318
Views
2
CrossRef citations to date
0
Altmetric
Review

DNA Methylation in Systemic Lupus Erythematosus

, , &
Pages 505-525 | Received 04 Aug 2016, Accepted 12 Oct 2016, Published online: 25 Nov 2016

References

  • Tsokos GC . Systemic lupus erythematosus . N. Engl. J. Med.365 ( 22 ), 2110 – 2121 ( 2011 ).
  • Crispin JC , HedrichCM , TsokosGC . Gene-function studies in systemic lupus erythematosus . Nat. Rev. Rheumatol.9 ( 8 ), 476 – 484 ( 2013 ).
  • Javierre BM , FernandezAF , RichterJet al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus . Genome Res.20 ( 2 ), 170 – 179 ( 2010 ).
  • Javierre BM , HernandoH , BallestarE . Environmental triggers and epigenetic deregulation in autoimmune disease . Discov. Med.12 ( 67 ), 535 – 545 ( 2011 ).
  • Hedrich CM . Systemic Lupus Erythematosus . Elsevier , 255 ( 2016 ).
  • Hedrich CM , CrispinJC , TsokosGC . Epigenetic regulation of cytokine expression in systemic lupus erythematosus with special focus on T cells . Autoimmunity47 ( 4 ), 234 – 241 ( 2014 ).
  • Hedrich CM , TsokosGC . Epigenetic mechanisms in systemic lupus erythematosus and other autoimmune diseases . Trends Mol. Med.17 ( 12 ), 714 – 724 ( 2011 ).
  • Ballestar E . An introduction to epigenetics . Adv. Exp. Med. Biol.711 , 1 – 11 ( 2011 ).
  • Hofmann SR , Rosen-WolffA , TsokosGC , HedrichCM . Biological properties and regulation of IL-10 related cytokines and their contribution to autoimmune disease and tissue injury . Clin. Immunol.143 ( 2 ), 116 – 127 ( 2012 ).
  • Hedrich CM , BreamJH . Cell type-specific regulation of IL-10 expression in inflammation and disease . Immunol. Res.47 ( 1–3 ), 185 – 206 ( 2010 ).
  • Ballestar E . Epigenetic alterations in autoimmune rheumatic diseases . Nat. Rev. Rheumatol.7 ( 5 ), 263 – 271 ( 2011 ).
  • Ooi SK , O’donnellAH , BestorTH . Mammalian cytosine methylation at a glance . J. Cell Sci.122 ( Pt 16 ), 2787 – 2791 ( 2009 ).
  • Brenner C , FuksF . DNA methyltransferases: facts, clues, mysteries . Curr. Top. Microbiol. Immunol.301 , 45 – 66 ( 2006 ).
  • Brenner C , FuksF . A methylation rendezvous: reader meets writers . Dev. Cell12 ( 6 ), 843 – 844 ( 2007 ).
  • Brooks WH , Le DantecC , PersJO , YouinouP , RenaudineauY . Epigenetics and autoimmunity . J. Autoimmun.34 ( 3 ), J207 – J219 ( 2010 ).
  • Meroni PL , PenattiAE . Epigenetics and systemic lupus erythematosus: unmet needs . Clin. Rev. Allergy Immunol.50 ( 3 ), 367 – 376 ( 2016 ).
  • Xiao G , ZuoX . Epigenetics in systemic lupus erythematosus . Biomed. Rep.4 ( 2 ), 135 – 139 ( 2016 ).
  • Josefowicz SZ . Regulators of chromatin state and transcription in CD4 T-cell polarization . Immunology139 ( 3 ), 299 – 308 ( 2013 ).
  • Lim PS , ShannonMF , HardyK . Epigenetic control of inducible gene expression in the immune system . Epigenomics2 ( 6 ), 775 – 795 ( 2010 ).
  • Rothenberg EV . The chromatin landscape and transcription factors in T cell programming . Trends Immunol.35 ( 5 ), 195 – 204 ( 2014 ).
  • Hillhouse EE , LesageS . A comprehensive review of the phenotype and function of antigen-specific immunoregulatory double negative T cells . J. Autoimmun.40 , 58 – 65 ( 2013 ).
  • Martina MN , NoelS , SaxenaA , RabbH , HamadAR . Double negative (DN) alphabeta T cells: misperception and overdue recognition . Immunol. Cell Biol.93 ( 3 ), 305 – 310 ( 2015 ).
  • Schoenborn JR , DorschnerMO , SekimataMet al. Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-gamma . Nat. Immunol.8 ( 7 ), 732 – 742 ( 2007 ).
  • Schoenborn JR , WilsonCB . Regulation of interferon-gamma during innate and adaptive immune responses . Adv. Immunol.96 , 41 – 101 ( 2007 ).
  • Hedrich CM , CrispinJC , RauenTet al. cAMP response element modulator alpha controls IL2 and IL17A expression during CD4 lineage commitment and subset distribution in lupus . Proc. Natl Acad. Sci. USA109 ( 41 ), 16606 – 16611 ( 2012 ).
  • Rauen T , HedrichCM , JuangYT , TenbrockK , TsokosGC . cAMP-responsive element modulator (CREM)alpha protein induces interleukin 17A expression and mediates epigenetic alterations at the interleukin-17A gene locus in patients with systemic lupus erythematosus . J. Biol. Chem.286 ( 50 ), 43437 – 43446 ( 2011 ).
