286
Views
1
CrossRef citations to date
0
Altmetric
Review

Challenges for Epigenetic Research in Inflammatory Bowel Diseases

Pages 527-538 | Received 10 Nov 2016, Accepted 27 Feb 2017, Published online: 27 Mar 2017

References

  • Sartor RB . Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis . Nat. Clin. Pract. Gastroenterol. Hepatol.3 ( 7 ), 390 – 407 ( 2006 ).
  • Kellermayer R . Genetic drift. ‘Omics’ as the filtering gateway between environment and phenotype: the inflammatory bowel diseases example . Am. J. Med. Genet. A152A ( 12 ), 3022 – 3025 ( 2010 ).
  • Kappelman MD , MooreKR , AllenJK , CookSF . Recent trends in the prevalence of Crohn’s disease and ulcerative colitis in a commercially insured US Population . Dig. Dis. Sci.58 ( 2 ), 519 – 525 ( 2013 ).
  • Nguyen GC , ChongCA , ChongRY . National estimates of the burden of inflammatory bowel disease among racial and ethnic groups in the United States . J. Crohns Colitis8 ( 4 ), 288 – 295 ( 2014 ).
  • Rocchi A , BenchimolEI , BernsteinCNet al. Inflammatory bowel disease: a Canadian burden of illness review . Can. J. Gastroenterol.26 ( 11 ), 811 – 817 ( 2012 ).
  • Molodecky NA , SoonIS , RabiDMet al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review . Gastroenterology142 ( 1 ), 46 – 54 ( 2012 ).
  • Burisch J , MunkholmP . The epidemiology of inflammatory bowel disease . Scand. J. Gastroenterol.50 ( 8 ), 942 – 951 ( 2015 ).
  • Kaplan GG , NgSC . Understanding and preventing the global increase of inflammatory bowel disease . Gastroenterology152 ( 2 ), 313 – 321 ( 2016 ).
  • Dahlhamer JM , ZammittiEP , WardBW , WheatonAG , CroftJB . Prevalence of inflammatory bowel disease among adults aged ≥18 years - United States, 2015 . MMWR Morb. Mortal. Wkly Rep.65 ( 42 ), 1166 – 1169 ( 2016 ).
  • Gunnarsson C , ChenJ , RizzoJA , LadapoJA , LoflandJH . Direct health care insurer and out-of-pocket expenditures of inflammatory bowel disease: evidence from a US National Survey . Dig. Dis. Sci.57 ( 12 ), 3080 – 3091 ( 2012 ).
  • Park KT , BassD . Inflammatory bowel disease-attributable costs and cost-effective strategies in the United States: a review . Inflamm. Bowel Dis.17 ( 7 ), 1603 – 1609 ( 2011 ).
  • Park MD , BhattacharyaJ , ParkK . Differences in healthcare expenditures for inflammatory bowel disease by insurance status, income, and clinical care setting . PeerJ2 , e587 ( 2014 ).
  • Jergens AE , SimpsonKW . Inflammatory bowel disease in veterinary medicine . Front. Biosci. (Elite Ed.)4 , 1404 – 1419 ( 2012 ).
  • Rubio CA , HubbardGB . Chronic colitis in baboons: similarities with chronic colitis in humans . In Vivo15 ( 1 ), 109 – 116 ( 2001 ).
  • Sonnenberg A , MeltonSD , GentaRM , LewisAD . Absence of focally enhanced gastritis in macaques with idiopathic colitis . Inflamm. Bowel Dis.17 ( 12 ), 2456 – 2461 ( 2011 ).
  • Gozalo A , DagleGE , MontoyaE , WellerRE . Spontaneous terminal ileitis resembling Crohn disease in captive tamarins . J. Med. Primatol.31 ( 3 ), 142 – 146 ( 2002 ).
  • Vazquez-Baeza Y , HydeER , SuchodolskiJS , KnightR . Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks . Nat. Microbiol.1 , 16177 ( 2016 ).
