 ( 17–18 ), 2047 – 2060 ( 2014 ).
  • Henikoff S , SmithMM . Histone variants and epigenetics . Cold Spring Harb. Perspect. Biol.7 ( 1 ), a019364 ( 2015 ).
  • Du J , JohnsonLM , JacobsenSE , PatelDJ . DNA methylation pathways and their crosstalk with histone methylation . Nat. Rev. Mol. Cell Biol.16 ( 9 ), 519 – 532 ( 2015 ).
  • Jobe EM , McQuateAL , ZhaoX . Crosstalk among epigenetic pathways regulates neurogenesis . Front. Neurosci.6 , 59 ( 2012 ).
  • Najmabadi H , HuH , GarshasbiMet al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders . Nature478 ( 7367 ), 57 – 63 ( 2011 ).
  • De Rubeis S , HeX , GoldbergAPet al. Synaptic, transcriptional and chromatin genes disrupted in autism . Nature515 ( 7526 ), 209 – 215 ( 2014 ).
  • Iwase S , ShiY . Histone and DNA modifications in mental retardation . In : Epigenetics and Disease: Pharmaceutical Opportunities , GasserMS , LiE ( Eds ). Springer Basel , Basel , 147 – 173 ( 2011 ).
  • Ronan JL , WuW , CrabtreeGR . From neural development to cognition: unexpected roles for chromatin . Nat. Rev. Genet.14 , 347 – 359 ( 2013 ).
  • Lawrence M , DaujatS , SchneiderR . Lateral thinking: how histone modifications regulate gene expression . Trends Genet.32 ( 1 ), 42 – 56 ( 2016 ).
  • Barski A , CuddapahS , CuiKet al. High-resolution profiling of histone methylations in the human genome . Cell129 ( 4 ), 823 – 837 ( 2007 ).
  • Wiencke JK , ZhengS , MorrisonZ , YehRF . Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells . Oncogene27 ( 17 ), 2412 – 2421 ( 2008 ).
  • Blahnik KR , DouL , EchipareLet al. Characterization of the contradictory chromatin signatures at the 3′ exons of zinc finger genes . PLoS ONE6 ( 2 ), e17121 ( 2011 ).
  • Chen T , DentSY . Chromatin modifiers and remodellers: regulators of cellular differentiation . Nat. Rev. Genet.15 ( 2 ), 93 – 106 ( 2014 ).
  • Vermeulen M , TimmersH. M. . Grasping trimethylation of histone H3 at lysine 4 . Epigenomics2 ( 3 ), 395 – 406 ( 2010 ).
  • Vallianatos CN , IwaseS . Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders . Epigenomics7 ( 3 ), 503 – 519 ( 2015 ).
  • Meier K , BrehmA . Chromatin regulation: how complex does it get?Epigenetics9 ( 11 ), 1485 – 1495 ( 2014 ).
  • Miyake N , KoshimizuE , OkamotoNet al. MLL2 and KDM6A mutations in patients with Kabuki syndrome . Am. J. Med. Genet. A161A ( 9 ), 2234 – 2243 ( 2013 ).
  • Cho YW , HongT , HongSet al. PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex . J. Biol. Chem.282 ( 28 ), 20395 – 20406 ( 2007 ).
  • Hakimi MA , BocharDA , ChenowethJ , LaneWS , MandelG , ShiekhattarR . A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes . Proc. Natl Acad. Sci. USA99 ( 11 ), 7420 – 7425 ( 2002 ).
  • Shi Y , LanF , MatsonCet al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 . Cell119 ( 7 ), 941 – 953 ( 2004 ).
  • Mosammaparast N , ShiY . Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases . Annu. Rev. Biochem.79 , 155 – 179 ( 2010 ).
  • Shi YJ , MatsonC , LanF , IwaseS , BabaT , ShiY . Regulation of LSD1 histone demethylase activity by its associated factors . Mol. Cell19 ( 6 ), 857 – 864 ( 2005 ).
