1,418
Views
0
CrossRef citations to date
0
Altmetric
Review

A Comprehensive Review of Lysine-Specific Demethylase 1 and its Roles in Cancer

&
Pages 1123-1142 | Received 05 Feb 2017, Accepted 15 Jun 2017, Published online: 12 Jul 2017

References

  • Copeland RA , SolomonME , RichonVM . Protein methyltransferases as a target class for drug discovery . Nat. Rev. Drug Discov.8 ( 9 ), 724 – 732 ( 2009 ).
  • Bedford MT , RichardS . Arginine methylation: an emerging regulator of protein function . Mol. Cell18 , 263 – 272 ( 2005 ).
  • Jones PA , MartienssenR . A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop . Cancer Res.65 , 11241 – 11246 ( 2005 ).
  • Martin C , ZhangY . The diverse functions of histone lysine methylation . Nat. Rev. Mol. Cell Biol.6 , 838 – 849 ( 2005 ).
  • Kouzarides T . Chromatin modifi cations and their function . Cell128 ( 4 ), 693 – 705 ( 2007 ).
  • Morera L , LubbertM , JungM . Targeting histone methyltanserases and demethylases in clinical trial for cancer therapy . Clin. Epigenetics8 , 57 ( 2016 ).
  • Schultz DC , AyyanathanK , NegorevD , MaulGG , RauscherFJ3rd . SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins . Genes Dev.16 , 919 – 932 ( 2002 ).
  • Krivtsov AV , ArmstrongSA . MLL translocations, histone modifications and leukaemia stem-cell development . Nat. Rev. Cancer7 ( 11 ), 823 – 833 ( 2007 ).
  • Hu D , ShilatifardA . Epigenetics of hematopoiesis and hematological malignancies . Genes Dev.30 ( 18 ), 2021 – 2041 ( 2016 ).
  • Adachi Y , TakeuchiT , NagayamaT , FurihataM . T-cadherin modulates tumor-associated molecules in gallbladder cancer cells . Cancer Invest.28 ( 2 ), 120 – 126 ( 2010 ).
  • Nakakido M , DengZ , SuzukiT , DohmaeN , NakamuraY , HamamotoR . Dysregulation of AKT pathway by SMYD2-mediated lysine methylation on PTEN . Neoplasia17 ( 4 ), 367 – 373 ( 2015 ).
  • Komatsu S , ImotoI , TsudaHet al. Overexpression of SMYD2 relates to tumor cell proliferation and malignant outcome of esophageal squamous cell carcinoma . Carcinogenesis30 ( 7 ), 1139 – 1146 ( 2009 ).
  • Pires-Luís AS , Vieira-CoimbraM , VieiraFQet al. Expression of histone methyltransferases as novel biomarkers for renal cell tumor diagnosis and prognostication . Epigenetics10 ( 11 ), 1033 – 1043 ( 2015 ).
  • Sakamoto LH , AndradeRV , FelipeMS , MotoyamaAB , Pittella SilvaF . SMYD2 is highly expressed in pediatric acute lymphoblastic leukemia and constitutes a bad prognostic factor . Leuk. Res.38 ( 4 ), 496 – 502 ( 2014 ).
  • Hamamoto R , FurukawaY , MoritaMet al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells . Nat. Cell Biol.6 ( 8 ), 731 – 740 ( 2004 ).
  • Demelash A , RudrabhatlaP , PantHCet al. Achaete-scute homologue-1 (ASH1) stimulates migration of lung cancer cells through Cdk5/p35 pathway . Mol. Biol. Cell23 ( 15 ), 2856 – 2866 ( 2012 ).
  • Rapa I , CeppiP , BollitoEet al. Human ASH1 expression in prostate cancer with neuroendocrine differentiation . Mod. Pathol.21 ( 6 ), 700 – 707 ( 2008 ).
  • Dong C , WuY , WangYet al. Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer . Oncogene32 ( 11 ), 1351 – 1362 ( 2013 ).
  • Lai YS , ChenJY , TsaiHJ , ChenTY , HungWC . The SUV39H1 inhibitor chaetocin induces differentiation and shows synergistic cytotoxicity with other epigenetic drugs in acute myeloid leukemia cells . Blood Cancer J.5 , e313 ( 2015 ).
  • Spyropoulou A , GargalionisA , DalagiorgouGet al. Role of histone lysine methyltransferases SUV39H1 and SETDB1 in gliomagenesis: modulation of cell proliferation, migration, and colony formation . Neuromolecular Med.16 ( 1 ), 70 – 82 ( 2014 ).
