1,771
Views
1
CrossRef citations to date
0
Altmetric
Review

Contrasting The Effects of Intra-Uterine Smoking and One-Carbon Micronutrient Exposures on Offspring DNA Methylation

&
Pages 351-367 | Received 07 Nov 2016, Accepted 22 Dec 2016, Published online: 17 Feb 2017

References

  • Bibikova M , BarnesB , TsanCet al. High density DNA methylation array with single CpG site resolution . Genomics98 ( 4 ), 288 – 295 ( 2011 ).
  • Moritsugu KP . The 2006 Report of the Surgeon General: the health consequences of involuntary exposure to tobacco smoke . Am. J. Prev. Med.32 ( 6 ), 542 – 543 ( 2007 ).
  • Lee KW , PausovaZ . Cigarette smoking and DNA methylation . Front. Genet.4 ( 132 ) ( 2013 ).
  • Suter MA , AndersAM , AagaardKM . Maternal smoking as a model for environmental epigenetic changes affecting birthweight and fetal programming . Mol. Hum. Reprod.19 ( 1 ), 1 – 6 ( 2013 ).
  • Joubert BR , FelixJF , YousefiPet al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis . Am. J. Hum. Genet.98 ( 4 ), 680 – 696 ( 2016 ).
  • Black RE , AllenLH , BhuttaZAet al. Maternal and child undernutrition: global and regional exposures and health consequences . Lancet371 ( 9608 ), 243 – 260 ( 2008 ).
  • Anderson OS , SantKE , DolinoyDC . Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation . J. Nutr. Biochem.23 ( 8 ), 853 – 859 ( 2012 ).
  • Van Mil NH , Bouwland-BothMI , StolkLet al. Determinants of maternal pregnancy one-carbon metabolism and newborn human DNA methylation profiles . Reproduction148 ( 6 ), 581 – 592 ( 2014 ).
  • Alexander M , KarmausW , HollowayJWet al. Effect of GSTM2–5 polymorphisms in relation to tobacco smoke exposures on lung function growth: a birth cohort study . BMC Pulm. Med.13 , 56 ( 2013 ).
  • Bauer T , TrumpS , IshaqueNet al. Environment-induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children . Mol. Syst. Biol.12 ( 3 ), 861 ( 2016 ).
  • Breton CV , SiegmundKD , JoubertBRet al. Prenatal tobacco smoke exposure is associated with childhood DNA CpG methylation . PLoS ONE9 ( 6 ), e99716 ( 2014 ).
  • Chhabra D , SharmaS , KhoATet al. Fetal lung and placental methylation is associated with in utero nicotine exposure . Epigenetics9 ( 11 ), 1473 – 1484 ( 2014 ).
  • De Vocht F , SimpkinAJ , RichmondRC , ReltonC , TillingK . Assessment of offspring DNA methylation across the lifecourse associated with prenatal maternal smoking using Bayesian Mixture Modelling . Int. J. Environ. Res. Public Health12 ( 11 ), 14461 – 14476 ( 2015 ).
  • Ivorra C , FragaMF , BayonGFet al. DNA methylation patterns in newborns exposed to tobacco in utero . J. Transl. Med.13 , 25 ( 2015 ).
  • Joubert BR , HabergSE , NilsenRMet al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy . Environ. Health Perspect.120 ( 10 ), 1425 – 1431 ( 2012 ).
  • Joubert BR , HabergSE , BellDAet al. Maternal smoking and DNA methylation in newborns: in utero effect or epigenetic inheritance? Cancer Epidemiol. Biomarkers Prev. 23 ( 6 ), 1007 – 1017 ( 2014 ).
  • Kupers LK , XuX , JankipersadsingSAet al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring . Int. J. Epidemiol.44 ( 4 ), 1224 – 1237 ( 2015 ).
  • Ladd-Acosta C , ShuC , LeeBKet al. Presence of an epigenetic signature of prenatal cigarette smoke exposure in childhood . Environ. Res.144 ( Pt A ), 139 – 148 ( 2016 ).
  • Lee KW , RichmondR , HuPet al. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age . Environ. Health. Perspect.123 ( 2 ), 193 – 199 ( 2015 ).