  • Yang M , GockeCB , LuoXet al. Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase . Mol. Cell23 ( 3 ), 377 – 387 ( 2006 ).
  • Lee MG , WynderC , BocharDA , HakimiMA , CoochN , ShiekhattarR . Functional interplay between histone demethylase and deacetylase enzymes . Mol. Cell. Biol.26 ( 17 ), 6395 – 6402 ( 2006 ).
  • Lan F , CollinsRE , De CegliRet al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression . Nature448 ( 7154 ), 718 – 722 ( 2007 ).
  • Chong JX , YuJH , LorentzenPet al. Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features . Genet. Med.18 ( 8 ), 788 – 795 ( 2015 ).
  • Tunovic S , BarkovichJ , SherrEH , SlavotinekAM . De novoANKRD11 and KDM1A gene mutations in a male with features of KBG syndrome and Kabuki syndrome . Am. J. Med. Genet. A164A ( 7 ), 1744 – 1749 ( 2014 ).
  • Wang J , TeleseF , TanYet al. LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control . Nat. Neurosci.18 ( 9 ), 1256 – 1264 ( 2015 ).
  • Rusconi F , GrilloB , PonzoniLet al. LSD1 modulates stress-evoked transcription of immediate early genes and emotional behavior . Proc. Natl Acad. Sci. USA113 ( 13 ), 3651 – 3656 ( 2016 ).
  • Rusconi F , PaganiniL , BraidaDet al. LSD1 neurospecific alternative splicing controls neuronal excitability in mouse models of epilepsy . Cereb. Cortex25 ( 9 ), 2729 – 2740 ( 2015 ).
  • Nam Hye j , BooK , KimDet al. Phosphorylation of LSD1 by PKCα is crucial for circadian rhythmicity and phase resetting . Mol. Cell53 ( 5 ), 791 – 805 ( 2014 ).
  • Fuentes P , CanovasJ , BerndtFA , NoctorSC , KukuljanM . CoREST/LSD1 control the development of pyramidal cortical neurons . Cereb. Cortex22 ( 6 ), 1431 – 1441 ( 2012 ).
  • Guan JS , HaggartySJ , GiacomettiEet al. HDAC2 negatively regulates memory formation and synaptic plasticity . Nature459 ( 7243 ), 55 – 60 ( 2009 ).
  • Wang Y , WuQ , YangPet al. LSD1 co-repressor Rcor2 orchestrates neurogenesis in the developing mouse brain . Nat. Commun.7 , 10481 ( 2016 ).
  • Swarr DT , BloomD , LewisRAet al. Potocki–Shaffer syndrome: comprehensive clinical assessment, review of the literature, and proposals for medical management . Am. J. Med. Genet. A152A ( 3 ), 565 – 572 ( 2010 ).
  • Elsea SH , WilliamsSR . Smith–Magenis syndrome: haploinsufficiency of RAI1 results in altered gene regulation in neurological and metabolic pathways . Expert Rev. Mol. Med.13 , e14 – e14 ( 2011 ).
  • Bi W , OhyamaT , NakamuraHet al. Inactivation of Rai1 in mice recapitulates phenotypes observed in chromosome engineered mouse models for Smith–Magenis syndrome . Hum. Mol. Genet.14 ( 8 ), 983 – 995 ( 2005 ).
  • Yan J , BiW , LupskiJR . Penetrance of craniofacial anomalies in mouse models of Smith–Magenis syndrome is modified by genomic sequence surrounding Rai1: not all null alleles are alike . Am. J. Hum. Genet.80 ( 3 ), 518 – 525 ( 2007 ).
  • Carmona-Mora P , WalzK . Retinoic acid induced 1, RAI1: a dosage sensitive gene related to neurobehavioral alterations including autistic behavior . Curr. Genomics11 ( 8 ), 607 – 617 ( 2010 ).
