438
Views
1
CrossRef citations to date
0
Altmetric
Review

Effects of Prenatal Exposure to Endocrine Disruptors and Toxic Metals on The Fetal Epigenome

, &
Pages 333-350 | Received 02 Sep 2016, Accepted 08 Nov 2016, Published online: 17 Feb 2017

References

  • Perera F , HerbstmanJ . Prenatal environmental exposures, epigenetics, and disease . Reprod. Toxicol.31 ( 3 ), 363 – 373 ( 2011 ).
  • Dolinoy DC , WeidmanJR , JirtleRL . Epigenetic gene regulation: linking early developmental environment to adult disease . Reprod. Toxicol.23 ( 3 ), 297 – 307 ( 2007 ).
  • Wadhwa PD , BussC , EntringerS , SwansonJM . Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms . Semin. Reprod. Med.27 ( 5 ), 358 – 368 ( 2009 ).
  • Barker DJP . The developmental origins of adult disease . J. Am. Coll. Nutr.23 ( Suppl. 6 ), S588 – S595 ( 2004 ).
  • Barker D , ErikssonJ , ForsénT , OsmondC . Fetal origins of adult disease: strength of effects and biological basis . Int. J. Epidemiol.31 ( 6 ), 1235 – 1239 ( 2002 ).
  • Ray PD , YosimA , FryRC . Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges . Front. Genet.5 , 201 ( 2014 ).
  • Sanders AP , SmeesterL , RojasDet al. Cadmium exposure and the epigenome: Exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs . Epigenetics9 ( 2 ), 212 – 221 ( 2014 ).
  • Rojas D , RagerJE , SmeesterLet al. Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes . Toxicol. Sci.143 ( 1 ), 97 – 106 ( 2015 ).
  • Martin EM , FryRC . A cross-study analysis of prenatal exposures to environmental contaminants and the epigenome: support for stress-responsive transcription factor occupancy as a mediator of gene-specific CpG methylation patterning . Environ. Epigenet.2 ( 1 ), dvv011 ( 2016 ).
  • Romani M , PistilloMP , BanelliB . Environmental epigenetics: crossroad between public health, lifestyle, and cancer prevention . Biomed. Res. Int.2015 , 587983 ( 2015 ).
  • Tammen SA , FrisoS , ChoiSW . Epigenetics: the link between nature and nurture . Mol. Aspects Med.34 ( 4 ), 753 – 764 ( 2013 ).
  • Bartel DP . MicroRNAs: target recognition and regulatory functions . Cell136 ( 2 ), 215 – 233 ( 2009 ).
  • Vaissière T , SawanC , HercegZ . Epigenetic interplay between histone modifications and DNA methylation in gene silencing . Mutat. Res.659 ( 1–2 ), 40 – 48 ( 2008 ).
  • Dong E , GuidottiA , GraysonDR , CostaE . Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters . Proc. Natl Acad. Sci. USA104 ( 11 ), 4676 – 4681 ( 2007 ).
  • Kawamoto K , OkinoST , PlaceRFet al. Epigenetic modifications of RASSF1A gene through chromatin remodeling in prostate cancer . Clin. Cancer Res.13 ( 9 ), 2541 – 2548 ( 2007 ).
  • Ünüvar T , BüyükgebizA . Fetal and neonatal endocrine disruptors . J. Clin. Res. Pediatr. Endocrinol.4 ( 2 ), 51 – 60 ( 2012 ).
  • Al-Saleh I , ShinwariN , MashhourA , Mohamed GelD , RabahA . Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women . Int. J. Hyg. Environ. Health214 ( 2 ), 79 – 101 ( 2011 ).
  • Lo C-L , ZhouFC . Environmental alterations of epigenetics prior to the birth . Int. Rev. Neurobiol.115 , 1 – 49 ( 2014 ).
  • Concha G , VoglerG , LezcanoD , NermellB , VahterM . Exposure to inorganic arsenic metabolites during early human development . Toxicol. Sci.44 ( 2 ), 185 – 190 ( 1998 ).
  • Gundacker C , HengstschlagerM . The role of the placenta in fetal exposure to heavy metals . Wein. Med. Wochenschr.162 ( 9–10 ), 201 – 206 ( 2012 ).