  • Spyropoulou A , GargalionisA , DalagiorgouGet al. Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma . Int. J. Cancer136 ( 2 ), 289 – 298 ( 2015 ).
  • Piao L , SuzukiT , DohmaeN , NakamuraY , HamamotoR . SUV39H2 methylates and stabilizes LSD1 by inhibiting polyubiquitination in human cancer cells . Oncotarget6 ( 19 ), 16939 – 16950 ( 2015 ).
  • Yoon KA , HwangboB , KimIJet al. Novel polymorphisms in the SUV39H2 histone methyltransferase and the risk of lung cancer . Carcinogenesis27 ( 11 ), 2217 – 2222 ( 2006 ).
  • Hung SY , LinHH , YehKT , ChangJG . Histone-modifying genes as biomarkers in hepatocellular carcinoma . Int. J. Clin. Exp. Pathol.7 ( 5 ), 2496 – 2507 ( 2014 ).
  • Kim KB , SonHJ , ChoiSet al. H3K9 methyltransferase G9a negatively regulates UHRF1 transcription during leukemia cell differentiation . Nucleic Acids Res.43 ( 7 ), 3509 – 3523 ( 2015 ).
  • Casciello F , WindlochK , GannonF , LeeJS . Functional role of G9a histone methyltransferase in cancer . Front. Immunol.6 , 487 ( 2015 ).
  • Li KC , HuaKT , LinYSet al. Inhibition of G9a induces DUSP4 dependent autophagic cell death in head and neck squamous cellcarcinoma . Mol. Cancer13 , 172 ( 2014 ).
  • Tao H , LiH , SuYet al. Histone methyltransferase G9a and H3K9 dimethylation inhibit the self-renewal of glioma cancer stem cells . Mol. Cell Biochem.394 ( 1–2 ), 23 – 30 ( 2014 ).
  • Pappano WN , GuoJ , HeYet al. The histone methyltransferase inhibitor A-366 uncovers a role for G9a/GLP in the epigenetics of leukemia . PLoS ONE10 ( 7 ), e0131716 ( 2015 ).
  • Sun Y , WeiM , RenSCet al. Histone methyltransferase SETDB1 is required for prostate cancer cell proliferation, migration and invasion . Asian J. Androl.16 ( 2 ), 319 – 324 ( 2014 ).
  • Rodriguez-Paredes M , Martinez de PazA , Simó-RiudalbasLet al. Gene amplification of the histone methyltransferase SETDB1 contributes to human lung tumorigenesis . Oncogene33 ( 21 ), 2807 – 2813 ( 2014 ).
  • Du Y , CarlingT , FangW , PiaoZ , SheuJC , HuangS . Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily . Cancer Res.61 ( 22 ), 8094 – 8099 ( 2001 ).
  • Margueron R , LiG , SarmaKet al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms . Mol. Cell32 ( 4 ), 503 – 518 ( 2008 ).
  • Mochizuki-Kashio M , AoyamaK , SashidaGet al. Ezh2 loss in hematopoietic stem cells predisposes mice to develop heterogeneous malignancies in an Ezh1-dependent manner . Blood126 ( 10 ), 1172 – 1183 ( 2015 ).
  • Lund K , AdamsPD , CoplandM . EZH2 in normal and malignant hematopoiesis . Leukemia28 ( 1 ), 44 – 49 ( 2014 ).
  • Fussbroich B , WagenerN , Macher-GoeppingerSet al. EZH2 depletion blocks the proliferation of colon cancer cells . PLoS ONE6 ( 7 ), e21651 ( 2011 ).
  • Yang YA , YuJ . EZH2, an epigenetic driver of prostate cancer . Protein Cell4 ( 5 ), 331 – 341 ( 2013 ).
  • Kim KH , RobertsCW . Targeting EZH2 in cancer . Nat. Med.22 ( 2 ), 128 – 134 ( 2016 ).
  • Kleer CG , CaoQ , VaramballySet al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells . Proc. Natl. Acad. Sci. USA100 ( 20 ), 11606 – 11611 ( 2003 ).
  • Hollink IH , van den Heuvel-EibrinkMM , Arentsen-PetersSTet al. NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern . Blood118 ( 13 ), 3645 – 3656 ( 2011 ).
  • Lucio-Eterovic AK , CarpenterPB . An open and shut case for the role of NSD proteins as oncogenes . Transcription2 ( 4 ), 158 – 161 ( 2011 ).
  • Jaffe JD , WangY , ChanHMet al. Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia . Nat. Genet.45 ( 11 ), 1386 – 1391 ( 2013 ).