  • Potocki L , BiW , Treadwell-DeeringDet al. Characterization of Potocki–Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype . Am. J. Hum. Genet.80 ( 4 ), 633 – 649 ( 2007 ).
  • Bi W , YanJ , ShiXet al. Rai1 deficiency in mice causes learning impairment and motor dysfunction, whereas Rai1 heterozygous mice display minimal behavioral phenotypes . Hum. Mol. Genet.16 ( 15 ), 1802 – 1813 ( 2007 ).
  • Molina J , Carmona-MoraP , ChrastJet al. Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki–Lupski syndrome . Hum. Mol. Genet.17 ( 16 ), 2486 – 2495 ( 2008 ).
  • Girirajan S , ElseaSH . Abnormal maternal behavior, altered sociability, and impaired serotonin metabolism in Rai1-transgenic mice . Mamm. Genome20 ( 4 ), 247 – 255 ( 2009 ).
  • Cao L , MolinaJ , AbadCet al. Correct developmental expression level of Rai1 in forebrain neurons is required for control of body weight, activity levels and learning and memory . Hum. Mol. Genet.23 ( 7 ), 1 – 12 ( 2013 ).
  • Girirajan S , PatelN , SlagerREet al. How much is too much? Phenotypic consequences of Rai1 overexpression in mice . Eur. J. Hum. Genet.16 ( 8 ), 941 – 954 ( 2008 ).
  • Williams SR , ZiesD , MullegamaSV , GrotewielMS , ElseaSH . Smith–Magenis syndrome results in disruption of CLOCK gene transcription and reveals an integral role for RAI1 in the maintenance of circadian rhythmicity . Am. J. Hum. Genet.90 ( 6 ), 941 – 949 ( 2012 ).
  • Van Der Zwaag B , FrankeL , PootMet al. Gene-network analysis identifies susceptibility genes related to glycobiology in autism . PLoS ONE4 ( 5 ), ( 2009 ).
  • Carmona-Mora P , CanalesCP , CaoLet al. RAI1 transcription factor activity is impaired in mutants associated with Smith–Magenis syndrome . PLoS ONE7 ( 9 ), e45155 ( 2012 ).
  • Burns B , SchmidtK , WilliamsSR , KimS , GirirajanS , ElseaSH . Rai1 haploinsufficiency causes reduced Bdnf expression resulting in hyperphagia, obesity and altered fat distribution in mice and humans with no evidence of metabolic syndrome . Hum. Mol. Genet.19 ( 20 ), 4026 – 4042 ( 2010 ).
  • Tahir R , KennedyA , ElseaSH , DickinsonAJ . Retinoic acid induced-1 (Rai1) regulates craniofacial and brain development in Xenopus . Mech. Dev.1 , 1 – 14 ( 2014 ).
  • Joober R , BenkelfatC , ToulouseAet al. Analysis of 14 CAG repeat-containing genes in schizophrenia . Am. J. Med. Genet.88 ( 6 ), 694 – 699 ( 1999 ).
  • Williams SR , AldredMA , Der KaloustianVMet al. Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems . Am. J. Hum. Genet.87 ( 2 ), 219 – 228 ( 2010 ).
  • Lacaria M , GuW , LupskiJR . Circadian abnormalities in mouse models of Smith–Magenis syndrome: evidence for involvement of RAI1 . Am. J. Med. Genet.161 ( 7 ), 1561 – 1568 ( 2013 ).
  • Mullegama S , AlaimoJ , ChenL , ElseaS . Phenotypic and molecular convergence of 2q23.1 deletion syndrome with other neurodevelopmental syndromes associated with autism spectrum disorder . Int. J. Mol. Sci.16 ( 4 ), 7627 – 7643 ( 2015 ).
  • Babbs C , LloydD , PagnamentaATet al. De novo and rare inherited mutations implicate the transcriptional coregulator TCF20/SPBP in autism spectrum disorder . J. Med. Genet.51 ( 11 ), 737 – 747 ( 2014 ).