  • Straka E , EllingerI , BalthasarCet al. Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters . Toxicology340 , 34 – 42 ( 2016 ).
  • Naujokas MF , AndersonB , AhsanHet al. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem . Environ. Health Perspect.121 ( 3 ), 295 – 302 ( 2013 ).
  • Bailey K , FryRC . Long-term health consequences of prenatal arsenic exposure: links to the genome and the epigenome . Rev. Environ. Health29 ( 1–2 ), 9 – 12 ( 2014 ).
  • Paul S , GiriAK . Epimutagenesis: a prospective mechanism to remediate arsenic-induced toxicity . Environ. Int.81 , 8 – 17 ( 2015 ).
  • Niedzwiecki MM , HallMN , LiuXet al. A dose-response study of arsenic exposure and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults . Environ. Health Perspect.121 ( 11–12 ), 1306 – 1312 ( 2013 ).
  • Price EM , CottonAM , PeñaherreraMS , McfaddenDE , KoborMS , RobinsonW . Different measures of “genome-wide” DNA methylation exhibit unique properties in placental and somatic tissues . Epigenetics7 ( 6 ), 652 – 663 ( 2012 ).
  • Kile ML , BaccarelliA , HoffmanEet al. Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes . Environ. Health Perspect.120 ( 7 ), 1061 – 1066 ( 2012 ).
  • Broberg K , AhmedS , EngstromKet al. Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys . J. Dev. Origins Health Dis.5 ( 4 ), 288 – 298 ( 2014 ).
  • Pilsner JR , HallMN , LiuXet al. Influence of prenatal arsenic exposure and newborn sex on global methylation of cord blood DNA . PLoS ONE7 ( 5 ), e37147 ( 2012 ).
  • Intarasunanont P , NavasumritP , WaraprasitSet al. Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line . Environ. Health11 , 31 ( 2012 ).
  • Koestler DC , Avissar-WhitingM , HousemanEA , KaragasMR , MarsitCJ . Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero . Environ. Health Perspect.121 ( 8 ), 971 – 977 ( 2013 ).
  • Kile ML , HousemanEA , BaccarelliAAet al. Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood . Epigenetics9 ( 5 ), 774 – 782 ( 2014 ).
  • Cardenas A , HousemanEA , BaccarelliAAet al. In utero arsenic exposure and epigenome-wide associations in placenta, umbilical artery, and human umbilical vein endothelial cells . Epigenetics10 ( 11 ), 1054 – 1063 ( 2015 ).
  • Green BB , KaragasMR , PunshonTet al. Epigenome-wide assessment of DNA methylation in the placenta and arsenic exposure in the New Hampshire Birth Cohort Study (USA) . Environ. Health Perspect.124 ( 8 ), 1253 – 1260 ( 2016 ).
  • Drobna Z , MartinE , KimKSet al. Analysis of maternal polymorphisms in arsenic (+3 oxidation state)-methyltransferase AS3MT and fetal sex in relation to arsenic metabolism and infant birth outcomes: Implications for risk analysis . Reprod. Toxicol.61 , 28 – 38 ( 2016 ).
  • Pilsner JR , LiuX , AhsanHet al. Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults . Am. J. Clin. Nutr.86 ( 4 ), 1179 – 1186 ( 2007 ).
  • Li Q , KappilMA , LiAet al. Exploring the associations between microRNA expression profiles and environmental pollutants in human placenta from the National Children’s Study (NCS) . Epigenetics10 ( 9 ), 793 – 802 ( 2015 ).
  • Rager JE , BaileyKA , SmeesterLet al. Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood . Environ. Mol. Mutagen.55 ( 3 ), 196 – 208 ( 2014 ).
  • ATSDR . Toxicological profile for cadmium ( 2012 ). www.atsdr.cdc.gov/toxprofiles/tp.asp?id=48&tid=15
  • Arbuckle TE , LiangCL , MorissetA-Set al. Maternal and fetal exposure to cadmium, lead, manganese and mercury: the MIREC study . Chemosphere163 , 270 – 282 ( 2016 ).
  • Gardner RM , KipplerM , TofailFet al. Environmental exposure to metals and children’s growth to age 5 years: a prospective cohort study . Am. J. Epidemiol.177 ( 12 ), 1356 – 1367 ( 2013 ).