  • Yang P , GuoL , DuanZJet al. Histone methyltransferase NSD2/MMSET mediates constitutive NF-κB signaling for cancer cell proliferation, survival, and tumor growth via a feed-forward loop . Mol. Cell Biol.32 ( 15 ), 3121 – 3131 ( 2012 ).
  • Rosati R , La StarzaR , VeroneseAet al. NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t (8;11) (p11.2; p15) . Blood99 ( 10 ), 3857 – 3860 ( 2002 ).
  • McLean CM , KaremakerID , van LeeuwenF . The emerging roles of DOT1L in leukemia and normal development . Leukemia28 ( 11 ), 2131 – 2138 ( 2014 ).
  • Annala M , KivinummiK , LeinonenKet al. DOT1L-HES6 fusion drives androgen independent growth in prostate cancer . EMBO Mol. Med.6 ( 9 ), 1121 – 1123 ( 2014 ).
  • Lee JY , KongG . DOT1L: a new therapeutic target for aggressive breast cancer . Oncotarget6 ( 31 ), 30451 – 30452 ( 2015 ).
  • Liu B , ZhangX , SongFet al. A functional single nucleotide polymorphism of SET8 is prognostic for breast cancer . Oncotarget7 ( 23 ), 34277 – 34287 ( 2016 ).
  • Evertts AG , ManningAL , WangX , DysonNJ , GarciaBA , CollerHA . H4K20 methylation regulates quiescence and chromatin compaction . Mol. Biol. Cell24 ( 19 ), 3025 – 3037 ( 2013 ).
  • Shi Y , LanF , MatsonCet al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD . Cell119 , 941 – 953 ( 2004 ).
  • Morera L , LubbertM , JungM . Targeting histone methyltanserases and demethylases in clinical trial for cancer therapy . Clin. Epigenetics8 , 57 ( 2016 ).
  • H⊘jfeldt JW , AggerK , HelinK . Histone lysine demethylases as targets for anticancer therapy . Nat. Rev. Drug Discov.12 ( 12 ), 917 – 930 ( 2013 ).
  • Wissmann M , YinN , MüllerJMet al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression . Nat. Cell Biol.9 ( 3 ), 347 – 353 ( 2007 ).
  • Lim S , JanzerA , BeckerAet al. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology . Carcinogenesis31 ( 3 ), 512 – 520 ( 2010 ).
  • Huang Y , VasilatosSN , BoricL , ShawPG , DavidsonNE . Inhibitors of histone demethylation and histone deacetylation cooperate in regulating gene expression and inhibiting growth in human breast cancer cells . Breast Cancer Res. Treat.131 ( 3 ), 777 – 789 ( 2012 ).
  • Chen C , ZhaoM , YinNet al. Abnormal histone acetylation and methylation levels in esophageal squamous cell carcinomas . Cancer Investig.29 ( 8 ), 548 – 556 ( 2011 ).
  • Ding J , ZhangZM , XiaYet al. LSD1-mediated epigenetic modification contributes to proliferation and metastasis of colon cancer . Br. J. Cancer109 ( 4 ), 994 – 1003 ( 2013 ).
  • Jin L , HaniganCL , WuYet al. Loss of LSD1 (lysine-specific demethylase 1) suppresses growth and alters gene expression of human colon cancer cells in a p53- and DNMT1(DNA methyltransferase 1)-independent manner . Biochem. J.449 ( 2 ), 459 – 568 ( 2013 ).
  • Rao M , ChinnasamyN , HongJAet al. Inhibition of histone lysine methylation enhances cancer-testis antigen expression in lung cancer cells: Implications for adoptive immunotherapy of cancer . Cancer Res.71 ( 12 ), 4192 – 4204 ( 2011 ).
  • Bennani-Baiti IM , MachadoI , Llombart-BoschA , KovarH . Lysine-specific demethylase 1 (LSD1/KDM1A/AOF2/BHC110) is expressed and is an epigenetic drug target in chondrosarcoma, Ewing’s sarcoma, osteosarcoma, and rhabdomyosarcoma . Hum. Pathol.43 ( 8 ), 1300 – 1307 ( 2012 ).
  • Kahl P , GullottiL , HeukampLCet al. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence . Cancer Res.66 ( 23 ), 11341 – 11347 ( 2006 ).
  • Hayami S , KellyJD , ChoHSet al. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers . Int. J. Cancer128 ( 3 ), 574 – 586 ( 2011 ).
  • Kauffman EC , RobinsonBD , DownesMJet al. Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer . Mol. Carcinog.50 ( 12 ), 931 – 944 ( 2011 ).
  • Schulte JH , LimS , SchrammAet al. Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy . Cancer Res.69 , 2065 – 2071 ( 2009 ).