  • Lelieveld SH , ReijndersMRF , PfundtRet al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability . Nat. Neurosci.19 ( 9 ), 1194 – 1196 ( 2016 ).
  • Liao C , FuF , LiR , YangX , XuQ , LiD-Z . Prenatal diagnosis and molecular characterization of a novel locus for Dandy-Walker malformation on chromosome 7p21.3 . Eur. J. Med. Genet.55 ( 8–9 ), 472 – 475 ( 2012 ).
  • Wynder C , HakimiMA , EpsteinJA , ShilatifardA , ShiekhattarR . Recruitment of MLL by HMG-domain protein iBRAF promotes neural differentiation . Nat. Cell Biol.7 ( 11 ), 1113 – 1117 ( 2005 ).
  • Ceballos-Chavez M , RiveroS , Garcia-GutierrezPet al. Control of neuronal differentiation by sumoylation of BRAF35, a subunit of the LSD1–CoREST histone demethylase complex . Proc. Natl Acad. Sci. USA109 ( 21 ), 8085 – 8090 ( 2012 ).
  • Jones WD , DafouD , McEntagartMet al. De novo mutations in MLL cause Wiedemann–Steiner syndrome . Am. J. Hum. Genet.91 ( 2 ), 358 – 364 ( 2012 ).
  • Lim DA , HuangY-C , SwigutTet al. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells . Nature458 ( 7237 ), 529 – 533 ( 2009 ).
  • Jakovcevski M , RuanH , ShenEYet al. Neuronal Kmt2a/Mll1 histone methyltransferase is essential for prefrontal synaptic plasticity and working memory . J. Neurosci.35 ( 13 ), 5097 – 5108 ( 2015 ).
  • Katada S , Sassone-CorsiP . The histone methyltransferase MLL1 permits the oscillation of circadian gene expression . Nat. Struct. Mol. Biol.17 ( 12 ), 1414 – 1421 ( 2010 ).
  • Aguilar-Arnal L , KatadaS , Orozco-SolisR , Sassone-CorsiP . NAD(+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1 . Nat. Struct. Mol. Biol.22 ( 4 ), 312 – 318 ( 2015 ).
  • Pilotto S , SperanziniV , MarabelliCet al. LSD1/KDM1A mutations associated to a newly described form of intellectual disability impair demethylase activity and binding to transcription factors . Hum. Mol. Genet. doi:10.1093/hmg/ddw120 ( 2016 ) ( Epub ahead of print ).
  • Kim HG , KimHT , LeachNTet al. Translocations disrupting PHF21A in the Potocki–Shaffer-syndrome region are associated with intellectual disability and craniofacial anomalies . Am. J. Hum. Genet.91 ( 1 ), 56 – 72 ( 2012 ).
  • Wang J , ScullyK , ZhuXet al. Opposing LSD1 complexes function in developmental gene activation and repression programmes . Nature446 ( 7138 ), 882 – 887 ( 2007 ).
  • Suh H , GagePJ , DrouinJ , CamperSA . Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification . Development129 ( 2 ), 329 – 337 ( 2002 ).
  • Saez JE , GomezAV , BarriosAPet al. Decreased expression of CoREST1 and CoREST2 together with LSD1 and HDAC1/2 during neuronal differentiation . PLoS ONE10 ( 6 ), e0131760 ( 2015 ).
  • Barrios ÁP , GómezAV , SáezJEet al. Differential properties of transcriptional complexes formed by the CoREST family . Mol. Cell. Biol.34 ( 14 ), 2760 – 2770 ( 2014 ).
  • Iwase S , ShonoN , HondaAet al. A component of BRAF–HDAC complex, BHC80, is required for neonatal survival in mice . FEBS Lett.580 ( 13 ), 3129 – 3135 ( 2006 ).
  • Klajn A , FerraiC , StucchiLet al. The rest repression of the neurosecretory phenotype is negatively modulated by BHC80, a protein of the BRAF/HDAC complex . J. Neurosci.29 ( 19 ), 6296 – 6307 ( 2009 ).