  • Apostolidis SA , RauenT , HedrichCM , TsokosGC , CrispinJC . Protein phosphatase 2A enables expression of interleukin 17 (IL-17) through chromatin remodeling . J. Biol. Chem.288 ( 37 ), 26775 – 26784 ( 2013 ).
  • Hedrich CM , CrispinJC , RauenTet al. cAMP responsive element modulator (CREM) alpha mediates chromatin remodeling of CD8 during the generation of CD3+ CD4- CD8- T cells . J. Biol. Chem.289 ( 4 ), 2361 – 2370 ( 2014 ).
  • Hedrich CM , RauenT , CrispinJCet al. cAMP-responsive element modulator alpha (CREMalpha) trans-represses the transmembrane glycoprotein CD8 and contributes to the generation of CD3+CD4-CD8- T cells in health and disease . J. Biol. Chem.288 ( 44 ), 31880 – 31887 ( 2013 ).
  • Crispin JC , OukkaM , BaylissGet al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys . J. Immunol.181 ( 12 ), 8761 – 8766 ( 2008 ).
  • Rodriguez-Rodriguez N , ApostolidisSA , Penaloza-MacmasterPet al. Programmed cell death 1 and Helios distinguish TCR-alphabeta+ double-negative (CD4-CD8-) T cells that derive from self-reactive CD8 T cells . J. Immunol.194 ( 9 ), 4207 – 4214 ( 2015 ).
  • Liu Y , ChenY , RichardsonB . Decreased DNA methyltransferase levels contribute to abnormal gene expression in “senescent” CD4(+)CD28(-) T cells . Clin. Immunol.132 ( 2 ), 257 – 265 ( 2009 ).
  • Lal G , ZhangN , Van Der TouwWet al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation . J. Immunol.182 ( 1 ), 259 – 273 ( 2009 ).
  • Zhao M , TangJ , GaoFet al. Hypomethylation of IL10 and IL13 promoters in CD4+ T cells of patients with systemic lupus erythematosus . J. Biomed. Biotechnol.2010 , 931018 ( 2010 ).
  • Hedrich CM , RauenT , ApostolidisSAet al. Stat3 promotes IL-10 expression in lupus T cells through trans-activation and chromatin remodeling . Proc. Natl Acad. Sci. USA111 ( 37 ), 13457 – 13462 ( 2014 ).
  • Rauen T , HedrichCM , TenbrockK , TsokosGC . cAMP responsive element modulator: a critical regulator of cytokine production . Trends Mol. Med.19 ( 4 ), 262 – 269 ( 2013 ).
  • Ohl K , TenbrockK . Inflammatory cytokines in systemic lupus erythematosus . J. Biomed. Biotechnol. 2011 , 432595 ( 2011 ).
  • Peng H , WangW , ZhouM , LiR , PanHF , YeDQ . Role of interleukin-10 and interleukin-10 receptor in systemic lupus erythematosus . Clin. Rheumatol.32 ( 9 ), 1255 – 1266 ( 2013 ).
  • Llorente L , Richaud-PatinY , Garcia-PadillaCet al. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus . Arthritis Rheum.43 ( 8 ), 1790 – 1800 ( 2000 ).
  • Apostolidis SA , CrispinJC , TsokosGC . IL-17-producing T cells in lupus nephritis . Lupus20 ( 2 ), 120 – 124 ( 2011 ).
  • Apostolidis SA , LiebermanLA , Kis-TothK , CrispinJC , TsokosGC . The dysregulation of cytokine networks in systemic lupus erythematosus . J. Interferon Cytokine Res.31 ( 10 ), 769 – 779 ( 2011 ).
  • Absher DM , LiX , WaiteLLet al. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations . PLoS Genet.9 ( 8 ), e1003678 ( 2013 ).
  • Coit P , YalavarthiS , OgnenovskiMet al. Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils . J. Autoimmun.58 , 59 – 66 ( 2015 ).
  • Crow MK , OlferievM , KirouKA . Targeting of type I interferon in systemic autoimmune diseases . Transl. Res.165 ( 2 ), 296 – 305 ( 2015 ).
  • Rich SA . Human lupus inclusions and interferon . Science213 ( 4509 ), 772 – 775 ( 1981 ).
  • Perl A . Mechanisms of viral pathogenesis in rheumatic disease . Ann. Rheum. Dis.58 ( 8 ), 454 – 461 ( 1999 ).
  • Yoshiki T , MellorsRC , StrandM , AugustJT . The viral envelope glycoprotein of murine leukemia virus and the pathogenesis of immune complex glomerulonephritis of New Zealand mice . J. Exp. Med.140 ( 4 ), 1011 – 1027 ( 1974 ).
  • Krieg AM , SteinbergAD . Analysis of thymic endogenous retroviral expression in murine lupus. Genetic and immune studies . J. Clin. Invest.86 ( 3 ), 809 – 816 ( 1990 ).
  • Caza TN , FernandezDR , TalaberGet al. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE . Ann. Rheum. Dis.73 ( 10 ), 1888 – 1897 ( 2014 ).
  • Perl A , ColomboE , DaiHet al. Antibody reactivity to the HRES-1 endogenous retroviral element identifies a subset of patients with systemic lupus erythematosus and overlap syndromes. Correlation with antinuclear antibodies and HLA class II alleles . Arthritis Rheum.38 ( 11 ), 1660 – 1671 ( 1995 ).