  • Lv T , YuanD , MiaoXet al. Over-expression of LSD1 promotes proliferation, migration and invasion in non-small-cell lung cancer . PLoS ONE7 , e35065 ( 2012 ).
  • Feng J , LiL , ZhangNet al. Androgen and AR contribute to breast cancer development and metastasis: an insight of mechanisms . Oncogene1 – 16 ( 2016 ).
  • Rhodes DR , Kalyana-SundaramS , MahavisnoVet al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles . Neoplasia9 , 166 – 180 ( 2007 ).
  • Wouters BJ , LöwenbergB , Erpelinck-VerschuerenCA , van PuttenWL , ValkPJ , DelwelR . Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome . Blood113 , 3088 – 3091 ( 2009 ).
  • Goardon N , MarchiE , AtzbergerAet al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia . Cancer Cell19 , 138 – 152 ( 2011 ).
  • Somervaille TC , ClearyML . Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia . Cancer Cell10 , 257 – 268 ( 2006 ).
  • Somervaille TC , MathenyCJ , SpencerGJet al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells . Cell Stem Cell4 , 129 – 140 ( 2009 ).
  • Harris WJ , HuangX , LynchJTet al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells . Cancer Cell21 , 473 – 487 ( 2012 ).
  • Zhao ZK , DongP , GuJet al. Overexpression of LSD1 in hepatocellular carcinoma: a latent target for the diagnosis and therapy of hepatoma . Tumour Biol.34 ( 1 ), 173 – 180 ( 2013 ).
  • Heidenblad M , LindgrenD , JonsonTet al. Tiling resolution array CGH and high density expression profiling of urothelial carcinomas delineate genomic amplicons and candidate target genes specific for advanced tumors . BMC Med. Genom.1 , 3 ( 2008 ).
  • Vogt T , KroissM , McClellandMet al. Deficiency of a novel retinoblastoma binding protein 2-homolog is a consistent feature of sporadic human melanoma skin cancer . Lab. Invest.79 , 1615 – 1627 ( 1999 ).
  • van Zutven LJ , OnenE , VelthuizenSCet al. Identification of NUP98 abnormalities in acute leukemia: JARID1A (12p13) as a new partner gene . Genes Chromosomes Cancer45 , 437 – 446 ( 2006 ).
  • Hayami S , YoshimatsuM , VeerakumarasivamAet al. Overexpression of the JmjC histone demethylase KDM5B in human carcinogenesis: involvement in the proliferation of cancer cells through the E2F/RB pathway . Mol. Cancer9 , 59 ( 2010 ).
  • Xiang Y , ZhuZ , HanGet al. JARID1B is a histone H3 lysine 4 demethylase upregulated in prostate cancer . Proc. Natl Acad. Sci. USA104 , 19226 – 19231 ( 2007 ).
  • Lu PJ , SundquistK , BaeckstromDet al. A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer . J. Biol. Chem.274 , 15633 – 15645 ( 1999 ).
  • Barrett A , MadsenB , CopierJet al. PLU-1 nuclear protein, which is upregulated in breast cancer, shows restricted expression in normal human adult tissues: a new cancer/testis antigen? Int. J. Cancer 101 , 581 – 588 ( 2002 ).
  • Dalgliesh GL , FurgeK , GreenmanCet al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes . Nature463 ( 7279 ), 360 – 363 ( 2010 ).
  • Stein J , MajoresM , RohdeMet al. KDM5C is overexpressed in prostate cancer and is a prognostic marker for prostate-specific antigen-relapse following radical prostatectomy . Am. J. Pathol.184 ( 9 ), 2430 – 7 ( 2014 ).
  • Perinchery G , SasakiM , AnganA , KumarV , CarrollP , DahiyaR . Deletion of Y-chromosome specific genes in human prostate cancer . J. Urol.163 , 1339 – 1342 ( 2000 ).
  • Suzuki C , TakahashiK , HayamaSet al. Identification of Myc-associated protein with JmjC domain as a novel therapeutic target oncogene for lung cancer . Mol. Cancer Ther.6 , 542 – 551 ( 2007 ).
  • Uemura M1 , YamamotoH , TakemasaIet al. Jumonji domain containing 1A is a novel prognostic marker for colorectal cancer: in vivo identification from hypoxic tumor cells . Clin. Cancer Res.6 , 4636 – 4646 ( 2010 ).
  • Qi J , NakayamaK , CardiffRDet al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors . Cancer Cell18 , 23 – 38 ( 2010 ).
  • Guo X , ShiM , SunLet al. The expression of histone demethylase JMJD1A in renal cell carcinoma . Neoplasma58 , 153 – 157 ( 2011 ).