  • Devoss J , DiehlL . Murine models of inflammatory bowel disease (IBD): challenges of modeling human disease . Toxicol. Pathol.42 ( 1 ), 99 – 110 ( 2014 ).
  • Bach JF . The effect of infections on susceptibility to autoimmune and allergic diseases . N. Engl. J. Med.347 ( 12 ), 911 – 920 ( 2002 ).
  • Brun P , GironMC , QesariMet al. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system . Gastroenterology145 ( 6 ), 1323 – 1333 ( 2013 ).
  • Robinson AM , SakkalS , ParkAet al. Mesenchymal stem cells and conditioned medium avert enteric neuropathy and colon dysfunction in guinea pig TNBS-induced colitis . Am. J. Physiol. Gastrointest. Liver Physiol.307 ( 11 ), G1115 – G1129 ( 2014 ).
  • Jenke AC , ZilbauerM . Epigenetics in inflammatory bowel disease . Curr. Opin. Gastroenterol.28 ( 6 ), 577 – 584 ( 2012 ).
  • Waterland RA , GarzaC . Potential mechanisms of metabolic imprinting that lead to chronic disease . Am. J. Clin. Nutr.69 ( 2 ), 179 – 197 ( 1999 ).
  • Kellermayer R . Epigenetics and the developmental origins of inflammatory bowel diseases . Can. J. Gastroenterol.26 ( 12 ), 909 – 915 ( 2012 ).
  • Mir SA , Nagy-SzakalD , DowdSE , SzigetiRG , SmithCW , KellermayerR . Prenatal methyl-donor supplementation augments colitis in young adult mice . PLoS ONE8 ( 8 ), e73162 ( 2013 ).
  • Gevers D , KugathasanS , DensonLAet al. The treatment-naive microbiome in new-onset Crohn’s disease . Cell Host Microbe15 ( 3 ), 382 – 392 ( 2014 ).
  • Wang F , KaplanJL , GoldBDet al. Detecting microbial dysbiosis associated with pediatric Crohn disease despite the high variability of the gut microbiota . Cell Rep.14 ( 4 ), 945 – 955 ( 2016 ).
  • Shah R , CopeJL , Nagy-SzakalDet al. Composition and function of the pediatric colonic mucosal microbiome in untreated patients with ulcerative colitis . Gut Microbes7 ( 5 ), 384 – 396 ( 2016 ).
  • Walters WA , XuZ , KnightR . Meta-analyses of human gut microbes associated with obesity and IBD . FEBS Lett.588 ( 22 ), 4223 – 4233 ( 2014 ).
  • The GEM Project . www.gemproject.ca/author/master/ .
  • Kevans D , TurpinW , MadsenKet al. Determinants of intestinal permeability in healthy first-degree relatives of individuals with Crohn’s disease . Inflamm. Bowel Dis.21 ( 4 ), 879 – 887 ( 2015 ).
  • Harris RA , Nagy-SzakalD , MirSAet al. DNA methylation-associated colonic mucosal immune and defense responses in treatment-naive pediatric ulcerative colitis . Epigenetics9 ( 8 ), 1131 – 1137 ( 2014 ).
  • Tedjo DI , SmolinskaA , SavelkoulPHet al. The fecal microbiota as a biomarker for disease activity in Crohn’s disease . Sci. Rep.6 , 35216 ( 2016 ).
  • Dunn KA , Moore-ConnorsJ , MacintyreBet al. The gut microbiome of pediatric Crohn’s disease patients differs from healthy controls in genes that can influence the balance between a healthy and dysregulated immune response . Inflamm. Bowel Dis.22 ( 11 ), 2607 – 2618 ( 2016 ).
  • Castillo-Fernandez JE , SpectorTD , BellJT . Epigenetics of discordant monozygotic twins: implications for disease . Genome Med.6 ( 7 ), 60 ( 2014 ).