  • Magistrelli C , SamoilovaE , AgarwalRKet al. Polymorphic genotypes of the HRES-1 human endogenous retrovirus locus correlate with systemic lupus erythematosus and autoreactivity . Immunogenetics49 ( 10 ), 829 – 834 ( 1999 ).
  • Pullmann R Jr. , BonillaE , PhillipsPE , MiddletonFA , PerlA . Haplotypes of the HRES-1 endogenous retrovirus are associated with development and disease manifestations of systemic lupus erythematosus . Arthritis Rheum.58 ( 2 ), 532 – 540 ( 2008 ).
  • Nakkuntod J , AvihingsanonY , MutiranguraA , HirankarnN . Hypomethylation of LINE-1 but not Alu in lymphocyte subsets of systemic lupus erythematosus patients . Clin. Chim. Acta412 ( 15–16 ), 1457 – 1461 ( 2011 ).
  • Garaud S , Le DantecC , Jousse-JoulinSet al. IL-6 modulates CD5 expression in B cells from patients with lupus by regulating DNA methylation . J. Immunol.182 ( 9 ), 5623 – 5632 ( 2009 ).
  • Fali T , Le DantecC , ThabetYet al. DNA methylation modulates HRES1/p28 expression in B cells from patients with Lupus . Autoimmunity47 ( 4 ), 265 – 271 ( 2014 ).
  • Lu Q , WuA , RichardsonBC . Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs . J. Immunol.174 ( 10 ), 6212 – 6219 ( 2005 ).
  • Singer NG , RichardsonBC , PowersDet al. Role of the CD6 glycoprotein in antigen-specific and autoreactive responses of cloned human T lymphocytes . Immunology88 ( 4 ), 537 – 543 ( 1996 ).
  • Zhao M , SunY , GaoFet al. Epigenetics and SLE: RFX1 downregulation causes CD11a and CD70 overexpression by altering epigenetic modifications in lupus CD4+ T cells . J. Autoimmun.35 ( 1 ), 58 – 69 ( 2010 ).
  • Lu Q , WuA , TesmerL , RayD , YousifN , RichardsonB . Demethylation of CD40LG on the inactive X in T cells from women with lupus . J. Immunol.179 ( 9 ), 6352 – 6358 ( 2007 ).
  • Strickland FM , LiY , JohnsonK , SunZ , RichardsonBC . CD4(+) T cells epigenetically modified by oxidative stress cause lupus-like autoimmunity in mice . J. Autoimmun.62 , 75 – 80 ( 2015 ).
  • Garaud S , YouinouP , RenaudineauY . DNA methylation and B-cell autoreactivity . Adv. Exp. Med. Biol.711 , 50 – 60 ( 2011 ).
  • Renaudineau Y , BeauvillardD , PadelliM , BrooksWH , YouinouP . Epigenetic alterations and autoimmune disease . J. Dev. Orig. Health Dis.2 ( 5 ), 258 – 264 ( 2011 ).
  • Renaudineau Y , YouinouP . Epigenetics and autoimmunity, with special emphasis on methylation . Keio J. Med.60 ( 1 ), 10 – 16 ( 2011 ).
  • Kaplan MJ , LuQ , WuA , AttwoodJ , RichardsonB . Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells . J. Immunol.172 ( 6 ), 3652 – 3661 ( 2004 ).
  • Sawalha AH , WangL , NadigAet al. Sex-specific differences in the relationship between genetic susceptibility, T cell DNA demethylation and lupus flare severity . J. Autoimmun.38 ( 2–3 ), J216 – 222 ( 2012 ).
  • Liu Y , KuickR , HanashS , RichardsonB . DNA methylation inhibition increases T cell KIR expression through effects on both promoter methylation and transcription factors . Clin. Immunol.130 ( 2 ), 213 – 224 ( 2009 ).
  • Basu D , LiuY , WuAet al. Stimulatory and inhibitory killer Ig-like receptor molecules are expressed and functional on lupus T cells . J. Immunol.183 ( 5 ), 3481 – 3487 ( 2009 ).
  • Sunahori K , JuangYT , TsokosGC . Methylation status of CpG islands flanking a cAMP response element motif on the protein phosphatase 2Ac alpha promoter determines CREB binding and activity . J. Immunol.182 ( 3 ), 1500 – 1508 ( 2009 ).
  • Sunahori K , NagpalK , HedrichCM , MizuiM , FitzgeraldLM , TsokosGC . The catalytic subunit of protein phosphatase 2A (PP2Ac) promotes DNA hypomethylation by suppressing the phosphorylated mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/phosphorylated ERK/DNMT1 protein pathway in T-cells from controls and systemic lupus erythematosus patients . J. Biol. Chem.288 ( 30 ), 21936 – 21944 ( 2013 ).
  • Moulton VR , HolcombDR , ZajdelMC , TsokosGC . Estrogen upregulates cyclic AMP response element modulator alpha expression and downregulates interleukin-2 production by human T lymphocytes . Mol. Med.18 , 370 – 378 ( 2012 ).
  • Moulton VR , TsokosGC . Why do women get lupus?Clin. Immunol.144 ( 1 ), 53 – 56 ( 2012 ).
  • Tedeschi SK , BermasB , CostenbaderKH . Sexual disparities in the incidence and course of SLE and RA . Clin. Immunol.149 ( 2 ), 211 – 218 ( 2013 ).
