393
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Epigenomic Analysis in a Cell-Based Model Reveals the Roles of H3K9me3 in Breast Cancer Transformation

, , , , &
Pages 1077-1092 | Received 24 Dec 2016, Accepted 07 Apr 2017, Published online: 01 Aug 2017

References

  • Rodriguez-Paredes M , EstellerM . Cancer epigenetics reaches mainstream oncology . Nat. Med.17 ( 3 ), 330 – 339 ( 2011 ).
  • Lawrence MS , StojanovP , MermelCHet al. Discovery and saturation analysis of cancer genes across 21 tumour types . Nature505 ( 7484 ), 495 – 501 ( 2014 ).
  • Easwaran H , TsaiHC , BaylinSB . Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance . Mol. Cell54 ( 5 ), 716 – 727 ( 2014 ).
  • Kandoth C , MclellanMD , VandinFet al. Mutational landscape and significance across 12 major cancer types . Nature502 ( 7471 ), 333 – 339 ( 2013 ).
  • Watson IR , TakahashiK , FutrealPA , ChinL . Emerging patterns of somatic mutations in cancer . Nat. Rev. Genet.14 ( 10 ), 703 – 718 ( 2013 ).
  • Esteller M . Epigenetics in cancer . N. Engl. J. Med.358 ( 11 ), 1148 – 1159 ( 2008 ).
  • Ellis L , AtadjaPW , JohnstoneRW . Epigenetics in cancer: targeting chromatin modifications . Mol. Cancer Ther.8 ( 6 ), 1409 – 1420 ( 2009 ).
  • Cai SF , ChenCW , ArmstrongSA . Drugging chromatin in cancer: recent advances and novel approaches . Mol. Cell60 ( 4 ), 561 – 570 ( 2015 ).
  • Herz HM , GarrussA , ShilatifardA . SET for life: biochemical activities and biological functions of SET domain-containing proteins . Trends Biochem. Sci.38 ( 12 ), 621 – 639 ( 2013 ).
  • Black JC , Van RechemC , WhetstineJR . Histone lysine methylation dynamics: establishment, regulation, and biological impact . Mol. Cell48 ( 4 ), 491 – 507 ( 2012 ).
  • Xu K , WuZJ , GronerACet al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is polycomb-independent . Science338 ( 6113 ), 1465 – 1469 ( 2012 ).
  • Morin RD , JohnsonNA , SeversonTMet al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin . Nat. Genet.42 ( 2 ), 181 – 185 ( 2010 ).
  • Beguelin W , PopovicR , TeaterMet al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation . Cancer Cell23 ( 5 ), 677 – 692 ( 2013 ).
  • Mccabe MT , OttHM , GanjiGet al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations . Nature492 ( 7427 ), 108 – 112 ( 2012 ).
  • Ibragimova I , MaradeoME , DulaimiE , CairnsP . Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC . Epigenetics8 ( 5 ), 486 – 493 ( 2013 ).
  • Cancer Genome Atlas Research Network . Comprehensive molecular characterization of clear cell renal cell carcinoma . Nature499 ( 7456 ), 43 – 49 ( 2013 ).
  • Fontebasso AM , SchwartzentruberJ , Khuong-QuangDAet al. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas . Acta Neuropathol.125 ( 5 ), 659 – 669 ( 2013 ).
  • Zhu X , HeF , ZengHet al. Identification of functional cooperative mutations of SETD2 in human acute leukemia . Nat. Genet.46 ( 3 ), 287 – 293 ( 2014 ).
  • Li F , MaoG , TongDet al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha . Cell153 ( 3 ), 590 – 600 ( 2013 ).
  • Pfister SX , AhrabiS , ZalmasLPet al. SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability . Cell Rep.7 ( 6 ), 2006 – 2018 ( 2014 ).
  • Carvalho S , VitorAC , SridharaSCet al. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint . eLife3 , e02482 ( 2014 ).
  • Zhu K , LeiPJ , JuLGet al. SPOP-containing complex regulates SETD2 stability and H3K36me3-coupled alternative splicing . Nucleic Acids Res.45 ( 1 ), 92 – 105 ( 2017 ).
  • Black JC , ManningAL , Van RechemCet al. KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors . Cell154 ( 3 ), 541 – 555 ( 2013 ).
  • Krieg AJ , RankinEB , ChanD , RazorenovaO , FernandezS , GiacciaAJ . Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth . Mol. Cell Biol.30 ( 1 ), 344 – 353 ( 2010 ).
  • Chen L , FuL , KongXet al. Jumonji domain-containing protein 2B silencing induces DNA damage response via STAT3 pathway in colorectal cancer . Br. J. Cancer110 ( 4 ), 1014 – 1026 ( 2014 ).
  • Young LC , HendzelMJ . The oncogenic potential of Jumonji D2 (JMJD2/KDM4) histone demethylase overexpression . Biochem. Cell Biol.91 ( 6 ), 369 – 377 ( 2013 ).
  • Zhao QY , LeiPJ , ZhangXet al. Global histone modification profiling reveals the epigenomic dynamics during malignant transformation in a four-stage breast cancer model . Clin. Epigenet.8 , 34 ( 2016 ).
  • Mallette FA , RichardS . JMJD2A promotes cellular transformation by blocking cellular senescence through transcriptional repression of the tumor suppressor CHD5 . Cell Rep.2 ( 5 ), 1233 – 1243 ( 2012 ).
  • Sharma SV , LeeDY , LiBet al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations . Cell141 ( 1 ), 69 – 80 ( 2010 ).
  • Wade MA , JonesD , WilsonLet al. The histone demethylase enzyme KDM3A is a key estrogen receptor regulator in breast cancer . Nucleic Acids Res.43 ( 1 ), 196 – 207 ( 2015 ).