  • Brant SR . Update on the heritability of inflammatory bowel disease: the importance of twin studies . Inflamm. Bowel Dis.17 ( 1 ), 1 – 5 ( 2011 ).
  • Petersen BS , SpehlmannME , RaedlerAet al. Whole genome and exome sequencing of monozygotic twins discordant for Crohn’s disease . BMC Genomics15 , 564 ( 2014 ).
  • Fofanova TY , PetrosinoJF , KellermayerR . Microbiome–epigenome interactions and the environmental origins of inflammatory bowel diseases . J. Pediatr. Gastroenterol. Nutr.62 ( 2 ), 208 – 219 ( 2016 ).
  • Breslin NP , ToddA , KilgallenC , O’MorainC . Monozygotic twins with Crohn’s disease and ulcerative colitis: a unique case report . Gut41 ( 4 ), 557 – 560 ( 1997 ).
  • Goodrich JK , WatersJL , PooleACet al. Human genetics shape the gut microbiome . Cell159 ( 4 ), 789 – 799 ( 2014 ).
  • Benchimol EI , MackDR , GuttmannAet al. Inflammatory bowel disease in immigrants to Canada and their children: a population-based cohort study . Am. J. Gastroenterol.110 ( 4 ), 553 – 563 ( 2015 ).
  • Li X , SundquistJ , HemminkiK , SundquistK . Risk of inflammatory bowel disease in first- and second-generation immigrants in Sweden: a nationwide follow-up study . Inflamm. Bowel Dis.17 ( 8 ), 1784 – 1791 ( 2011 ).
  • Pinsk V , LembergDA , GrewalK , BarkerCC , SchreiberRA , JacobsonK . Inflammatory bowel disease in the south Asian pediatric population of British Columbia . Am. J. Gastroenterol.102 ( 5 ), 1077 – 1083 ( 2007 ).
  • Barreiro-De Acosta M , Alvarez CastroA , SoutoR , IglesiasM , LorenzoA , Dominguez-MunozJE . Emigration to western industrialized countries: a risk factor for developing inflammatory bowel disease . J. Crohns Colitis5 ( 6 ), 566 – 569 ( 2011 ).
  • Bequet E , SarterH , FumeryMet al. Incidence and phenotype at diagnosis of very-early-onset compared with later-onset paediatric inflammatory bowel disease: a population-based study (1988–2011) . J. Crohns Colitis doi:10.1093/ecco-jcc/jjw194 ( 2016 ) ( Epub ahead of print ).
  • Moran CJ , KleinC , MuiseAM , SnapperSB . Very early-onset inflammatory bowel disease: gaining insight through focused discovery . Inflamm. Bowel Dis.21 ( 5 ), 1166 – 1175 ( 2015 ).
  • Beattie RM , CroftNM , FellJM , AfzalNA , HeuschkelRB . Inflammatory bowel disease . Arch. Dis. Child91 ( 5 ), 426 – 432 ( 2006 ).
  • Griffiths AM . Specificities of inflammatory bowel disease in childhood . Best Pract. Res. Clin. Gastroenterol.18 ( 3 ), 509 – 523 ( 2004 ).
  • Van Limbergen J , RussellRK , DrummondHEet al. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease . Gastroenterology135 ( 4 ), 1114 – 1122 ( 2008 ).
  • Cutler DJ , ZwickME , OkouDTet al. Dissecting allele architecture of early onset IBD using high-density genotyping . PLoS ONE10 ( 6 ), e0128074 ( 2015 ).
  • Levine A , De BieCI , TurnerDet al. Atypical disease phenotypes in pediatric ulcerative colitis: 5 year analyses of the EUROKIDS Registry . Inflamm. Bowel. Dis.19 ( 2 ), 370 – 377 ( 2013 ).