  • Yamada D , KobayashiS , YamamotoHet al. Role of the hypoxia-related gene, JMJD1A, in hepatocellular carcinoma: clinical impact on recurrence after hepatic resection . Ann. Surg. Oncol.19 , 355 – 364 ( 2011 ).
  • Kim TK , GoreSD , ZeidanAM . Epigenetic therapy in acute myeloid leukemia: current and future directions . Semin. Hematol.52 ( 3 ), 172 – 183 ( 2015 ).
  • Patani N , JiangWG , NewboldRF , MokbelK . Histone-modifier gene expression profiles are associated with pathological and clinical outcomes in human breast cancer . Anticancer Res.31 , 4115 – 4125 ( 2011 ).
  • Pryor JG , Brown-KipphutBA , IqbalA , ScottGA . Microarray comparative genomic hybridization detection of copy number changes in desmoplastic melanoma and malignant peripheral nerve sheath tumor . Am. J. Dermatopathol33 , 780 – 785 ( 2011 ).
  • Liu G , Bollig-FischerA , KreikeBet al. Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer . Oncogene28 , 4491 – 4500 ( 2009 ).
  • Ehrbrecht A , MüllerU , WolterMet al. Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components . J. Pathol.208 , 554 – 563 ( 2006 ).
  • Vinatzer U , GollingerM , MüllauerL , RadererM , ChottA , StreubelB . Mucosa-associated lymphoid tissue lymphoma: novel translocations including rearrangements of ODZ2, JMJD2C, and CNN . Clin. Cancer Res.14 ( 20 ), 6426 – 6431 ( 2008 ).
  • Sinha S , SinghRK , AlamN , RoyA , RoychoudhuryS , PandaCK . Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: pathological significance in early- and late onset breast carcinoma . Mol. Cancer7 , 84 ( 2008 ).
  • Ghosh A , GhoshS , MaitiGPet al. Association of FANCC and PTCH1 with the development of early dysplastic lesions of the head and neck . Ann. Surg. Oncol.19 , 528 – 538 ( 2011 ).
  • Agger K , CloosPA , RudkjaerLet al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A–ARF locus in response to oncogene- and stress-induced senescence . Genes Dev.23 , 1171 – 1176 ( 2009 ).
  • Barradas M , AndertonE , AcostaJCet al. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS . Genes Dev.23 , 1177 – 1182 ( 2009 ).
  • van Haaften G , DalglieshGL , DaviesHet al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer . Nat. Genet.41 , 521 – 523 ( 2009 ).
  • Shen Y , GuoX , WangYet al. Expression and significance of histone H3K27 demethylases in renal cell carcinoma . BMC Cancer12 , 470 ( 2012 ).
  • Gui Y , GuoG , HuangYet al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder . Nat. Genet.43 , 875 – 878 ( 2011 ).
  • Jankowska AM , MakishimaH , TiuRVet al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A . Blood118 , 3932 – 3941 ( 2011 ).
  • Kottakis F , PolytarchouC , FoltopoulouP , SanidasI , KampranisSC , TsichlisPN . FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2BmiR-101-EZH2 pathway . Mol. Cell43 , 285 – 298 ( 2011 ).
  • He J , NguyenAT , ZhangY . KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia . Blood117 , 3869 – 3880 ( 2011 ).
  • Tzatsos A , PaskalevaP , FerrariFet al. KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs . J. Clin. Invest.123 ( 2 ), 727 – 739 ( 2013 ).
  • Zhang X , BoltM , GuertinMJet al. Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor alpha target gene activation . Proc. Natl Acad. Sci. USA109 , 13331 – 13336 ( 2012 ).
  • Wang Y , WysockaJ , SayeghJet al. Human PAD4 regulates histone arginine methylation levels via demethylimination . Science306 , 279 – 283 ( 2004 ).
  • Kooistra SM , HelinK . Molecular mechanisms and potential functions of histone demethylases . Nat. Rev. Mol. Cell Biol.13 , 297 – 311 ( 2012 ).
  • Hausinger RP . FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes . Crit. Rev. Biochem. Mol. Biol.39 , 21 – 68 ( 2004 ).
  • McDonough MA . Structural studies on human 2-oxoglutarate dependent oxygenases . Curr. Opin. Struct. Biol.20 , 659 – 672 ( 2010 ).
  • Whetstine JR , NottkeA , LanFet al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases . Cell125 , 467 – 481 ( 2006 ).
  • Klose RJ , YamaneK , BaeYet al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36 . Nature442 , 312 – 316 ( 2006 ).
  • Cloos PA , ChristensenJ , AggerKet al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3 . Nature442 , 307 – 311 ( 2006 ).