  • Didonna A , OpalP . The promise and perils of HDAC inhibitors in neurodegeneration . Ann. Clin. Transl. Neurol.2 ( 1 ), 79 – 101 ( 2015 ).
  • Sharma S , TaliyanR . Targeting histone deacetylases: a novel approach in Parkinson’s disease . Parkinsons Dis.2015 , 303294 ( 2015 ).
  • Penney J , TsaiL-H . Histone deacetylases in memory and cognition . Sci. Signal.7 ( 355 ), re12 ( 2014 ).
  • Montgomery RL , HsiehJ , BarbosaAC , RichardsonJA , OlsonEN . Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development . Proc. Natl Acad. Sci. USA106 ( 19 ), 7876 – 7881 ( 2009 ).
  • Kelly RD , CowleySM . The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts . Biochem. Soc. Trans.41 ( 3 ), 741 – 749 ( 2013 ).
  • Eberl HC , SpruijtCG , KelstrupCD , VermeulenM , MannM . A map of general and specialized chromatin readers in mouse tissues generated by label-free interaction proteomics . Mol. Cell49 ( 2 ), 368 – 378 ( 2013 ).
  • Gropman AL , DuncanWC , SmithAC . Neurologic and developmental features of the Smith–Magenis syndrome (del 17p11.2) . Pediatr. Neurol.34 ( 5 ), 337 – 350 ( 2006 ).
  • Lucas RE , Vlangos ChristopherN , DasParimal , Patel PragnaI , Elsea SarahH . Genomic organisation of the ∼1.5 Mb Smith–Magenis syndrome critical interval: transcription map, genomic contig, and candidate gene analysis . Europ. J. Hum. Genet.9 ( 12 ), 892 – 902 ( 2001 ).
  • Potocki L , ChenKS , ParkSSet al. Molecular mechanism for duplication 17p11.2- the homologous recombination reciprocal of the Smith–Magenis microdeletion . Nat. Genet.24 ( 1 ), 84 – 87 ( 2000 ).
  • Zhang F , PotockiL , SampsonJBet al. Identification of uncommon recurrent Potocki–Lupski syndrome-associated duplications and the distribution of rearrangement types and mechanisms in PTLS . Am. J. Hum. Genet.86 ( 3 ), 462 – 470 ( 2010 ).
  • Toulouse A , RochefortD , RousselJ , JooberR , RouleauGA . Molecular cloning and characterization of human RAI1, a gene associated with schizophrenia . Genomics82 ( 2 ), 162 – 171 ( 2003 ).
  • Haybaeck J , PostruznikM , MillerCL , DulayJR , LlenosIC , WeisS . Increased expression of retinoic acid-induced gene 1 in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression . Neuropsychiatr. Dis. Treat.11 , 279 – 289 ( 2015 ).
  • Rechsteiner M , RogersSW . PEST sequences and regulation by proteolysis . Trends Biochem. Sci.21 ( 7 ), 267 – 271 ( 1996 ).
  • Huang Q , ZhangL , WangYet al. Depletion of PHF14, a novel histone-binding protein gene, causes neonatal lethality in mice due to respiratory failure . Acta Biochim. Biophys. Sinica45 ( 8 ), 622 – 633 ( 2013 ).
  • Kitagawa M , TakebeA , OnoYet al. Phf14, a novel regulator of mesenchyme growth via platelet-derived growth factor (PDGF) receptor-alpha . J. Biol. Chem.287 ( 33 ), 27983 – 27996 ( 2012 ).
  • Musselman CA , KutateladzeTG . Handpicking epigenetic marks with PHD fingers . Nucleic Acids Res.39 ( 21 ), 9061 – 9071 ( 2011 ).
  • Darvekar S , RekdalC , JohansenT , Sj⊘ttemE . A phylogenetic study of SPBP and RAI1: evolutionary conservation of chromatin binding modules . PLoS ONE8 ( 10 ), 1 – 11 ( 2013 ).