  • Kippler M , TofailF , GardnerRet al. Maternal cadmium exposure during pregnancy and size at birth: a prospective cohort study . Environ. Health. Perspect.120 ( 2 ), 284 – 289 ( 2012 ).
  • Kippler M , BottaiM , GeorgiouVet al. Impact of prenatal exposure to cadmium on cognitive development at preschool age and the importance of selenium and iodine . Eur. J. Epidemiol. doi:10.1007/s10654-016-0151-9 ( 2016 ) ( Epub ahead of print ).
  • Boeke CE , BaccarelliA , KleinmanKPet al. Gestational intake of methyl donors and global LINE-1 DNA methylation in maternal and cord blood: prospective results from a folate-replete population . Epigenetics7 ( 3 ), 253 – 260 ( 2012 ).
  • Hossain MB , VahterM , ConchaG , BrobergK . Low-level environmental cadmium exposure is associated with DNA hypomethylation in Argentinean women . Environ. Health Perspect.120 ( 6 ), 879 – 884 ( 2012 ).
  • Kippler M , EngstromK , MlakarSJet al. Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight . Epigenetics8 ( 5 ), 494 – 503 ( 2013 ).
  • Vidal AC , SemenovaV , DarrahTet al. Maternal cadmium, iron and zinc levels, DNA methylation and birth weight . BMC Pharmacol. Toxicol.16 , 20 ( 2015 ).
  • Mohanty AF , FarinFM , BammlerTKet al. Infant sex-specific placental cadmium and DNA methylation associations . Environ. Res.13874 – 81 ( 2015 ).
  • Voigtlander T , GuptaSK , ThumSet al. MicroRNAs in serum and bile of patients with primary sclerosing cholangitis and/or cholangiocarcinoma . PLoS ONE10 ( 10 ), e0139305 ( 2015 ).
  • Fieuw A , KumpsC , SchrammAet al. Identification of a novel recurrent 1q42.2–1qter deletion in high risk MYCN single copy 11q deleted neuroblastomas . Int. J. Cancer130 ( 11 ), 2599 – 2606 ( 2012 ).
  • Brooks SA , MartinE , SmeesterL , GraceMR , BoggessK , FryRC . miRNAs as common regulators of the transforming growth factor (TGF)-β pathway in the preeclamptic placenta and cadmium-treated trophoblasts: Links between the environment, the epigenome and preeclampsia . Food Chem. Toxicol.98 ( Pt A ), 50 – 57 ( 2016 ).
  • Laine JE , RayP , BodnarWet al. Placental cadmium levels are associated with increased preeclampsia risk . PLoS ONE10 ( 9 ), e0139341 ( 2015 ).
  • Hanna-Attisha M , LachanceJ , SadlerRC , Champney SchneppA . Elevated blood lead levels in children associated with the flint drinking water crisis: a spatial analysis of risk and public health response . Am. J. Public Health106 ( 2 ), 283 – 290 ( 2016 ).
  • Kennedy C , YardE , DignamTet al. Blood lead levels among children aged <6 Years – Flint, Michigan, 2013–2016 . MMWR Morb. Mortal. Wkly Rep.65 ( 25 ), 650 – 654 ( 2016 ).
  • Clark S , GalkeW , SuccopPet al. Effects of HUD-supported lead hazard control interventions in housing on children’s blood lead . Environ. Res.111 ( 2 ), 301 – 311 ( 2011 ).
  • Tsoi MF , CheungCL , CheungTT , CheungBM . Continual decrease in blood lead level in Americans: United States National Health Nutrition and Examination Survey 1999–2014 . Am. J. Med.129 ( 11 ), 1213 – 1218 ( 2016 ).
  • Bellinger DC . Very low lead exposures and children’s neurodevelopment . Curr. Opin. Pediatr.20 ( 2 ), 172 – 177 ( 2008 ).
  • Pilsner JR , HuH , EttingerAet al. Influence of prenatal lead exposure on genomic methylation of cord blood DNA . Environ. Health Perspect.117 ( 9 ), 1466 – 1471 ( 2009 ).
  • Goodrich JM , SanchezBN , DolinoyDCet al. Quality control and statistical modeling for environmental epigenetics: a study on in utero lead exposure and DNA methylation at birth . Epigenetics10 ( 1 ), 19 – 30 ( 2015 ).