  • Liu HW , LinHL , YenJHet al. Demethylation within the proximal promoter region of human estrogen receptor alpha gene correlates with its enhanced expression: Implications for female bias in lupus . Mol. Immunol.61 ( 1 ), 28 – 37 ( 2014 ).
  • Hedrich CM , RauenT , TsokosGC . cAMP-responsive element modulator (CREM)alpha protein signaling mediates epigenetic remodeling of the human interleukin-2 gene: implications in systemic lupus erythematosus . J. Biol. Chem.286 ( 50 ), 43429 – 43436 ( 2011 ).
  • Ngalamika O , LiangG , ZhaoMet al. Peripheral whole blood FOXP3 TSDR methylation: a potential marker in severity assessment of autoimmune diseases and chronic infections . Immunol. Invest.44 ( 2 ), 126 – 136 ( 2015 ).
  • Rauen T , GrammatikosAP , HedrichCMet al. cAMP-responsive element modulator alpha (CREMalpha) contributes to decreased Notch-1 expression in T cells from patients with active systemic lupus erythematosus (SLE) . J. Biol. Chem.287 ( 51 ), 42525 – 42532 ( 2012 ).
  • Chen H , FanJ , ShouQ , ZhangL , MaH , FanY . Hypermethylation of glucocorticoid receptor gene promoter results in glucocorticoid receptor gene low expression in peripheral blood mononuclear cells of patients with systemic lupus erythematosus . Rheumatol. Int.35 ( 8 ), 1335 – 1342 ( 2015 ).
  • Renauer PA , CoitP , SawalhaAH . The DNA methylation signature of human TCRalphabeta+CD4-CD8- double negative T cells reveals CG demethylation and a unique epigenetic architecture permissive to a broad stimulatory immune response . Clin. Immunol.156 ( 1 ), 19 – 27 ( 2015 ).
  • Andreae J , TripmacherR , WeltrichRet al. Effect of glucocorticoid therapy on glucocorticoid receptors in children with autoimmune diseases . Pediatr. Res.49 ( 1 ), 130 – 135 ( 2001 ).
  • Jiang T , LiuS , TanMet al. The phase-shift mutation in the glucocorticoid receptor gene: potential etiologic significance of neuroendocrine mechanisms in lupus nephritis . Clin. Chim. Acta313 ( 1–2 ), 113 – 117 ( 2001 ).
  • Piotrowski P , BurzynskiM , LianeriMet al. Glucocorticoid receptor beta splice variant expression in patients with high and low activity of systemic lupus erythematosus . Folia Histochem. Cytobiol.45 ( 4 ), 339 – 342 ( 2007 ).
  • Ehrlich M , EhrlichKC . DNA cytosine methylation and hydroxymethylation at the borders . Epigenomics6 ( 6 ), 563 – 566 ( 2014 ).
  • Hackett JA , SenguptaR , ZyliczJJet al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine . Science339 ( 6118 ), 448 – 452 ( 2013 ).
  • Hahn MA , QiuR , WuXet al. Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis . Cell Rep.3 ( 2 ), 291 – 300 ( 2013 ).
  • Neri F , IncarnatoD , KrepelovaAet al. Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells . Genome Biol.14 ( 8 ), R91 ( 2013 ).
  • Song CX , SzulwachKE , FuYet al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine . Nat. Biotechnol.29 ( 1 ), 68 – 72 ( 2011 ).
  • Shukla A , SehgalM , SinghTR . Hydroxymethylation and its potential implication in DNA repair system: a review and future perspectives . Gene564 ( 2 ), 109 – 118 ( 2015 ).
  • Schomacher L . Mammalian DNA demethylation: multiple faces and upstream regulation . Epigenetics8 ( 7 ), 679 – 684 ( 2013 ).
  • Tahiliani M , KohKP , ShenYet al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 . Science324 ( 5929 ), 930 – 935 ( 2009 ).
  • Gao Y , ChenJ , LiKet al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming . Cell Stem Cell12 ( 4 ), 453 – 469 ( 2013 ).
  • Sui W , TanQ , YangMet al. Genome-wide analysis of 5-hmC in the peripheral blood of systemic lupus erythematosus patients using an hMeDIP-chip . Int. J. Mol. Med.35 ( 5 ), 1467 – 1479 ( 2015 ).
  • Xu Y , WuF , TanLet al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells . Mol. Cell42 ( 4 ), 451 – 464 ( 2011 ).
  • Straussman R , NejmanD , RobertsDet al. Developmental programming of CpG island methylation profiles in the human genome . Nat. Struct. Mol. Biol.16 ( 5 ), 564 – 571 ( 2009 ).
  • Zhao M , WangJ , LiaoWet al. Increased 5-hydroxymethylcytosine in CD4(+) T cells in systemic lupus erythematosus . J. Autoimmun.69 , 64 – 73 ( 2016 ).
  • Januchowski R , WudarskiM , Chwalinska-SadowskaH , JagodzinskiPP . Prevalence of ZAP-70, LAT, SLP-76, and DNA methyltransferase 1 expression in CD4+ T cells of patients with systemic lupus erythematosus . Clin. Rheumatol.27 ( 1 ), 21 – 27 ( 2008 ).