  • Fodor BD , KubicekS , YonezawaMet al. Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells . Genes Dev.20 , 1557 – 1562 ( 2006 ).
  • Forneris F , BindaC , VanoniMA , BattaglioliE , MatteviA . Human histone demethylase LSD1 reads the histone code . J. Biol. Chem.280 ( 50 ), 41360 – 41365 ( 2005 ).
  • Edmondson DE , BindaC , MatteviA . Structural insights into the mechanism of amine oxidation by monoamine oxidases A and B . Arch. Biochem. Biophys.464 , 269 – 276 ( 2007 ).
  • Chen Y , YangY , WangFet al. Crystal structure of human histone lysine-specific demethylase 1 (LSD1) . Proc. Natl Acad. Sci. USA103 , 13956 – 13961 ( 2006 ).
  • Rotili D , MaiA . Targeting histone demethylases: a new avenue for the fight against cancer . Genes Cancer2 ( 6 ), 663 – 679 ( 2011 ).
  • Zheng YC , MaJ , WangZet al. A systematic review of histone lysine-specific demethylase 1 and its inhibitors . Med. Res. Rev.35 ( 5 ), 1032 – 1071 ( 2015 ).
  • Stavropoulos P , BlobelG , HoelzA . Crystal structure and mechanism of human lysine-specific demethylase-Nat . Struct. Mol. Biol.13 , 626 – 632 ( 2006 ).
  • Hou H , YuH . Structural insights into histone lysine demethylation . Curr. Opin. Struct. Biol.20 ( 6 ), 739 – 748 ( 2010 ).
  • Wang J , ScullyK , ZhuXet al. Opposing LSD1 complexes function in developmental gene activation and repression programmes . Nature446 ( 7138 ), 882 – 887 ( 2007 ).
  • Biswas D , MilneTA , BasrurVet al. Function of leukemogenic mixed lineage leukemia 1 (MLL) fusion proteins through distinct partner protein complexes . Proc. Natl Acad. Sci. USA108 , 15751 – 15756 ( 2011 ).
  • Nakamura T , MoriT , TadaSet al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation . Mol. Cell10 , 1119 – 1128 ( 2002 ).
  • Zibetti C , AdamoA , BindaCet al. Alternative splicing of the histone demethylase LSD1/KDM1 contributes to the modulation of neurite morphogenesis in the mammalian nervous system . J. Neurosci.30 ( 7 ), 2521 – 2532 ( 2010 ).
  • Wang J , TeleseF , TanYet al. LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control . Nat. Neurosci.18 ( 9 ), 1256 – 1264 ( 2015 ).
  • Lee MG , WynderC , BocharDA , HakimiMA , CoochN , ShiekhattarR . Functional interplay between histone demethylase and deacetylase enzymes . Mol. Cell. Biol.26 , 6395 – 6402 ( 2006 ).
  • Shi YJ , MatsonC , LanF , IwaseS , BabaT , ShiY . Regulation of LSD1 histone demethylase activity by its associated factors . Mol. Cell19 , 857 – 864 ( 2005 ).
  • Lin Y , WuY , LiJet al. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase . EMBO J.29 ( 11 ), 1803 – 1816 ( 2010 ).
  • Wang J , HeviS , KurashJKet al. The lysine demethylase LSD1 is required for maintenance of global DNA methylation . Nat. Genet.41 ( 1 ), 125 – 129 ( 2009 ).
  • Adamo A , SeséB , BoueSet al. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells . Nat. Cell Biol.13 ( 6 ), 652 – 659 ( 2011 ).
  • Foster CT , DoveyOM , LezinaLet al. Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability . Mol. Cell Biol.30 ( 20 ), 4851 – 4863 ( 2010 ).
  • Sun G , AlzayadyK , StewartRet al. Histone demethylase LSD1 regulates neural stem cell proliferation . Mol. Cell Biol.30 ( 8 ), 1997 – 2005 ( 2010 ).
  • Hakimi MA , BocharDA , ChenowethJ , LaneWS , MandelG , ShiekhattarR . A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes . Proc. Natl Acad. Sci. USA99 ( 11 ), 7420 – 7425 ( 2002 ).
  • Ballas N , GrunseichC , LuDD , SpehJC , MandelG . REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis . Cell121 ( 4 ), 645 – 657 ( 2005 ).
  • Sun G , YeP , MuraiKet al. miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells . Nat. Commun.2 ( 529 ), 1 – 10 ( 2011 ).
  • Yokoyama A , TakezawaS , SchüleR , KitagawaH , KatoS . Transrepressive function of TLX requires the histone demethylase LSD . Mol. Cell Biol.28 , 3995 – 4003 ( 2008 ).