  • Gonzalez-Cossio T , PetersonKE , SaninLHet al. Decrease in birth weight in relation to maternal bone-lead burden . Pediatrics100 ( 5 ), 856 – 862 ( 1997 ).
  • Sen A , CingolaniP , SenutMCet al. Lead exposure induces changes in 5-hydroxymethylcytosine clusters in CpG islands in human embryonic stem cells and umbilical cord blood . Epigenetics10 ( 7 ), 607 – 621 ( 2015 ).
  • Sen A , HerediaN , SenutM-Cet al. Early life lead exposure causes gender-specific changes in the DNA methylation profile of DNA extracted from dried blood spots . Epigenomics7 ( 3 ), 379 – 393 ( 2015 ).
  • Sen A , HerediaN , SenutMCet al. Multigenerational epigenetic inheritance in humans: DNA methylation changes associated with maternal exposure to lead can be transmitted to the grandchildren . Sci. Rep.5 , 14466 ( 2015 ).
  • Pietrzykowski AZ , SpijkerS . Impulsivity and comorbid traits: a multi-step approach for finding putative responsible microRNAs in the amygdala . Front. Neurosci.8 , 389 ( 2014 ).
  • Bose-O’reilly S , MccartyKM , StecklingN , LettmeierB . Mercury exposure and children’s health . Curr. Probl. Pediatr. Adolesc. Health Care40 ( 8 ), 186 – 215 ( 2010 ).
  • Mahaffey KR . Mercury exposure: medical and public health issues . Trans. Am. Clin. Climatol. Assoc.116 , 127 – 154 ( 2005 ).
  • Bakulski KM , LeeH , FeinbergJIet al. Prenatal mercury concentration is associated with changes in DNA methylation at TCEANC2 in newborns . Int. J. Epidemiol.44 ( 4 ), 1249 – 1262 ( 2015 ).
  • Maccani JZ , KoestlerDC , LesterBet al. Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes . Environ. Health Perspect.123 ( 7 ), 723 – 729 ( 2015 ).
  • Lee H , HanS , KwonCS , LeeD . Biogenesis and regulation of the let-7 miRNAs and their functional implications . Protein Cell7 ( 2 ), 100 – 113 ( 2016 ).
  • Iavicoli I , FontanaL , BergamaschiA . The effects of metals as endocrine disruptors . J. Toxicol. Environ. Health, Part B12 ( 3 ), 206 – 223 ( 2009 ).
  • Gauderat G , Picard-HagenN , ToutainPLet al. Bisphenol A glucuronide deconjugation is a determining factor of fetal exposure to bisphenol A . Environ. Int.86 , 52 – 59 ( 2016 ).
  • Vizcaino E , GrimaltJO , Fernández-SomoanoA , TardonA . Transport of persistent organic pollutants across the human placenta . Environ. Int.65 , 107 – 115 ( 2014 ).
  • Zhao Y , RuanX , LiY , YanM , QinZ . Polybrominated diphenyl ethers (PBDEs) in aborted human fetuses and placental transfer during the first trimester of pregnancy . Environ. Sci. Technol.47 ( 11 ), 5939 – 5946 ( 2013 ).
  • Silva MJ , ReidyJA , HerbertAR , PreauJLJr , NeedhamLL , CalafatAM . Detection of phthalate metabolites in human amniotic fluid . Bull. Environ. Contam. Toxicol.72 ( 6 ), 1226 – 1231 ( 2004 ).
  • California Environmental Protection Agency . Toxicological Profile for Bisphenol A ( 2009 ). www.opc.ca.gov/webmaster/ftp/project_pages/MarineDebris_OEHHA_ToxProfiles/Bisphenol%20A%20Final.pdf
  • Arbuckle TE , DavisK , MarroLet al. Phthalate and bisphenol A exposure among pregnant women in Canada – results from the MIREC study . Environ. Int.6855 – 65 ( 2014 ).
  • Faulk C , KimJH , JonesTRet al. Bisphenol A-associated alterations in genome-wide DNA methylation and gene expression patterns reveal sequence-dependent and non-monotonic effects in human fetal liver . Environ. Epigenet.1 ( 1 ), dvv006 ( 2015 ).