  • Elenbaas B , SpirioL , KoernerFet al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells . Genes Dev.15 ( 1 ), 50 – 65 ( 2001 ).
  • Hahn WC , CounterCM , LundbergAS , BeijersbergenRL , BrooksMW , WeinbergRA . Creation of human tumour cells with defined genetic elements . Nature400 ( 6743 ), 464 – 468 ( 1999 ).
  • Danielsson F , SkogsM , HussMet al. Majority of differentially expressed genes are down-regulated during malignant transformation in a four-stage model . Proc. Natl Acad. Sci. USA110 ( 17 ), 6853 – 6858 ( 2013 ).
  • Shilatifard A . Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression . Annu. Rev. Biochem.75 , 243 – 269 ( 2006 ).
  • Wen B , WuH , ShinkaiY , IrizarryRA , FeinbergAP . Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells . Nat. Genet.41 ( 2 ), 246 – 250 ( 2009 ).
  • Zeng W , BallARJr , YokomoriK . HP1: heterochromatin binding proteins working the genome . Epigenetics5 ( 4 ), 287 – 292 ( 2010 ).
  • Matsumura Y , NakakiR , InagakiTet al. H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation . Mol. Cell60 ( 4 ), 584 – 596 ( 2015 ).
  • Rea S , EisenhaberF , O’carrollDet al. Regulation of chromatin structure by site-specific histone H3 methyltransferases . Nature406 ( 6796 ), 593 – 599 ( 2000 ).
  • Buckley RM , AdelsonDL . Mammalian genome evolution as a result of epigenetic regulation of transposable elements . Biomol. Concepts5 ( 3 ), 183 – 194 ( 2014 ).
  • Zamudio N , BarauJ , TeissandierAet al. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination . Genes Dev.29 ( 12 ), 1256 – 1270 ( 2015 ).
  • Sienski G , DonertasD , BrenneckeJ . Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression . Cell151 ( 5 ), 964 – 980 ( 2012 ).
  • Dinant C , LuijsterburgMS . The emerging role of HP1 in the DNA damage response . Mol. Cell Biol.29 ( 24 ), 6335 – 6340 ( 2009 ).
  • Lemaitre C , SoutoglouE . Double strand break (DSB) repair in heterochromatin and heterochromatin proteins in DSB repair . DNA Repair (Amst.)19 , 163 – 168 ( 2014 ).
  • Vad-Nielsen J , NielsenAL . Beyond the histone tale: HP1alpha deregulation in breast cancer epigenetics . Cancer Biol. Ther.16 ( 2 ), 189 – 200 ( 2015 ).
  • Maresco DL , BlueLE , CulleyLL , KimberlyRP , AndersonCL , TheilKS . Localization of FCGR1 encoding Fcgamma receptor class I in primates: molecular evidence for two pericentric inversions during the evolution of human chromosome 1 . Cytogenetics Cell Genetics82 ( 1–2 ), 71 – 74 ( 1998 ).
  • Odunsi K , JungbluthAA , StockertEet al. NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer . Cancer Res.63 ( 18 ), 6076 – 6083 ( 2003 ).
  • Zeng G , AldridgeME , WangYet al. Dominant B cell epitope from NY-ESO-1 recognized by sera from a wide spectrum of cancer patients: implications as a potential biomarker . Int. J. Cancer114 ( 2 ), 268 – 273 ( 2005 ).
  • Alpen B , GureAO , ScanlanMJ , OldLJ , ChenYT . A new member of the NY-ESO-1 gene family is ubiquitously expressed in somatic tissues and evolutionarily conserved . Gene297 ( 1–2 ), 141 – 149 ( 2002 ).
  • Murillas R , SimmsKS , HatakeyamaS , WeissmanAM , KuehnMR . Identification of developmentally expressed proteins that functionally interact with Nedd4 ubiquitin ligase . J. Biol. Chem.277 ( 4 ), 2897 – 2907 ( 2002 ).
  • Laston SL , VorugantiVS , HaackKet al. Genetics of kidney disease and related cardiometabolic phenotypes in Zuni Indians: the Zuni Kidney Project . Front. Genet.6 , 6 ( 2015 ).
  • Zhao X , YanX , LiuY , ZhangP , NiX . Co-expression of mouse TMEM63A, TMEM63B and TMEM63C confers hyperosmolarity activated ion currents in HEK293 cells . Cell Biochem. Funct.34 ( 4 ), 238 – 241 ( 2016 ).
  • Plath K , FangJ , Mlynarczyk-EvansSKet al. Role of histone H3 lysine 27 methylation in X inactivation . Science300 ( 5616 ), 131 – 135 ( 2003 ).
  • Peters AH , KubicekS , MechtlerKet al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin . Mol. Cell12 ( 6 ), 1577 – 1589 ( 2003 ).
  • Cann KL , DellaireG . Heterochromatin and the DNA damage response: the need to relax . Biochem Cell Biol.89 ( 1 ), 45 – 60 ( 2011 ).
  • Huang Da W , ShermanBT , LempickiRA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources . Nat. Protoc.4 ( 1 ), 44 – 57 ( 2009 ). http://david.abcc.ncifcrf.gov
  • Li H , DurbinR . Fast and accurate short read alignment with Burrows-Wheeler transform . Bioinformatics25 ( 14 ), 1754 – 1760 ( 2009 ). http://david.abcc.ncifcrf.gov
  • Zang C , SchonesDE , ZengC , CuiK , ZhaoK , PengW . A clustering approach for identification of enriched domains from histone modification ChIP-Seq data . Bioinformatics25 ( 15 ), 1952 – 1958 ( 2009 ).
  • Website . https://portal.gdc.cancer.gov/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.