  • Lei W , LuoY , LeiWet al. Abnormal DNA methylation in CD4+ T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis . Scand. J. Rheumatol.38 ( 5 ), 369 – 374 ( 2009 ).
  • Balada E , Ordi-RosJ , Serrano-AcedoS , Martinez-LostaoL , Rosa-LeyvaM , Vilardell-TarresM . Transcript levels of DNA methyltransferases DNMT1, DNMT3A and DNMT3B in CD4+ T cells from patients with systemic lupus erythematosus . Immunology124 ( 3 ), 339 – 347 ( 2008 ).
  • Denli AM , TopsBB , PlasterkRH , KettingRF , HannonGJ . Processing of primary microRNAs by the Microprocessor complex . Nature432 ( 7014 ), 231 – 235 ( 2004 ).
  • Gregory RI , YanKP , AmuthanGet al. The microprocessor complex mediates the genesis of microRNAs . Nature432 ( 7014 ), 235 – 240 ( 2004 ).
  • Grishok A , PasquinelliAE , ConteDet al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing . Cell106 ( 1 ), 23 – 34 ( 2001 ).
  • Hutvagner G , MclachlanJ , PasquinelliAE , BalintE , TuschlT , ZamorePD . A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA . Science293 ( 5531 ), 834 – 838 ( 2001 ).
  • Fabian MR , SonenbergN , FilipowiczW . Regulation of mRNA translation and stability by microRNAs . Annu. Rev. Biochem.79 , 351 – 379 ( 2010 ).
  • Pillai RS , BhattacharyyaSN , FilipowiczW . Repression of protein synthesis by miRNAs: how many mechanisms?Trends Cell Biol.17 ( 3 ), 118 – 126 ( 2007 ).
  • Fabbri M , GarzonR , CimminoAet al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B . Proc. Natl Acad. Sci. USA104 ( 40 ), 15805 – 15810 ( 2007 ).
  • Garzon R , LiuS , FabbriMet al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1 . Blood113 ( 25 ), 6411 – 6418 ( 2009 ).
  • Ng EK , TsangWP , NgSSet al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer . Br. J. Cancer101 ( 4 ), 699 – 706 ( 2009 ).
  • Zhao S , WangY , LiangYet al. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1 . Arthritis Rheum.63 ( 5 ), 1376 – 1386 ( 2011 ).
  • Gorelik G , SawalhaAH , PatelD , JohnsonK , RichardsonB . T cell PKCdelta kinase inactivation induces lupus-like autoimmunity in mice . Clin. Immunol.158 ( 2 ), 193 – 203 ( 2015 ).
  • Gorelik GJ , YarlagaddaS , PatelDR , RichardsonBC . Protein kinase Cdelta oxidation contributes to ERK inactivation in lupus T cells . Arthritis Rheum.64 ( 9 ), 2964 – 2974 ( 2012 ).
  • Li Y , ZhaoM , YinHet al. Overexpression of the growth arrest and DNA damage-induced 45alpha gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells . Arthritis Rheum.62 ( 5 ), 1438 – 1447 ( 2010 ).
  • Rai K , HugginsIJ , JamesSR , KarpfAR , JonesDA , CairnsBR . DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45 . Cell135 ( 7 ), 1201 – 1212 ( 2008 ).
  • Li Y , HuangC , ZhaoMet al. A possible role of HMGB1 in DNA demethylation in CD4+ T cells from patients with systemic lupus erythematosus . Clin. Dev. Immunol. 2013 , 206298 ( 2013 ).
  • Consortium EP . An integrated encyclopedia of DNA elements in the human genome . Nature489 ( 7414 ), 57 – 74 ( 2012 ).
  • Farh KK , MarsonA , ZhuJet al. Genetic and epigenetic fine mapping of causal autoimmune disease variants . Nature518 ( 7539 ), 337 – 343 ( 2015 ).
  • Roadmap Epigenomics C , KundajeA , MeulemanWet al. Integrative analysis of 111 reference human epigenomes . Nature518 ( 7539 ), 317 – 330 ( 2015 ).
  • Zhao M , LiuS , LuoSet al. DNA methylation and mRNA and microRNA expression of SLE CD4+ T cells correlate with disease phenotype . J. Autoimmun.54 , 127 – 136 ( 2014 ).
  • Zhao M , WuX , ZhangQet al. RFX1 regulates CD70 and CD11a expression in lupus T cells by recruiting the histone methyltransferase SUV39H1 . Arthritis Res. Ther.12 ( 6 ), R227 ( 2010 ).
  • Hedrich CM , RauenT , Kis-TothK , KyttarisVC , TsokosGC . cAMP-responsive element modulator alpha (CREMalpha) suppresses IL-17F protein expression in T lymphocytes from patients with systemic lupus erythematosus (SLE) . J. Biol. Chem.287 ( 7 ), 4715 – 4725 ( 2012 ).
  • Juang YT , RauenT , WangYet al. Transcriptional activation of the cAMP-responsive modulator promoter in human T cells is regulated by protein phosphatase 2A-mediated dephosphorylation of SP-1 and reflects disease activity in patients with systemic lupus erythematosus . J. Biol. Chem.286 ( 3 ), 1795 – 1801 ( 2011 ).
  • Vicart A , LefebvreT , ImbertJ , FernandezA , Kahn-PerlesB . Increased chromatin association of Sp1 in interphase cells by PP2A-mediated dephosphorylations . J. Mol. Biol.364 ( 5 ), 897 – 908 ( 2006 ).