  • Yantiss RK , OdzeRD . Diagnostic difficulties in inflammatory bowel disease pathology . Histopathology48 ( 2 ), 116 – 132 ( 2006 ).
  • Polites SF , PotterDD , MoirCRet al. Long-term outcomes of ileal pouch-anal anastomosis for pediatric chronic ulcerative colitis . J. Pediatr. Surg.50 ( 10 ), 1625 – 1629 ( 2015 ).
  • Shannon A , EngK , KayMet al. Long-term follow up of ileal pouch anal anastomosis in a large cohort of pediatric and young adult patients with ulcerative colitis . J. Pediatr. Surg.51 ( 7 ), 1181 – 1186 ( 2016 ).
  • Alexander F , SarigolS , DifioreJet al. Fate of the pouch in 151 pediatric patients after ileal pouch anal anastomosis . J. Pediatr. Surg.38 ( 1 ), 78 – 82 ( 2003 ).
  • Zeitz J , EnderlinS , BiedermannLet al. New onset, aggravation and recurrence of Crohn’s disease upon treatment with three different tumor necrosis factor inhibitors . Case Rep. Gastroenterol.9 ( 1 ), 106 – 112 ( 2015 ).
  • Barthel D , GanserG , KuesterRMet al. Inflammatory bowel disease in juvenile idiopathic arthritis patients treated with biologics . J. Rheumatol.42 ( 11 ), 2160 – 2165 ( 2015 ).
  • Brown G , WangE , LeonAet al. Tumor necrosis factor-alpha inhibitor-induced psoriasis: systematic review of clinical features, histopathological findings, and management experience . J. Am. Acad. Dermatol.76 ( 2 ), 334 – 341 ( 2016 ).
  • Gale G , SigurdssonGV , OstmanSet al. Does Crohn’s disease with concomitant orofacial granulomatosis represent a distinctive disease subtype? Inflamm. Bowel Dis. 22 ( 5 ), 1071 – 1077 ( 2016 ).
  • Chron’s and Colitis Foundation. Pediatric Network Initiative . www.ccfa.org/research/current-research-studies/pediatric-risk-stratification.html?referrer=https://www.google.com/ .
  • Debruyn JC , SoonIS , HubbardJ , WrobelI , PanaccioneR , KaplanGG . Nationwide temporal trends in incidence of hospitalization and surgical intestinal resection in pediatric inflammatory bowel diseases in the United States from 1997 to 2009 . Inflamm. Bowel Dis.19 ( 11 ), 2423 – 2432 ( 2013 ).
  • Jostins L , RipkeS , WeersmaRKet al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease . Nature491 ( 7422 ), 119 – 124 ( 2012 ).
  • Gordon H , Trier MollerF , AndersenV , HarbordM . Heritability in inflammatory bowel disease: from the first twin study to genome-wide association studies . Inflamm. Bowel Dis.21 ( 6 ), 1428 – 1434 ( 2015 ).
  • Liu JZ , Van SommerenS , HuangHet al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations . Nat. Genet.47 ( 9 ), 979 – 986 ( 2015 ).
  • Zhernakova A , Van DiemenCC , WijmengaC . Detecting shared pathogenesis from the shared genetics of immune-related diseases . Nat. Rev. Genet.10 ( 1 ), 43 – 55 ( 2009 ).
  • Jaenisch R , BirdA . Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals . Nat. Genet.33 ( Suppl. ), 245 – 254 ( 2003 ).
  • Waterland RA , KellermayerR , RachedMTet al. Epigenomic profiling indicates a role for DNA methylation in early postnatal liver development . Hum. Mol. Genet.18 ( 16 ), 3026 – 3038 ( 2009 ).
  • Petronis A , PetronieneR . Epigenetics of inflammatory bowel disease . Gut47 ( 2 ), 302 – 306 ( 2000 ).
  • Ventham NT , KennedyNA , NimmoER , SatsangiJ . Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics . Gastroenterology145 ( 2 ), 293 – 308 ( 2013 ).