  • Maccani JZ , KoestlerDC , HousemanEA , MarsitCJ , KelseyKT . Placental DNA methylation alterations associated with maternal tobacco smoking at the RUNX3 gene are also associated with gestational age . Epigenomics5 ( 6 ), 619 – 630 ( 2013 ).
  • Markunas CA , XuZ , HarlidSet al. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy . Environ. Health Perspect.122 ( 10 ), 1147 – 1153 ( 2014 ).
  • Ray MA , TongX , LockettGA , ZhangHM , KarmausWJJ . An efficient approach to screening epigenome-wide data . Biomed. Res. Int.2016 , 2615348 ( 2016 ).
  • Reese SE , ZhaoS , WuMCet al. DNA methylation score as a biomarker in newborns for sustained maternal smoking during pregnancy . Environ. Health Perspect. doi:10.1289/EHP333 ( 2016 ) ( Epub ahead of print ).
  • Richmond RC , SimpkinAJ , WoodwardGet al. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC) . Hum. Mol. Genet.24 ( 8 ), 2201 – 2217 ( 2015 ).
  • Rzehak P , SafferyR , ReischlEet al. Maternal smoking during pregnancy and DNA-methylation in children at age 5.5 years: epigenome-wide-analysis in the European Childhood Obesity Project (CHOP)-study . PLoS ONE11 ( 5 ), e0155554 ( 2016 ).
  • Sanders AP , SmeesterL , RojasDet al. Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs . Epigenetics9 ( 2 ), 212 – 221 ( 2014 ).
  • Suderman M , PappasJJ , BorgholNet al. Lymphoblastoid cell lines reveal associations of adult DNA methylation with childhood and current adversity that are distinct from whole blood associations . Int. J. Epidemiol.44 ( 4 ), 1331 – 1340 ( 2015 ).
  • Suter M , MaJ , HarrisAet al. Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression . Epigenetics6 ( 11 ), 1284 – 1294 ( 2011 ).
  • Wang IJ , ChenSL , LuTP , ChuangEY , ChenPC . Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis . Clin. Exp. Allergy43 ( 5 ), 535 – 543 ( 2013 ).
  • Xu Z , NiuL , LiL , TaylorJA . ENmix: a novel background correction method for Illumina HumanMethylation450 BeadChip . Nucleic Acids Res.44 ( 3 ), e20 ( 2016 ).
  • Yang SI , KimBJ , LeeSYet al. Prenatal Particulate Matter/Tobacco Smoke Increases Infants’ Respiratory Infections: COCOA Study . Allergy Asthma Immunol. Res.7 ( 6 ), 573 – 582 ( 2015 ).
  • Ray MA , TongX , LockettGA , ZhangH , KarmausWJ . An efficient approach to screening epigenome-wide data . Biomed. Res. Int.2016 , 2615348 ( 2016 ).
  • Houseman EA , AccomandoWP , KoestlerDCet al. DNA methylation arrays as surrogate measures of cell mixture distribution . BMC Bioinformatics13 , 86 ( 2012 ).
  • Denison MS , NagySR . Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals . Annu. Rev. Pharmacol. Toxicol.43 , 309 – 334 ( 2003 ).
  • Yoon D , KimYJ , CuiWYet al. Large-scale genome-wide association study of Asian population reveals genetic factors in FRMD4A and other loci influencing smoking initiation and nicotine dependence . Hum. Genet.131 ( 6 ), 1009 – 1021 ( 2012 ).
  • Zeilinger S , KuhnelB , KloppNet al. Tobacco smoking leads to extensive genome-wide changes in DNA methylation . PLoS ONE8 ( 5 ), e63812 ( 2013 ).
  • Joehanes R , JustAC , MarioniREet al. Epigenetic signatures of cigarette smoking . Circ. Cardiovasc. Genet.9 ( 5 ), 436 – 447 ( 2016 ).
  • Monick MM , BeachSR , PlumeJet al. Coordinated changes in AHRR methylation in lymphoblasts and pulmonary macrophages from smokers . Am. J. Med. Genet. B Neuropsychiatr. Genet.159B ( 2 ), 141 – 151 ( 2012 ).
  • Suter M , AbramoviciA , ShowalterLet al. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression . Metabolism59 ( 10 ), 1481 – 1490 ( 2010 ).
  • Shenker NS , PolidoroS , Van VeldhovenKet al. Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking . Hum. Mol. Genet.22 ( 5 ), 843 – 851 ( 2013 ).