  • Kim J , SinghAK , TakataYet al. LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice . Nat. Commun.6 , 10116 ( 2015 ).
  • Musri MM , CarmonaMC , HanzuFA , KalimanP , GomisR , PárrizasM . Histone demethylase LSD1 regulates adipogenesis . J. Biol. Chem.285 ( 39 ), 30034 – 30041 ( 2010 ).
  • Choi J , JangH , KimH , KimST , ChoEJ , YounHD . Histone demethylase LSD1 is required to induce skeletal muscle differentiation by regulating myogenic factors . Biochem. Biophys. Res. Commun.401 ( 3 ), 327 – 332 ( 2010 ).
  • Thambyrajah R , MazanM , PatelRet al. GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD . Nat. Cell Biol.18 ( 1 ), 21 – 32 ( 2015 ).
  • Takeuchi M , FuseY , WatanabeMet al. LSD1/KDM1A promotes hematopoietic commitment of hemangioblasts through downregulation of Etv . Proc. Natl Acad. Sci. USA112 ( 45 ), 13922 – 13927 ( 2015 ).
  • Kerenyi MA , ShaoZ , HsuYJet al. Histone demethylase LSD1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation . Elife2 , e00633 ( 2013 ).
  • Saleque S , KimJ , RookeHM , OrkinSH . Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD . Mol. Cell27 , 562 – 572 ( 2007 ).
  • Hu X , LiX , ValverdeKet al. LSD1-mediated epigenetic modification is required for TAL1 function and hematopoiesis . Proc. Natl Acad. Sci. USA106 ( 25 ), 10141 – 10146 ( 2009 ).
  • Su ST , YingHY , ChiuYK , LinFR , ChenMY , LinKI . Involvement of histone demethylase LSD1 in Blimp-1-mediated gene repression during plasma cell differentiation . Mol. Cell Biol.29 ( 6 ), 1421 – 1431 ( 2009 ).
  • Lamouille S , XuJ , DerynckR . Molecular mechanisms of epithelial–mesenchymal transition . Nat. Rev. Mol. Cell Biol.15 , 178 – 196 ( 2014 ).
  • Ferrari-Amorotti G , FragliassoV , EstekiRet al. Inhibiting interactions of lysine demethylase LSD1 with snail/slug blocks cancer cell invasion . Cancer Res.73 ( 1 ), 235 – 245 ( 2013 ).
  • Wang Y , ZhangH , ChenYet al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer . Cell138 ( 4 ), 660 – 672 ( 2009 ).
  • Whyte WA , BilodeauS , OrlandoDAet al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation . Nature482 ( 7384 ), 221 – 225 ( 2012 ).
  • Lee MG , WynderC , CoochN , ShiekhattarR . An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation . Nature437 , 432 – 435 ( 2005 ).
  • Li Q , ShiL , GuiBet al. Binding of the JmjC demethylase JARID1B to LSD1/NuRD suppresses angiogenesis and metastasis in breast cancer cells by repressing chemokine CCL14 . Cancer Res.71 ( 21 ), 6899 – 6908 ( 2011 ).
  • Vander Heiden MG , CantleyLC , ThompsonCB . Understanding the Warburg effect: the metabolic requirements of cell proliferation . Science324 , 1029 – 1033 ( 2009 ).
  • Sakamoto A , HinoS , NagaokaKet al. Lysine demethylase LSD1 coordinates glycolytic and mitochondrial metabolism in hepatocellular carcinoma cells . Cancer Res.75 , 1445 – 1456 ( 2015 ).
  • Qin Y , ZhuW , XuWet al. LSD1 sustains pancreatic cancer growth via maintaining HIF1alpha-dependent glycolytic process . Cancer Lett.347 , 225 – 232 ( 2014 ).
  • Hino S , SakamotoA , NagaokaKet al. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure . Nat. Commun.3 , 758 ( 2012 ).
  • Garcia-Bassets I , KwonYS , TeleseFet al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors . Cell128 , 505 – 518 ( 2007 ).
  • Metzger E , WissmannM , YinNet al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription . Nature437 , 436 – 439 ( 2005 ).
  • Yang M , GockeCB , LuoXet al. Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase . Mol. Cell23 , 377 – 387 ( 2006 ).
  • Nair SS , NairBC , CortezVet al. PELP1 is a reader of histone H3 methylation that facilitates oestrogen receptor-alpha target gene activation by regulating lysine demethylase 1 specificity . EMBO Rep.11 , 438 – 444 ( 2010 ).