  • Ichinose K , RauenT , JuangYTet al. Cutting edge: calcium/calmodulin-dependent protein kinase type IV is essential for mesangial cell proliferation and lupus nephritis . J. Immunol.187 ( 11 ), 5500 – 5504 ( 2011 ).
  • Ichinose K , UshigusaT , NishinoAet al. Lupus nephritis IgG induction of calcium/calmodulin-dependent protein kinase IV expression in podocytes and alteration of their function . Arthritis Rheumatol.68 ( 4 ), 944 – 952 ( 2016 ).
  • Koga T , IchinoseK , MizuiM , CrispinJC , TsokosGC . Calcium/calmodulin-dependent protein kinase IV suppresses IL-2 production and regulatory T cell activity in lupus . J. Immunol.189 ( 7 ), 3490 – 3496 ( 2012 ).
  • Koga T , MizuiM , YoshidaNet al. KN-93, an inhibitor of calcium/calmodulin-dependent protein kinase IV, promotes generation and function of Foxp3(+) regulatory T cells in MRL/lpr mice . Autoimmunity47 ( 7 ), 445 – 450 ( 2014 ).
  • Koga T , OtomoK , MizuiMet al. Calcium/calmodulin-dependent kinase IV facilitates the recruitment of interleukin-17-producing cells to target organs through the CCR6/CCL20 axis in Th17 cell-driven inflammatory diseases . Arthritis Rheumatol.68 ( 8 ), 1981 – 1988 ( 2016 ).
  • Racioppi L , MeansAR . Calcium/calmodulin-dependent kinase IV in immune and inflammatory responses: novel routes for an ancient traveller . Trends Immunol.29 ( 12 ), 600 – 607 ( 2008 ).
  • Ichinose K , JuangYT , CrispinJC , Kis-TothK , TsokosGC . Suppression of autoimmunity and organ pathology in lupus-prone mice upon inhibition of calcium/calmodulin-dependent protein kinase type IV . Arthritis Rheum.63 ( 2 ), 523 – 529 ( 2011 ).
  • Juang YT , WangY , SolomouEEet al. Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV . J. Clin. Invest.115 ( 4 ), 996 – 1005 ( 2005 ).
  • He YF , LiBZ , LiZet al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA . Science333 ( 6047 ), 1303 – 1307 ( 2011 ).
  • Ito S , ShenL , DaiQet al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine . Science333 ( 6047 ), 1300 – 1303 ( 2011 ).
  • Kriaucionis S , HeintzN . The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain . Science324 ( 5929 ), 929 – 930 ( 2009 ).
  • Hashimoto H , LiuY , UpadhyayAKet al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation . Nucleic Acids Res.40 ( 11 ), 4841 – 4849 ( 2012 ).
  • Ko M , AnJ , RaoA . DNA methylation and hydroxymethylation in hematologic differentiation and transformation . Curr. Opin. Cell Biol.37 , 91 – 101 ( 2015 ).
  • Pernis AB . Estrogen and CD4+ T cells . Curr. Opin. Rheumatol.19 ( 5 ), 414 – 420 ( 2007 ).
  • Tiniakou E , CostenbaderKH , KriegelMA . Sex-specific environmental influences on the development of autoimmune diseases . Clin. Immunol.149 ( 2 ), 182 – 191 ( 2013 ).
  • Kanno Y , VahediG , HiraharaK , SingletonK , O’sheaJJ . Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity . Annu. Rev. Immunol.30 , 707 – 731 ( 2012 ).
  • Invernizzi P , PasiniS , SelmiC , MiozzoM , PoddaM . Skewing of X chromosome inactivation in autoimmunity . Autoimmunity41 ( 4 ), 272 – 277 ( 2008 ).
  • Lian X , XiaoR , HuXet al. DNA demethylation of CD40l in CD4+ T cells from women with systemic sclerosis: a possible explanation for female susceptibility . Arthritis Rheum.64 ( 7 ), 2338 – 2345 ( 2012 ).
  • Liao J , LiangG , XieSet al. CD40L demethylation in CD4(+) T cells from women with rheumatoid arthritis . Clin. Immunol.145 ( 1 ), 13 – 18 ( 2012 ).
  • Zhou Y , YuanJ , PanYet al. T cell CD40LG gene expression and the production of IgG by autologous B cells in systemic lupus erythematosus . Clin. Immunol.132 ( 3 ), 362 – 370 ( 2009 ).
  • Zhang Y , ZhaoM , SawalhaAH , RichardsonB , LuQ . Impaired DNA methylation and its mechanisms in CD4(+) T cells of systemic lupus erythematosus . J. Autoimmun.41 , 92 – 99 ( 2013 ).
  • Jones MJ , GoodmanSJ , KoborMS . DNA methylation and healthy human aging . Aging cell14 ( 6 ), 924 – 932 ( 2015 ).
  • Oaks Z , PerlA . Metabolic control of the epigenome in systemic lupus erythematosus . Autoimmunity47 ( 4 ), 256 – 264 ( 2014 ).
  • Strickland FM , HewagamaA , WuAet al. Diet influences expression of autoimmune-associated genes and disease severity by epigenetic mechanisms in a transgenic mouse model of lupus . Arthritis Rheum.65 ( 7 ), 1872 – 1881 ( 2013 ).