  • Zudaire E , CuestaN , MurtyVet al. The aryl hydrocarbon receptor repressor is a putative tumor suppressor gene in multiple human cancers . J. Clin. Invest.118 ( 2 ), 640 – 650 ( 2008 ).
  • Teschendorff AE , YangZ , WongAet al. Correlation of smoking-associated DNA methylation changes in buccal cells with DNA methylation changes in epithelial cancer . JAMA Oncol.1 ( 4 ), 476 – 485 ( 2015 ).
  • Cnattingius S . The epidemiology of smoking during pregnancy: smoking prevalence, maternal characteristics, and pregnancy outcomes . Nicotine Tob. Res.6 ( Suppl. 2 ), S125 – S140 ( 2004 ).
  • Amarasekera M , MartinoD , AshleySet al. Genome-wide DNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57-imprinting regulator in humans . FASEB J.28 ( 9 ), 4068 – 4076 ( 2014 ).
  • Binder AM , MichelsKB . The causal effect of red blood cell folate on genome-wide methylation in cord blood: a Mendelian randomization approach . BMC Bioinformatics14 , 353 ( 2013 ).
  • Emes RD , CliffordH , HaworthKEet al. Antiepileptic drugs and the fetal epigenome . Epilepsia54 ( 1 ), e16 – e19 ( 2013 ).
  • Gonseth S , De SmithAJ , RoyRet al. Genetic contribution to variation in DNA methylation at maternal smoking sensitive loci in exposed neonates . Epigenetics doi:http://dx.doi.org/10.1080/15592294.2016.12096140 ( 2016 ) ( Epub ahead of print ).
  • Joubert BR , Den DekkerHT , FelixJFet al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns . Nat. Commun.7 , 10577 ( 2016 ).
  • Khulan B , CooperWN , SkinnerBMet al. Periconceptional maternal micronutrient supplementation is associated with widespread gender related changes in the epigenome: a study of a unique resource in the Gambia . Hum. Mol. Genet.21 ( 9 ), 2086 – 2101 ( 2012 ).
  • Mozhui K , SmithAK , TylavskyFA . Ancestry dependent DNA methylation and influence of maternal nutrition . PLoS ONE10 ( 3 ), e0118466 ( 2015 ).
  • Rakyan VK , DownTA , BaldingDJ , BeckS . Epigenome-wide association studies for common human diseases . Nat. Rev. Genet.12 ( 8 ), 529 – 541 ( 2011 ).
  • Paul DS , BeckS . Advances in epigenome-wide association studies for common diseases . Trends Mol. Med.20 ( 10 ), 541 – 543 ( 2014 ).
  • Lin X , BartonS , HolbrookJD . How to make DNA methylome wide association studies more powerful . Epigenomics8 ( 8 ), 1117 – 1129 ( 2016 ).
  • Birney E , Davey SmithG , GreallyJM . Epigenome-wide association studies and the interpretation of disease -omics . PLoS Genet.12 ( 6 ), e1006105 ( 2016 ).
  • Cecil CA , WaltonE , SmithRGet al. DNA methylation and substance-use risk: a prospective, genome-wide study spanning gestation to adolescence . Transl. Psychiatry6 ( 12 ), e976 ( 2016 ).
  • Reik W . Stability and flexibility of epigenetic gene regulation in mammalian development . Nature447 ( 7143 ), 425 – 432 ( 2007 ).
  • Czeizel AE , DudasI . Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation . N. Engl. J. Med.327 ( 26 ), 1832 – 1835 ( 1992 ).
  • Waterland RA , MichelsKB . Epigenetic epidemiology of the developmental origins hypothesis . Annu. Rev. Nutr.27 , 363 – 388 ( 2007 ).
  • Relton CL , Davey SmithG . Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment . PLoS Med.7 ( 10 ), e1000356 ( 2010 ).
  • Jaffe AE , IrizarryRA . Accounting for cellular heterogeneity is critical in epigenome-wide association studies . Genome Biol.15 ( 2 ), R31 ( 2014 ).
  • Bauer M , LinselG , FinkBet al. A varying T cell subtype explains apparent tobacco smoking induced single CpG hypomethylation in whole blood . Clin. Epigenetics7 , 81 ( 2015 ).