  • Pollock JA , LarreaMD , JasperJS , McDonnellDP , McCaffertyDG . Lysine-specific histone demethylase 1 inhibitors control breast cancer proliferation in ERα -dependent and -independent manners . ACS Chem. Biol.7 ( 7 ), 1221 – 1231 ( 2012 ).
  • Huang J , SenguptaR , EspejoABet al. p53 is regulated by the lysine demethylase LSD1 . Nature449 ( 7158 ), 105 – 108 ( 2007 ).
  • Kontaki H , TalianidisI . Lysine methylation regulates E2F1-induced cell death . Mol. Cell39 ( 1 ), 152 – 160 ( 2010 ).
  • Yang J , HuangJ , DasguptaMet al. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes . Proc. Natl Acad. Sci. USA107 , 21499 – 21504 ( 2010 ).
  • Cho HS , SuzukiT , DohmaeNet al. Demethylation of RB regulator MYPT1 by histone demethylase LSD1 promotes cell cycle progression in cancer cells . Cancer Res.71 ( 3 ), 655 – 660 ( 2011 ).
  • Sugino N , KawaharaM , TatsumiGet al. A novel LSD1 inhibitor NCD38 ameliorates MDS-related leukemia with complex karyotype by attenuating leukemia programs via activating super-enhancers . Leukemia doi:10.1038/leu.2017.59 ( 2017 ) ( Epub ahead of print ).
  • Ishikawa Y , GamoK1 , YabukiMet al. A novel LSD1 inhibitor T-3775440 disrupts GFI1B-containing complex leading to transdifferentiation and impaired growth of AML cells . Mol. Cancer Ther.16 ( 2 ), 273 – 284 ( 2017 ).
  • Yatim A , BenneC , SobhianBet al. NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function . Mol. Cell48 , 445 – 458 ( 2012 ).
  • Li Y , DengC , HuXet al. Dynamicinteraction between TAL1 oncoprotein and LSD1 regulates TAL1 function in hematopoiesis and leukemogenesis . Oncogene31 , 5007 – 5018 ( 2012 ).
  • Pajtler KW , WeingartenC , ThorTet al. The KDM1A histone demethylase is a promising new target for the epigenetic therapy of medulloblastoma . Acta Neuropathol. Commun.1 , 19 ( 2013 ).
  • Lian SX , ShaoYB , LiuHBet al. Lysine specific demethylase 1 promotes tumorigenesis and predicts prognosis in gallbladder cancer . Oncotarget6 ( 32 ), 33065 – 33076 ( 2015 ).
  • Li Y , WanX , WeiYet al. LSD1-mediated epigenetic modification contributes to ovarian cancer cell migration and invasion . Oncol. Rep.35 ( 6 ), 3586 – 3592 ( 2016 ).
  • Qin Y , ZhuW , XuWet al. LSD1 sustains pancreatic cancer growth via maintaining HIF1α-dependent glycolytic process . Cancer Lett.347 ( 2 ), 225 – 232 ( 2014 ).
  • Binda C , ValenteS , RomanenghiMet al. Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSDJ . Am. Chem. Soc.132 , 6827 – 6833 ( 2010 ).
  • Schenk T , ChenWC , GöllnerSet al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia . Nat. Med.18 , 605 – 611 ( 2012 ).
  • Baker JA , FyfeMCT . WO2011106106A2 ( 2011 ).
  • Vankayalapati H , SornaV , WarnerSLet al. WO2014205213A1 ( 2014 ).
  • Fiskus W , SharmaS , ShahBet al. Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells . Leukemia28 , 2155 – 2164 ( 2014 ).
  • McGrath JP , WilliamsonKE , BalasubramanianSet al. Pharmacological inhibition of the histone lysine demethylase KDM1A suppresses the growth of multiple acute myeloid leukemia subtypes . Cancer Res.76 ( 7 ), 1975 – 1988 ( 2016 ).
  • Zhang X , LuF , WangJet al. Pluripotent stem cell protein Sox2 confers sensitivity to LSD1 inhibition in cancer cells . Cell Rep.5 ( 2 ), 445 – 457 ( 2013 ).
  • Mohammad HP , SmithemanKN , KamatCDet al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC . Cancer Cell28 ( 1 ), 57 – 69 ( 2015 ).
  • Goossens S , PeirsS , Van LoockeWet al. Oncogenic ZEB2 activation drives sensitivity toward KDM1A inhibition in T-cell acute lymphoblastic leukemia . Blood129 ( 8 ), 981 – 990 ( 2017 ).
  • Mehdipour P , SantoroF , MinucciS . Epigenetic alterations in acute myeloid leukemias . FEBS J.282 ( 9 ), 1786 – 1800 ( 2015 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.