  • Zilbauer M , ZellosA , HeuschkelRet al. Epigenetics in paediatric gastroenterology, hepatology, and nutrition: present trends and future perspectives . J. Pediatr. Gastroenterol. Nutr.62 ( 4 ), 521 – 529 ( 2016 ).
  • Margueron R , ReinbergD . Chromatin structure and the inheritance of epigenetic information . Nat. Rev. Genet.11 ( 4 ), 285 – 296 ( 2010 ).
  • Wigler M , LevyD , PeruchoM . The somatic replication of DNA methylation . Cell24 ( 1 ), 33 – 40 ( 1981 ).
  • Tsaprouni LG , ItoK , PowellJJ , AdcockIM , PunchardN . Differential patterns of histone acetylation in inflammatory bowel diseases . J. Inflamm. (Lond.)8 ( 1 ), 1 ( 2011 ).
  • Rosen MJ , FreyMR , WashingtonMKet al. STAT6 activation in ulcerative colitis: a new target for prevention of IL-13-induced colon epithelial cell dysfunction . Inflamm. Bowel Dis.17 ( 11 ), 2224 – 2234 ( 2011 ).
  • Scarpa M , StylianouE . Epigenetics: concepts and relevance to IBD pathogenesis . Inflamm. Bowel Dis.18 ( 10 ), 1982 – 1996 ( 2012 ).
  • Felice C , LewisA , ArmuzziA , LindsayJO , SilverA . Review article: selective histone deacetylase isoforms as potential therapeutic targets in inflammatory bowel diseases . Aliment Pharmacol. Ther.41 ( 1 ), 26 – 38 ( 2015 ).
  • Lukovac S , BelzerC , PellisLet al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids . MBio5 ( 4 ), pii: e01438–e01514 ( 2014 ).
  • Bandyopadhaya A , TsurumiA , MauraD , JeffreyKL , RahmeLG . A quorum-sensing signal promotes host tolerance training through HDAC1-mediated epigenetic reprogramming . Nat. Microbiol.1 , 16174 ( 2016 ).
  • Hoeksema MA , LaanLC , PostmaJJet al. Treatment with Trichuris suis soluble products during monocyte-to-macrophage differentiation reduces inflammatory responses through epigenetic remodeling . FASEB J.30 ( 8 ), 2826 – 2836 ( 2016 ).
  • Liu X , LuoM , WuK . Epigenetic interplay of histone modifications and DNA methylation mediated by HDA6 . Plant Signal. Behav.7 ( 6 ), 633 – 635 ( 2012 ).
  • Cedar H , BergmanY . Linking DNA methylation and histone modification: patterns and paradigms . Nat. Rev. Genet.10 ( 5 ), 295 – 304 ( 2009 ).
  • Wu F , GuoNJ , TianHet al. Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn’s disease . Inflamm. Bowel Dis.17 ( 1 ), 241 – 250 ( 2011 ).
  • Zahm AM , ThayuM , HandNJ , HornerA , LeonardMB , FriedmanJR . Circulating microRNA is a biomarker of pediatric Crohn disease . J. Pediatr. Gastroenterol. Nutr.53 ( 1 ), 26 – 33 ( 2011 ).
  • Oikonomopoulos A , PolytarchouC , JoshiS , HommesDW , IliopoulosD . Identification of circulating microRNA signatures in Crohn’s disease using the Nanostring nCounter technology . Inflamm. Bowel Dis.22 ( 9 ), 2063 – 2069 ( 2016 ).
  • Koukos G , PolytarchouC , KaplanJLet al. A MicroRNA signature in pediatric ulcerative colitis: deregulation of the miR-4284/CXCL5 pathway in the intestinal epithelium . Inflamm. Bowel Dis.21 ( 5 ), 996 – 1005 ( 2015 ).