  • Bauer M , FinkB , ThurmannL , EszlingerM , HerberthG , LehmannI . Tobacco smoking differently influences cell types of the innate and adaptive immune system-indications from CpG site methylation . Clin. Epigenetics7 , 83 ( 2015 ).
  • Bakulski KM , FeinbergJI , AndrewsSVet al. DNA methylation of cord blood cell types: applications for mixed cell birth studies . Epigenetics11 ( 5 ), 354 – 362 ( 2016 ).
  • Houseman EA , MolitorJ , MarsitCJ . Reference-free cell mixture adjustments in analysis of DNA methylation data . Bioinformatics30 ( 10 ), 1431 – 1439 ( 2014 ).
  • Bell JT , PaiAA , PickrellJKet al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines . Genome Biol.12 ( 1 ), R10 ( 2011 ).
  • Gaunt TR , ShihabHA , HemaniGet al. Systematic identification of genetic influences on methylation across the human life course . Genome Biol.1761 ( 2016 ).
  • Chen YA , LemireM , ChoufaniSet al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray . Epigenetics8 ( 2 ), 203 – 209 ( 2013 ).
  • Teschendorff AE , ZhuangJ , WidschwendterM . Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies . Bioinformatics27 ( 11 ), 1496 – 1505 ( 2011 ).
  • Heijmans BT , TobiEW , SteinADet al. Persistent epigenetic differences associated with prenatal exposure to famine in humans . Proc. Natl Acad. Sci. USA105 ( 44 ), 17046 – 17049 ( 2008 ).
  • Waterland RA , KellermayerR , LaritskyEet al. Season of conception in rural Gambia affects DNA methylation at putative human metastable epialleles . PLoS Genet.6 ( 12 ), e1001252 ( 2010 ).
  • Richmond RC , Al-AminA , Davey SmithG , ReltonCL . Approaches for drawing causal inferences from epidemiological birth cohorts: a review . Early Hum. Dev.90 ( 11 ), 769 – 780 ( 2014 ).
  • Lipsitch M , Tchetgen TchetgenE , CohenT . Negative controls: a tool for detecting confounding and bias in observational studies . Epidemiology21 ( 3 ), 383 – 388 ( 2010 ).
  • Davey Smith G . Negative control exposures in epidemiologic studies . Epidemiology23 ( 2 ), 350 – 351 ; author reply 351–352 ( 2012 ).
  • Davey Smith G , EbrahimS . ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?Int. J. Epidemiol.32 ( 1 ), 1 – 22 ( 2003 ).
  • Davey Smith G , HemaniG . Mendelian randomization: genetic anchors for causal inference in epidemiological studies . Hum. Mol. Genet.23 ( R1 ), R89 – R98 ( 2014 ).
  • Davey Smith G , LawlorDA , HarbordR , TimpsonN , DayI , EbrahimS . Clustered environments and randomized genes: a fundamental distinction between conventional and genetic epidemiology . PLoS Med.4 ( 12 ), e352 ( 2007 ).
  • Davey Smith G . Assessing intrauterine influences on offspring health outcomes: can epidemiological studies yield robust findings?Basic Clin. Pharmacol. Toxicol.102 ( 2 ), 245 – 256 ( 2008 ).
  • Price EM , PenaherreraMS , Portales-CasamarEet al. Profiling placental and fetal DNA methylation in human neural tube defects . Epigenet. Chromatin9 , 6 ( 2016 ).
  • Talens RP , BoomsmaDI , TobiEWet al. Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology . FASEB J.24 ( 9 ), 3135 – 3144 ( 2010 ).
  • Richmond RC , HemaniG , TillingK , Davey SmithG , ReltonCL . Challenges and novel approaches for investigating molecular mediation . Hum. Mol. Genet.25 ( R2 ), R149 – R156 ( 2016 ).
  • Relton CL , Davey SmithG . Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease . Int. J. Epidemiol.41 ( 1 ), 161 – 176 ( 2012 ).
  • Morales E , VilahurN , SalasLAet al. Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy . Int. J. Epidemiol.45 ( 5 ), 1644 – 1655 ( 2016 ).
  • Moran S , ArribasC , EstellerM . Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences . Epigenomics8 ( 3 ), 389 – 399 ( 2016 ).