  • Gorelik G , FangJY , WuA , SawalhaAH , RichardsonB . Impaired T cell protein kinase C delta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus . J. Immunol.179 ( 8 ), 5553 – 5563 ( 2007 ).
  • Wysenbeek AJ , BlockDA , FriesJF . Prevalence and expression of photosensitivity in systemic lupus erythematosus . Ann. Rheum. Dis.48 ( 6 ), 461 – 463 ( 1989 ).
  • Zhu X , LiF , YangB , LiangJ , QinH , XuJ . Effects of ultraviolet B exposure on DNA methylation in patients with systemic lupus erythematosus . Exp. Ther. Med.5 ( 4 ), 1219 – 1225 ( 2013 ).
  • Fan J , KrautkramerKA , FeldmanJL , DenuJM . Metabolic regulation of histone post-translational modifications . ACS Chem. Biol.10 ( 1 ), 95 – 108 ( 2015 ).
  • Lu C , ThompsonCB . Metabolic regulation of epigenetics . Cell Metab.16 ( 1 ), 9 – 17 ( 2012 ).
  • Ray PD , HuangBW , TsujiY . Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling . Cell. Signal.24 ( 5 ), 981 – 990 ( 2012 ).
  • Perillo B , OmbraMN , BertoniAet al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression . Science319 ( 5860 ), 202 – 206 ( 2008 ).
  • Gergely P Jr , GrossmanC , NilandBet al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus . Arthritis Rheum.46 ( 1 ), 175 – 190 ( 2002 ).
  • Griffey RH , BrownMS , BankhurstAD , SibbittRR , SibbittWLJr . Depletion of high-energy phosphates in the central nervous system of patients with systemic lupus erythematosus, as determined by phosphorus-31 nuclear magnetic resonance spectroscopy . Arthritis Rheum.33 ( 6 ), 827 – 833 ( 1990 ).
  • Fernandez DR , TelaricoT , BonillaEet al. Activation of mammalian target of rapamycin controls the loss of TCRzeta in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation . J. Immunol.182 ( 4 ), 2063 – 2073 ( 2009 ).
  • Solomon DH , KavanaughAJ , SchurPH , American College of Rheumatology Ad Hoc Committee on Immunologic Testing G . Evidence-based guidelines for the use of immunologic tests: antinuclear antibody testing . Arthritis Rheum.47 ( 4 ), 434 – 444 ( 2002 ).
  • Bizzaro N , VillaltaD , GiavarinaD , TozzoliR . Are anti-nucleosome antibodies a better diagnostic marker than anti-dsDNA antibodies for systemic lupus erythematosus? A systematic review and a study of metanalysis . Autoimmun. Rev.12 ( 2 ), 97 – 106 ( 2012 ).
  • Biesen R , RoseT , HoyerBF , AlexanderT , HiepeF . Autoantibodies, complement and type I interferon as biomarkers for personalized medicine in SLE . Lupus25 ( 8 ), 823 – 829 ( 2016 ).
  • Wu H , ZhaoM , TanL , LuQ . The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation . Autoimmun. Rev.15 ( 7 ), 684 – 689 ( 2016 ).
  • Chechlinska M , KowalewskaM , NowakR . Systemic inflammation as a confounding factor in cancer biomarker discovery and validation . Nat. Rev. Cancer10 ( 1 ), 2 – 3 ( 2010 ).
  • Ospelt C . Epigenetic biomarkers in rheumatology – the future?Swiss Med. Wkly146 , w14312 ( 2016 ).
  • Mikeska T , CraigJM . DNA methylation biomarkers: cancer and beyond . Genes5 ( 3 ), 821 – 864 ( 2014 ).
  • Schwarzenbach H , HoonDS , PantelK . Cell-free nucleic acids as biomarkers in cancer patients . Nat. Rev. Cancer11 ( 6 ), 426 – 437 ( 2011 ).
  • Zhao M , ZhouY , ZhuBet al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus . Ann. Rheum. Dis. doi:10.1136/annrheumdis-2015-208410 ( 2016 ).
  • Zahoor MA , XueG , SatoH , MurakamiT , TakeshimaSN , AidaY . HIV-1 Vpr induces interferon-stimulated genes in human monocyte-derived macrophages . PLoS ONE9 ( 8 ), e106418 ( 2014 ).
  • Guo Y , SawalhaAH , LuQ . Epigenetics in the treatment of systemic lupus erythematosus: potential clinical application . Clin. Immunol.155 ( 1 ), 79 – 90 ( 2014 ).
  • Jonsen A , BengtssonAA , NivedO , TruedssonL , SturfeltG . Gene-environment interactions in the aetiology of systemic lupus erythematosus . Autoimmunity40 ( 8 ), 613 – 617 ( 2007 ).
  • Chafin CB , RegnaNL , HammondSE , ReillyCM . Cellular and urinary microRNA alterations in NZB/W mice with hydroxychloroquine or prednisone treatment . Int. Immunopharmacol.17 ( 3 ), 894 – 906 ( 2013 ).
  • Chan ES , CronsteinBN . Methotrexate – how does it really work?Nat. Rev. Rheumatol.6 ( 3 ), 175 – 178 ( 2010 ).