  • Chen Y , GeW , XuLet al. miR-200b is involved in intestinal fibrosis of Crohn’s disease . Int. J. Mol. Med.29 ( 4 ), 601 – 606 ( 2012 ).
  • Polytarchou C , HommesDW , PalumboTet al. microRNA214 is associated with progression of ulcerative colitis, and inhibition reduces development of colitis and colitis-associated cancer in mice . Gastroenterology149 ( 4 ), 981e911 – 992e911 ( 2015 ).
  • Monteleone G , NeurathMF , ArdizzoneSet al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease . N. Engl. J. Med.372 ( 12 ), 1104 – 1113 ( 2015 ).
  • Liang M . MicroRNA: a new entrance to the broad paradigm of systems molecular medicine . Physiol. Genomics38 ( 2 ), 113 – 115 ( 2009 ).
  • Du T , ZamorePD . Beginning to understand microRNA function . Cell Res.17 ( 8 ), 661 – 663 ( 2007 ).
  • Meddens CA , HarakalovaM , Van Den DungenNAet al. Systematic analysis of chromatin interactions at disease associated loci links novel candidate genes to inflammatory bowel disease . Genome Biol.17 ( 1 ), 247 ( 2016 ).
  • Pongor CI , BiancoP , FerenczyG , KellermayerR , KellermayerM . Optical trapping nanometry of hypermethylated CPG-island DNA . Biophys. J.112 ( 3 ), 512 – 522 ( 2017 ).
  • Rishi V , BhattacharyaP , ChatterjeeRet al. CpG methylation of half-CRE sequences creates C/EBPalpha binding sites that activate some tissue-specific genes . Proc. Natl Acad. Sci. USA107 ( 47 ), 20311 – 20316 ( 2010 ).
  • Jjingo D , ConleyAB , YiSV , LunyakVV , JordanIK . On the presence and role of human gene-body DNA methylation . Oncotarget3 ( 4 ), 462 – 474 ( 2012 ).
  • Yu DH , WareC , WaterlandRAet al. Developmentally programmed 3′ CpG island methylation confers tissue- and cell-type-specific transcriptional activation . Mol. Cell Biol.33 ( 9 ), 1845 – 1858 ( 2013 ).
  • Li E , BestorTH , JaenischR . Targeted mutation of the DNA methyltransferase gene results in embryonic lethality . Cell69 ( 6 ), 915 – 926 ( 1992 ).
  • Waterland RA , MichelsKB . Epigenetic epidemiology of the developmental origins hypothesis . Annu. Rev. Nutr.27 , 363 – 388 ( 2007 ).
  • Ficz G , BrancoMR , SeisenbergerSet al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation . Nature473 ( 7347 ), 398 – 402 ( 2011 ).
  • Orr BA , HaffnerMC , NelsonWG , YegnasubramanianS , EberhartCG . Decreased 5-hydroxymethylcytosine is associated with neural progenitor phenotype in normal brain and shorter survival in malignant glioma . PLoS ONE7 ( 7 ), e41036 ( 2012 ).
  • Chen L , ChenK , LaveryLAet al. MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome . Proc. Natl Acad. Sci. USA112 ( 17 ), 5509 – 5514 ( 2015 ).
  • Wu TP , WangT , SeetinMGet al. DNA methylation on N(6)-adenine in mammalian embryonic stem cells . Nature532 ( 7599 ), 329 – 333 ( 2016 ).
  • Adams AT , KennedyNA , HansenRet al. Two-stage genome-wide methylation profiling in childhood-onset Crohn’s disease implicates epigenetic alterations at the VMP1/MIR21 and HLA loci . Inflamm. Bowel Dis.20 ( 10 ), 1784 – 1793 ( 2014 ).
  • Richards EJ . Inherited epigenetic variation – revisiting soft inheritance . Nat. Rev. Genet.7 ( 5 ), 395 – 401 ( 2006 ).