  • Darvekar S , Johnsen SylviaS , Eriksen AgneteB , JohansenT , Sj⊘ttemE . Identification of two independent nucleosome-binding domains in the transcriptional co-activator SPBP . Biochem. J.442 ( 1 ), 65 – 75 ( 2012 ).
  • Allen Institute for Brain Science . Allen developing mouse brain atlas . http://developingmouse.brain-map.org
  • Zhang Y , ChenK , SloanSAet al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex . J. Neurosci.34 ( 36 ), 11929 – 11947 ( 2014 ).
  • Williams EC , ZhongX , MohamedAet al. Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons . Hum. Mol. Genet.23 ( 11 ), 2968 – 2980 ( 2014 ).
  • Maezawa I , SwanbergS , HarveyD , LasalleJM , JinLW . Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions . J. Neurosci.29 ( 16 ), 5051 – 5061 ( 2009 ).
  • Jacobs S , DoeringLC . Astrocytes prevent abnormal neuronal development in the fragile x mouse . J. Neurosci.30 ( 12 ), 4508 – 4514 ( 2010 ).
  • Developing Mouse Brain: Rcor2 . http://developingmouse.brain-map.org/gene/show/68548
  • Developing Mouse Brain: Hdac2 . http://developingmouse.brain-map.org/gene/show/14958
  • Developing Mouse Brain: BRAF35 . http://developingmouse.brain-map.org/gene/show/15128
  • Developing Mouse Brain: Rai1 . http://developingmouse.brain-map.org/gene/show/19140
  • Developing Mouse Brain: Tcf20 . http://developingmouse.brain-map.org/gene/show/21172
  • Developing Mouse Brain: Hmg20a . http://developingmouse.brain-map.org/gene/show/42710
  • Dou Y , MilneTA , RuthenburgAJet al. Regulation of MLL1 H3K4 methyltransferase activity by its core components . Nat. Struct. Mol. Biol.13 ( 8 ), 713 – 719 ( 2006 ).
  • Ebert DH , GreenbergME . Activity-dependent neuronal signalling and autism spectrum disorder . Nature493 ( 7432 ), 327 – 337 ( 2013 ).
  • Loebrich S , NediviE . The function of activity-regulated genes in the nervous system . Physiol. Rev.89 ( 4 ), 1079 – 1103 ( 2009 ).
  • Turrigiano GG . The self-tuning neuron: synaptic scaling of excitatory synapses . Cell135 ( 3 ), 422 – 435 ( 2008 ).
  • Benito E , BarcoA . The neuronal activity-driven transcriptome . Mol. Neurobiol.51 ( 3 ), 1071 – 1088 ( 2015 ).
  • Saha RN , WissinkEM , BaileyERet al. Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II . Nat. Neurosci.14 ( 7 ), 848 – 856 ( 2011 ).
  • Hong SJ , LiH , BeckerKG , DawsonVL , DawsonTM . Identification and analysis of plasticity-induced late-response genes . Proc. Natl Acad. Sci. USA101 ( 7 ), 2145 – 2150 ( 2004 ).
  • Gupta S , KimSY , ArtisSet al. Histone methylation regulates memory formation . J. Neurosci.30 ( 10 ), 3589 – 3599 ( 2010 ).
  • Gupta-Agarwal S , FranklinAV , DeramusTet al. G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation . J. Neurosci.32 ( 16 ), 5440 – 5453 ( 2012 ).
  • Wijayatunge R , ChenLF , ChaYM , ZannasAS , FrankCL , WestAE . The histone lysine demethylase Kdm6b is required for activity-dependent preconditioning of hippocampal neuronal survival . Mol. Cell. Neurosci.61187 – 200 ( 2014 ).
  • Pozzi D , LignaniG , FerreaEet al. REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability . EMBO J.32 ( 22 ), 2994 – 3007 ( 2013 ).