  • Faulk C , KimJH , AndersonOSet al. Detection of differential DNA methylation in repetitive DNA of mice and humans perinatally exposed to bisphenol A . Epigenetics11 ( 7 ), 489 – 500 ( 2016 ).
  • Rubin BS , ParanjpeM , DafonteTet al. Perinatal BPA exposure alters body weight and composition in a dose specific and sex specific manner: the addition of peripubertal exposure exacerbates adverse effects in female mice . Reprod. Toxicol. doi:10.1016/j.reprotox.2016.07.020 ( 2016 ) ( Epub ahead of print ).
  • Kim JH , SartorMA , RozekLSet al. Perinatal bisphenol A exposure promotes dose-dependent alterations of the mouse methylome . BMC Genomics15 , 30 ( 2014 ).
  • Angle BM , DoRP , PonziDet al. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation . Reprod. Toxicol.42 , 256 – 268 ( 2013 ).
  • Nahar MS , LiaoC , KannanK , HarrisC , DolinoyDC . In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus . Chemosphere124 , 54 – 60 ( 2015 ).
  • Huen K , YousefiP , BradmanAet al. Effects of age, sex, and persistent organic pollutants on DNA methylation in children . Environ. Mol. Mutagen.55 ( 3 ), 209 – 222 ( 2014 ).
  • Atsdr . Toxicological Profile for DDT, DDE, and DDD ( 2002 ). www.atsdr.cdc.gov/toxprofiles/tp.asp?id=81&tid=20
  • Kezios KL , LiuX , CirilloPMet al. Dichlorodiphenyltrichloroethane (DDT), DDT metabolites and pregnancy outcomes . Reprod. Toxicol.35 , 156 – 164 ( 2013 ).
  • Torres-Sánchez L , SchnaasL , RothenbergSJet al. Prenatal p, p´-DDE exposure and neurodevelopment among children 3.5–5 years of age . Environ. Health Perspect.121 ( 2 ), 263 – 268 ( 2013 ).
  • Wang RY , JainRB , WolkinAF , RubinCH , NeedhamLL . Serum concentrations of selected persistent organic pollutants in a sample of pregnant females and changes in their concentrations during gestation . Environ. Health Perspect.117 ( 8 ), 1244 – 1249 ( 2009 ).
  • Lopez-Espinosa MJ , MurciaM , IniguezCet al. Organochlorine compounds and ultrasound measurements of fetal growth in the INMA cohort (Spain) . Environ. Health Perspect.124 ( 1 ), 157 – 163 ( 2016 ).
  • Torres-Sanchez L , RothenbergSJ , SchnaasLet al. In utero p, p′-DDE exposure and infant neurodevelopment: a perinatal cohort in Mexico . Environ. Health Perspect.115 ( 3 ), 435 – 439 ( 2007 ).
  • Gaspar FW , HarleyKG , KogutKet al. Prenatal DDT and DDE exposure and child IQ in the CHAMACOS cohort . Environ. Int.85 , 206 – 212 ( 2015 ).
  • Kristensen SL , Ramlau-HansenCH , ErnstEet al. Prenatal exposure to persistent organochlorine pollutants and female reproductive function in young adulthood . Environ. Int.92 – 93 , 366 – 372 ( 2016 ).
  • Hansen S , StromM , OlsenSFet al. Prenatal exposure to persistent organic pollutants and offspring allergic sensitization and lung function at 20 years of age . Clin. Exp. Allergy46 ( 2 ), 329 – 336 ( 2016 ).
  • Monteagudo C , Mariscal-ArcasM , Heras-GonzalezL , Ibanez-PeinadoD , RivasA , Olea-SerranoF . Effects of maternal diet and environmental exposure to organochlorine pesticides on newborn weight in Southern Spain . Chemosphere156 , 135 – 142 ( 2016 ).
  • Kappil MA , LiQ , LiAet al. In utero exposures to environmental organic pollutants disrupt epigenetic marks linked to fetoplacental development . Environ. Epigenet.2 ( 1 ), pii: dvv013 ( 2016 ).
  • Siddiqi MA , LaessigRH , ReedKD . Polybrominated diphenyl ethers (PBDEs): new pollutants-old diseases . Clin. Med. Res.1 ( 4 ), 281 – 290 ( 2003 ).