  • Nihal M , WuJ , WoodGS . Methotrexate inhibits the viability of human melanoma cell lines and enhances Fas/Fas-ligand expression, apoptosis and response to interferon-alpha: rationale for its use in combination therapy . Arch. Biochem. Biophys.563 , 101 – 107 ( 2014 ).
  • Yang Y , TangQ , ZhaoMet al. The effect of mycophenolic acid on epigenetic modifications in lupus CD4+T cells . Clin. Immunol.158 ( 1 ), 67 – 76 ( 2015 ).
  • Zhang J , YuanB , ZhangFet al. Cyclophosphamide perturbs cytosine methylation in Jurkat-T cells through LSD1-mediated stabilization of DNMT1 protein . Chem. Res. Toxicol.24 ( 11 ), 2040 – 2043 ( 2011 ).
  • Heyn H , EstellerM . DNA methylation profiling in the clinic: applications and challenges . Nat. Rev. Genet.13 ( 10 ), 679 – 692 ( 2012 ).
  • Yamazaki J , IssaJP . Epigenetic aspects of MDS and its molecular targeted therapy . Int. J. Hematol.97 ( 2 ), 175 – 182 ( 2013 ).
  • Nie J , LiuL , LiX , HanW . Decitabine, a new star in epigenetic therapy: the clinical application and biological mechanism in solid tumors . Cancer Lett.354 ( 1 ), 12 – 20 ( 2014 ).
  • Lai ZW , HanczkoR , BonillaEet al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial . Arthritis Rheum.64 ( 9 ), 2937 – 2946 ( 2012 ).
  • Gu Z , TanW , JiJet al. Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway . Aging (Albany NY)8 ( 5 ), 1102 – 1114 ( 2016 ).
  • Koga T , HedrichCM , MizuiMet al. CaMK4-dependent activation of AKT/mTOR and CREM-alpha underlies autoimmunity-associated Th17 imbalance . J. Clin. Invest.124 ( 5 ), 2234 – 2245 ( 2014 ).
  • Verstovsek S . Therapeutic potential of JAK2 inhibitors . Hematology Am. Soc. Hematol. Educ. Program2009 , 636 – 642 ( 2009 ).
  • Grabiec AM , KorchynskyiO , TakPP , ReedquistKA . Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay . Ann. Rheum. Dis.71 ( 3 ), 424 – 431 ( 2012 ).
  • Grabiec AM , KrauszS , De JagerWet al. Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue . J. Immunol.184 ( 5 ), 2718 – 2728 ( 2010 ).
  • Lewis EC , BlaabjergL , StorlingJet al. The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet beta cells in vivo and in vitro . Mol. Med.17 ( 5–6 ), 369 – 377 ( 2011 ).
  • Munro SK , MitchellMD , PonnampalamAP . Histone deacetylase inhibition by trichostatin A mitigates LPS induced TNFalpha and IL-10 production in human placental explants . Placenta34 ( 7 ), 567 – 573 ( 2013 ).
  • Mishra N , ReillyCM , BrownDR , RuizP , GilkesonGS . Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse . J. Clin. Invest.111 ( 4 ), 539 – 552 ( 2003 ).
  • Salvi V , BosisioD , MitolaS , AndreoliL , TincaniA , SozzaniS . Trichostatin A blocks type I interferon production by activated plasmacytoid dendritic cells . Immunobiology215 ( 9–10 ), 756 – 761 ( 2010 ).
  • Baechler EC , BatliwallaFM , KarypisGet al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus . Proc. Natl Acad. Sci. USA100 ( 5 ), 2610 – 2615 ( 2003 ).
  • Schoggins JW , WilsonSJ , PanisMet al. A diverse range of gene products are effectors of the type I interferon antiviral response . Nature472 ( 7344 ), 481 – 485 ( 2011 ).
  • Hedrich CM , RamakrishnanA , DabitaoD , WangF , RanatungaD , BreamJH . Dynamic DNA methylation patterns across the mouse and human IL10 genes during CD4+ T cell activation; influence of IL-27 . Mol. Immunol.48 ( 1–3 ), 73 – 81 ( 2010 ).
  • Hofmann SR , MollerJ , RauenTet al. Dynamic CpG-DNA methylation of Il10 and Il19 in CD4+ T lymphocytes and macrophages: effects on tissue-specific gene expression . Klin. Padiatr.224 ( 2 ), 53 – 60 ( 2012 ).
  • Hogg N , LaschingerM , GilesK , McdowallA . T-cell integrins: more than just sticking points . J. Cell Sci.116 ( Pt 23 ), 4695 – 4705 ( 2003 ).
  • Quddus J , JohnsonKJ , GavalchinJet al. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice . J. Clin. Invest.92 ( 1 ), 38 – 53 ( 1993 ).
  • Richardson B , PowersD , HooperF , YungRL , O’rourkeK . Lymphocyte function-associated antigen 1 overexpression and T cell autoreactivity . Arthritis Rheum.37 ( 9 ), 1363 – 1372 ( 1994 ).
  • Yung R , PowersD , JohnsonKet al. Mechanisms of drug-induced lupus. II. T cells overexpressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupuslike disease in syngeneic mice . J. Clin. Invest.97 ( 12 ), 2866 – 2871 ( 1996 ).
  • Vinuesa CG , LintermanMA , GoodnowCC , RandallKL . T cells and follicular dendritic cells in germinal center B-cell formation and selection . Immunol. Rev.237 ( 1 ), 72 – 89 ( 2010 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.