  • Zibetti C , AdamoA , BindaCet al. Alternative splicing of the histone demethylase LSD1/KDM1 contributes to the modulation of neurite morphogenesis in the mammalian nervous system . J. Neurosci.30 ( 7 ), 2521 – 2532 ( 2010 ).
  • Laurent B , RuituL , MurnJet al. A specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation . Mol. Cell57 ( 6 ), 957 – 970 ( 2015 ).
  • Toffolo E , RusconiF , PaganiniLet al. Phosphorylation of neuronal lysine-specific demethylase 1LSD1/KDM1A impairs transcriptional repression by regulating interaction with CoREST and histone deacetylases HDAC1/2 . J. Neurochem.128 ( 5 ), 603 – 616 ( 2014 ).
  • Pruunsild P , KazantsevaA , AidT , PalmK , TimmuskT . Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters . Genomics90 ( 3 ), 397 – 406 ( 2007 ).
  • Sim SE , BakesJ , KaangBK . Neuronal activity-dependent regulation of microRNAs . Mol. Cells37 ( 7 ), 511 – 517 ( 2014 ).
  • Schaukowitch K , JooJY , LiuX , WattsJK , MartinezC , KimTK . Enhancer RNA facilitates NELF release from immediate early genes . Mol. Cell56 ( 1 ), 29 – 42 ( 2014 ).
  • Richdale AL , BakerEK . Sleep in individuals with an intellectual or developmental disability: recent research reports . Curr. Dev. Disord. Rep.1 ( 2 ), 74 – 85 ( 2014 ).
  • Potocki L , GlazeD , TanDet al. Circadian rhythm abnormalities of melatonin in Smith–Magenis syndrome . J. Med. Genet.37 ( 6 ), 428 – 433 ( 2000 ).
  • Zhang R , LahensNF , BallanceHI , HughesME , HogeneschJB . A circadian gene expression atlas in mammals: implications for biology and medicine . Proc. Natl Acad. Sci. USA111 ( 45 ), 16219 – 16224 ( 2014 ).
  • Patel VR , Eckel-MahanK , Sassone-CorsiP , BaldiP . How pervasive are circadian oscillations?Trends Cell Biol.24 ( 6 ), 329 – 331 ( 2014 ).
  • Liu C , ChungM . Genetics and epigenetics of circadian rhythms and their potential roles in neuropsychiatric disorders . Neurosci. Bull.31 ( 1 ), 141 – 159 ( 2015 ).
  • Ripperger JA , SchiblerU . Rhythmic CLOCK–BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions . Nat. Genet.38 ( 3 ), 369 – 374 ( 2006 ).
  • Masri S , Sassone-CorsiP . The circadian clock: a framework linking metabolism, epigenetics and neuronal function . Nat. Rev. Neurosci.14 ( 1 ), 69 – 75 ( 2013 ).
  • Ditacchio L , LeHD , VollmersCet al. Histone lysine demethylase JARID1a activates CLOCK–BMAL1 and influences the circadian clock . Science333 ( 6051 ), 1881 – 1885 ( 2011 ).
  • Boone PM , ReiterRJ , GlazeDG , TanDX , LupskiJR , PotockiL . Abnormal circadian rhythm of melatonin in Smith–Magenis syndrome patients with RAI1 point mutations . Am. J. Med. Genet. A155A ( 8 ), 2024 – 2027 ( 2011 ).
  • Pevet P , ChalletE . Melatonin: both master clock output and internal time-giver in the circadian clocks network . J. Physiol. Paris105 ( 4–6 ), 170 – 182 ( 2011 ).
  • Boudreau EA , JohnsonKP , JackmanARet al. Review of disrupted sleep patterns in Smith–Magenis syndrome and normal melatonin secretion in a patient with an atypical interstitial 17p11.2 deletion . Am. J. Med. Genet. A149A ( 7 ), 1382 – 1391 ( 2009 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.