  • Linares V , BellesM , DomingoJL . Human exposure to PBDE and critical evaluation of health hazards . Arch. Toxicol.89 ( 3 ), 335 – 356 ( 2015 ).
  • Dao T , HongX , WangX , TangWY . Aberrant 5′-CpG methylation of cord blood TNFalpha associated with maternal exposure to polybrominated diphenyl ethers . PLoS ONE10 ( 9 ), e0138815 ( 2015 ).
  • ATSDR . Toxicological profile for polychlorinated biphenyls (PCBs) ( 2000 ). www.atsdr.cdc.gov/toxprofiles/tp.asp?id=142&tid=26
  • Wang RY , JainRB , WolkinAF , RubinCH , NeedhamLL . Serum concentrations of selected persistent organic pollutants in a sample of pregnant females and changes in their concentrations during gestation . Environ. Health Perspect.117 ( 8 ), 1244 – 1249 ( 2009 ).
  • ATSDR . Toxicological profile for diethyl phthalate ( 1995 ). www.atsdr.cdc.gov/toxprofiles/tp.asp?id=603&tid=112
  • ATSDR . Toxicological profile for di-n-octylphthalate ( 1997 ). www.atsdr.cdc.gov/toxprofiles/TP.asp?id=973&tid=204
  • ATSDR . Toxicological profile for di-n-butyl phthalate ( 2001 ). www.atsdr.cdc.gov/toxprofiles/TP.asp?id=859&tid=167
  • ATSDR . Toxicological profile for di(2-ethylhexyl)phthalate ( 2002 ). www.atsdr.cdc.gov/toxprofiles/tp.asp?id=684&tid=65
  • Mose T , KnudsenLE , HedegaardM , MortensenGK . Transplacental transfer of monomethyl phthalate and mono (2-ethylhexyl) phthalate in a human placenta perfusion system . Int. J. Toxicol.26 ( 3 ), 221 – 229 ( 2007 ).
  • Johns LE , CooperGS , GaliziaA , MeekerJD . Exposure assessment issues in epidemiology studies of phthalates . Environ. Int.85 , 27 – 39 ( 2015 ).
  • Huen K , CalafatAM , BradmanA , YousefiP , EskenaziB , HollandN . Maternal phthalate exposure during pregnancy is associated with DNA methylation of LINE-1 and Alu repetitive elements in Mexican-American children . Environ. Res.148 , 55 – 62 ( 2016 ).
  • Zhao Y , ShiHJ , XieCM , ChenJ , LaueH , ZhangYH . Prenatal phthalate exposure, infant growth, and global DNA methylation of human placenta . Environ. Mol. Mutagen.56 ( 3 ), 286 – 292 ( 2015 ).
  • Larocca J , BinderA , McelrathTF , MichelsKB . The impact of first trimester phthalate and phenol exposure on IGF2/H19 genomic imprinting and birth outcomes . Environ. Res.133 , 396 – 406 ( 2014 ).
  • Larocca J , BinderAM , McelrathTF , MichelsKB . First-Trimester urine concentrations of phthalate metabolites and phenols and placenta miRNA expression in a cohort of U.S. women . Environ. Health Perspect.124 ( 3 ), 380 – 387 ( 2016 ).
  • Fisher M , ArbuckleTE , LiangCLet al. Concentrations of persistent organic pollutants in maternal and cord blood from the maternal-infant research on environmental chemicals (MIREC) cohort study . Environ. Health15 , 59 ( 2016 ).
  • Cardenas A , KoestlerDC , HousemanEAet al. Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero . Epigenetics10 ( 6 ), 508 – 515 ( 2015 ).
  • Vilahur N , BustamanteM , ByunH-Met al. Prenatal exposure to mixtures of xenoestrogens and repetitive element DNA methylation changes in human placenta . Environ. Int.71 , 81 – 87 ( 2014 ).
  • Vilahur N , BustamanteM , MoralesEet al. Prenatal exposure to mixtures of xenoestrogens and genome-wide DNA methylation in human placenta . Epigenomics8 ( 1 ), 43 – 54 ( 2016 ).
  • Rager JE , YosimA , FryRC . Prenatal exposure to arsenic and cadmium impacts infectious disease-related genes within the glucocorticoid receptor signal transduction pathway . Int. J. Mol. Sci.15 ( 12 ), 22374 – 22391 ( 2014 ).