  • Harris RA , Nagy-SzakalD , PedersenNet al. Genome-wide peripheral blood leukocyte DNA methylation microarrays identified a single association with inflammatory bowel diseases . Inflamm. Bowel Dis.18 ( 12 ), 2334 – 2341 ( 2012 ).
  • Kellermayer R . Hurdles for epigenetic disease associations from peripheral blood leukocytes . Inflamm. Bowel Dis.19 ( 5 ), E66 – E67 ( 2013 ).
  • Li Yim AY , DuijvisNW , ZhaoJet al. Peripheral blood methylation profiling of female Crohn’s disease patients . Clin. Epigenetics8 , 65 ( 2016 ).
  • Mcdermott E , RyanEJ , TosettoMet al. DNA methylation profiling in inflammatory bowel disease provides new insights into disease pathogenesis . J. Crohns Colitis10 ( 1 ), 77 – 86 ( 2016 ).
  • Saito S , KatoJ , HiraokaSet al. DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status . Inflamm. Bowel Dis.17 ( 9 ), 1955 – 1965 ( 2011 ).
  • Lin Z , HegartyJP , CappelJAet al. Identification of disease-associated DNA methylation in intestinal tissues from patients with inflammatory bowel disease . Clin. Genet.80 ( 1 ), 59 – 67 ( 2011 ).
  • Yuan B , ZhangJ , WangHet al. 6-Thioguanine reactivates epigenetically silenced genes in acute lymphoblastic leukemia cells by facilitating proteasome-mediated degradation of DNMT1 . Cancer Res.71 ( 5 ), 1904 – 1911 ( 2011 ).
  • Hasler R , FengZ , BackdahlLet al. A functional methylome map of ulcerative colitis . Genome Res.22 ( 11 ), 2130 – 2137 ( 2012 ).
  • Jenke AC , PostbergJ , RaineTet al. DNA methylation analysis in the intestinal epithelium-effect of cell separation on gene expression and methylation profile . PLoS ONE8 ( 2 ), e55636 ( 2013 ).
  • Csoka AB , SzyfM . Epigenetic side-effects of common pharmaceuticals: a potential new field in medicine and pharmacology . Med. Hypotheses73 ( 5 ), 770 – 780 ( 2009 ).
  • Dahl KN , RibeiroAJ , LammerdingJ . Nuclear shape, mechanics, and mechanotransduction . Circ. Res.102 ( 11 ), 1307 – 1318 ( 2008 ).
  • Sadler T , BhasinJM , XuYet al. Genome-wide analysis of DNA methylation and gene expression defines molecular characteristics of Crohn’s disease-associated fibrosis . Clin. Epigenetics8 , 30 ( 2016 ).
  • Farlik M , SheffieldNC , NuzzoAet al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics . Cell Rep.10 ( 8 ), 1386 – 1397 ( 2015 ).
  • Hu Y , HuangK , AnQet al. Simultaneous profiling of transcriptome and DNA methylome from a single cell . Genome Biol.17 , 88 ( 2016 ).
  • Rakyan VK , BlewittME , DrukerR , PreisJI , WhitelawE . Metastable epialleles in mammals . Trends Genet.18 ( 7 ), 348 – 351 ( 2002 ).
  • Kraiczy J , NayakK , RossAet al. Assessing DNA methylation in the developing human intestinal epithelium: potential link to inflammatory bowel disease . Mucosal Immunol.9 ( 3 ), 647 – 658 ( 2016 ).
  • Harris RA , ShahR , HollisterEBet al. Colonic mucosal epigenome and microbiome development in children and adolescents . J. Immunol. Res. 2016 , 9170162 ( 2016 ).
  • Rakyan VK , PreisJ , MorganHD , WhitelawE . The marks, mechanisms and memory of epigenetic states in mammals . Biochem. J.356 ( Pt 1 ), 1 – 10 ( 2001 ).