  • Shanle EK , XuW . Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action . Chem. Res. Toxicol.24 ( 1 ), 6 – 19 ( 2011 ).
  • Fernandez MF , Aguilar-GarduñoC , Molina-MolinaJM , ArrebolaJP , OleaN . The total effective xenoestrogen burden, a biomarker of exposure to xenoestrogen mixtures, is predicted by the (anti)estrogenicity of its components . Reprod. Tox.26 ( 1 ), 8 – 12 ( 2008 ).
  • Casati L , SendraR , PolettiA , Negri-CesiP , CelottiF . Androgen receptor activation by polychlorinated biphenyls: epigenetic effects mediated by the histone demethylase Jarid1b . Epigenetics8 ( 10 ), 1061 – 1068 ( 2013 ).
  • Takiguchi M , AchanzarWE , QuW , LiG , WaalkesMP . Effects of cadmium on DNA-(cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation . Exp. Cell Res.286 ( 2 ), 355 – 365 ( 2003 ).
  • Liu S , JiangJ , LiL , AmatoNJ , WangZ , WangY . Arsenite targets the zinc finger domains of Tet proteins and inhibits Tet-mediated oxidation of 5-methylcytosine . Environ. Sci. Technol.49 ( 19 ), 11923 – 11931 ( 2015 ).
  • Casati L , SendraR , SibiliaV , CelottiF . Endocrine disrupters: the new players able to affect the epigenome . Front. Cell Dev. Biol.3 , 37 ( 2015 ).
  • Bommarito P , FryR . Developmental windows of susceptibility to inorganic arsenic: a survey of current toxicologic and epidemiologic data . Toxicol. Res. (Cambridge, U.K.)5 ( 6 ), 1503 – 1511 ( 2016 ).
  • Waalkes MP , LiuJ , DiwanBA . Transplacental arsenic carcinogenesis in mice . Toxicol. Appl. Pharmacol.222 ( 3 ), 271 – 280 ( 2007 ).
  • Waalkes MP , WardJM , LiuJ , DiwanBA . Transplacental carcinogenicity of inorganic arsenic in the drinking water: induction of hepatic, ovarian, pulmonary, and adrenal tumors in mice . Toxicol. Appl. Pharmacol.186 ( 1 ), 7 – 17 ( 2003 ).
  • Manikkam M , TraceyR , Guerrero-BosagnaC , SkinnerMK . Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations . PLoS ONE8 ( 1 ), e55387 ( 2013 ).
  • Faulk C , DolinoyDC . Timing is everything: the when and how of environmentally induced changes in the epigenome of animals . Epigenetics6 ( 7 ), 791 – 797 ( 2011 ).
  • Neier K , MarchlewiczEH , DolinoyDC , PadmanabhanV . Assessing human health risk to endocrine disrupting chemicals: a focus on prenatal exposures and oxidative stress . Endocr. Disruptors (Austin)3 ( 1 ), e1069916 ( 2015 ).
  • Skinner MK , ManikkamM , Guerrero-BosagnaC . Epigenetic transgenerational actions of endocrine disruptors . Reprod. Toxicol.31 ( 3 ), 337 – 343 ( 2011 ).
  • Cantonwine DE , FergusonKK , MukherjeeB , McelrathTF , MeekerJD . Urinary bisphenol A levels during pregnancy and risk of preterm birth . Environ. Health Perspect.123 ( 9 ), 895 – 901 ( 2015 ).
  • Harley KG , SchallRA , ChevrierJet al. Prenatal and postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort . Environ. Health Perspect.121 ( 4 ), 514 – 520 ( 2013 ).
  • Engstrom A , MichaelssonK , VahterM , JulinB , WolkA , AkessonA . Associations between dietary cadmium exposure and bone mineral density and risk of osteoporosis and fractures among women . Bone50 ( 6 ), 1372 – 1378 ( 2012 ).
  • Kippler M , WagatsumaY , RahmanAet al. Environmental exposure to arsenic and cadmium during pregnancy and fetal size: a longitudinal study in rural Bangladesh . Reprod. Toxicol.34 ( 4 ), 504 – 511 ( 2012 ).
  • Rosenfeld CS . Sex-specific placental responses in fetal development . Endocrinology156 ( 10 ), 3422 – 3434 ( 2015 ).