  • Kellermayer R . Genetic drift. Physiologic noise obscures genotype-phenotype correlations . Am. J. Med. Genet. A143A ( 12 ), 1306 – 1307 ( 2007 ).
  • Dolinoy DC , WeinhouseC , JonesTR , RozekLS , JirtleRL . Variable histone modifications at the A(vy) metastable epiallele . Epigenetics5 ( 7 ), 637 – 644 ( 2010 ).
  • Dolinoy DC , DasR , WeidmanJR , JirtleRL . Metastable epialleles, imprinting, and the fetal origins of adult diseases . Pediatr. Res.61 ( 5 Pt 2 ), R30 – R37 ( 2007 ).
  • Waterland RA , KellermayerR , LaritskyEet al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles . PLoS Genet.6 ( 12 ), e1001252 ( 2010 ).
  • Khulan B , CooperWN , SkinnerBMet al. Periconceptional maternal micronutrient supplementation is associated with widespread gender related changes in the epigenome: a study of a unique resource in the Gambia . Hum. Mol. Genet.21 ( 9 ), 2086 – 2101 ( 2012 ).
  • Kuhnen P , HandkeD , WaterlandRAet al. Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity . Cell Metab.24 ( 3 ), 502 – 509 ( 2016 ).
  • Silver MJ , KesslerNJ , HennigBJet al. Independent genomewide screens identify the tumor suppressor VTRNA2–1 as a human epiallele responsive to periconceptional environment . Genome Biol.16 , 118 ( 2015 ).
  • Harris RA , Nagy-SzakalD , KellermayerR . Human metastable epiallele candidates link to common disorders . Epigenetics8 ( 2 ), 157 – 163 ( 2013 ).
  • Nimmo ER , PrendergastJG , AldhousMCet al. Genome-wide methylation profiling in Crohn’s disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway . Inflamm. Bowel Dis.18 ( 5 ), 889 – 899 ( 2012 ).
  • Parray FQ , WaniML , MalikAAet al. Ulcerative colitis: a challenge to surgeons . Int. J. Prev. Med.3 ( 11 ), 749 – 763 ( 2012 ).
  • Yatsunenko T , ReyFE , ManaryMJet al. Human gut microbiome viewed across age and geography . Nature486 ( 7402 ), 222 – 227 ( 2012 ).
  • Mill J , HeijmansBT . From promises to practical strategies in epigenetic epidemiology . Nat. Rev. Genet.14 ( 8 ), 585 – 594 ( 2013 ).
  • Birney E , SmithGD , GreallyJM . Epigenome-wide association studies and the interpretation of disease -Omics . PLoS Genet12 ( 6 ), e1006105 ( 2016 ).
  • Imhann F , Vich VilaA , BonderMJet al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease . Gut doi:10.1136/gutjnl-2016-312135 ( 2016 ) ( Epub ahead of print ).
  • Kronman MP , ZaoutisTE , HaynesK , FengR , CoffinSE . Antibiotic exposure and IBD development among children: a population-based cohort study . Pediatrics130 ( 4 ), E794 – E803 ( 2012 ).
  • Ungaro R , BernsteinCN , GearryRet al. Antibiotics associated with increased risk of new-onset Crohn’s disease but not ulcerative colitis: a meta-analysis . Am. J. Gastroenterol.109 ( 11 ), 1728 – 1738 ( 2014 ).
  • Qin X . Increased milk consumption but decreased risk of Crohn’s disease (CD): critical evidence negated causative role of Mycobacterium avium subspecies paratuberculosis (MAP) in CD . Inflamm. Bowel Dis.22 ( 9 ), E37 – E38 ( 2016 ).
  • Roberts CL , RushworthSL , RichmanE , RhodesJM . Hypothesis: increased consumption of emulsifiers as an explanation for the rising incidence of Crohn’s disease . J. Crohns Colitis7 ( 4 ), 338 – 341 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.