  • Martin E , SmeesterL , BommaritoPet al. Sexual epigenetic dimorphism in the human placenta: Implications for susceptibility to stressors during the prenatal period . Epigenomics7 , 96 ( 2016 ).
  • Cvitic S , LongtineMS , HacklHet al. The human placental sexome differs between trophoblast epithelium and villous vessel endothelium . PLoS ONE8 ( 10 ), e79233 ( 2013 ).
  • Sood R , ZehnderJL , DruzinML , BrownPO . Gene expression patterns in human placenta . Proc. Natl Acad. Sci. USA103 ( 14 ), 5478 – 5483 ( 2006 ).
  • Saif Z , HodylNA , StarkMJet al. Expression of eight glucocorticoid receptor isoforms in the human preterm placenta vary with fetal sex and birthweight . Placenta36 ( 7 ), 723 – 730 ( 2015 ).
  • Saif Z , HodylNA , HobbsEet al. The human placenta expresses multiple glucocorticoid receptor isoforms that are altered by fetal sex, growth restriction and maternal asthma . Placenta35 ( 4 ), 260 – 268 ( 2014 ).
  • Gabory A , JammesH , DandoloL . The H19 locus: role of an imprinted non-coding RNA in growth and development . Bioessays32 ( 6 ), 473 – 480 ( 2010 ).
  • Raveh E , MatoukIJ , GilonM , HochbergA . The H19 Long non-coding RNA in cancer initiation, progression and metastasis – a proposed unifying theory . Mol. Cancer14 , 184 ( 2015 ).
  • Bergman D , HaljeM , NordinM , EngstromW . Insulin-like growth factor 2 in development and disease: a mini-review . Gerontology59 ( 3 ), 240 – 249 ( 2013 ).
  • Murphy SK , HuangZ , HoyoC . Differentially methylated regions of imprinted genes in prenatal, perinatal and postnatal human tissues . PLoS ONE7 ( 7 ), e40924 ( 2012 ).
  • Kappil M , LambertiniL , ChenJ . Environmental influences on genomic imprinting . Curr. Environ. Health Rep.2 ( 2 ), 155 – 162 ( 2015 ).
  • Anderson OS , SantKE , DolinoyDC . Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation . J. Nutr. Biochem.23 ( 8 ), 853 – 859 ( 2012 ).
  • Chango A , PogribnyIP . Considering maternal dietary modulators for epigenetic regulation and programming of the fetal epigenome . Nutrients7 ( 4 ), 2748 – 2770 ( 2015 ).
  • Niedzwiecki MM , LiuX , HallMNet al. Sex-specific associations of arsenic exposure with global DNA methylation and hydroxymethylation in leukocytes: results from two studies in Bangladesh . Cancer Epidemiol. Biomarkers Prev.24 ( 11 ), 1748 – 1757 ( 2015 ).
  • Howe CG , LiuX , HallMNet al. Sex-specific associations between one-carbon metabolism indices and posttranslational histone modifications in arsenic-exposed Bangladeshi adults . Cancer Epidemiol. Biomarkers Prev. doi:10.1158/1055-9965.epi-16-0202 ( 2016 ) ( Epub ahead of print ).
  • Pilsner JR , LiuX , AhsanHet al. Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions . Environ. Health Perspect.117 ( 2 ), 254 – 260 ( 2009 ).
  • Gamble MV , LiuX , AhsanHet al. Folate and arsenic metabolism: a double-blind, placebo-controlled folic acid-supplementation trial in Bangladesh . Am. J. Clin. Nutr.84 ( 5 ), 1093 – 1101 ( 2006 ).
  • Minguez-Alarcon L , GaskinsAJ , ChiuYHet al. Dietary folate intake and modification of the association of urinary bisphenol A concentrations with in vitro fertilization outcomes among women from a fertility clinic . Reprod. Toxicol.65 , 104 – 112 ( 2016 ).
  • Johns LE , FergusonKK , MeekerJD . Relationships between urinary phthalate metabolite and bisphenol A concentrations and vitamin D levels in U.S. adults: National Health and Nutrition Examination Survey (NHANES), 2005–2010 . J. Clin. Endocrinol. Metab.101 ( 11 ), 4062 – 4069 ( 2016 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.