193
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Differential Methylation of lncRNA KCNQ1OT1 Promoter Polymorphism was Associated with Symptomatic Cardiac Long QT

, , , , , , , , & show all
Pages 1049-1057 | Received 14 Feb 2017, Accepted 22 May 2017, Published online: 27 Jul 2017

References

  • Schwartz PJ , Stramba-BadialiM , CrottiLet al. Prevalence of the congenital long QT syndrome . Circulation120 , 1761 – 1767 ( 2009 ).
  • Priori SG , WildeAA , HorieMet al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013 . Heart Rhythm10 , 1932 – 1963 ( 2013 ).
  • Splawski I , ShenJ , TimothyKWet al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2 . Circulation102 , 1178 – 1185 ( 2000 ).
  • Tester DJ , WillML , HaglundCM , AckermanMJ . Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing . Heart Rhythm2 , 507 – 517 ( 2005 ).
  • Taggart NW , HaglundCM , TesterDJ , AckermanMJ . Diagnostic miscues in congenital long-QT syndrome . Circulation115 , 2613 – 2620 ( 2007 ).
  • Priori SG , NapolitanoC , SchwartzPJ . Low penetrance in the long-QT syndrome: clinical impact . Circulation99 , 529 – 533 ( 1999 ).
  • Priori SG , SchwartzPJ , NapolitanoCet al. Risk stratification in the long-QT syndrome . N. Engl. J. Med.348 , 1866 – 1874 ( 2003 ).
  • Gouas L , NicaudV , BerthetMet al. Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy population . Eur. J. Hum. Genet.13 , 1213 – 1222 ( 2005 ).
  • Newton-Cheh C , GuoCY , LarsonMGet al. Common genetic variation in KCNH2 is associated with QT interval duration: the Framingham Heart Study . Circulation116 , 1128 – 1136 ( 2007 ).
  • Newton-Cheh C , EijgelsheimM , RiceKM . Common variants at ten loci influence QT interval duration in the QTGEN Study . Nat. Genet.41 , 399 – 406 ( 2009 ).
  • Eijgelsheim M , AarnoudseAL , RivadeneiraFet al. Identification of a common variant at the NOS1AP locus strongly associated to QT-interval duration . Hum. Mol. Genet.18 , 347 – 357 ( 2009 ).
  • Duchatelet S , CrottiL , PeatRAet al. Identification of a KCNQ1 polymorphism acting as a protective modifier against arrhythmic risk in long-QT syndrome . Circ. Cardiovasc. Genet.6 , 354 – 361 ( 2013 ).
  • Earle N , Yeo HanD , PilbrowAet al. Single nucleotide polymorphisms in arrhythmia genes modify the risk of cardiac events and sudden death in long QT syndrome . Heart Rhythm11 , 76 – 82 ( 2014 ).
  • Kolder IC , TanckMW , PostemaPGet al. Analysis for genetic modifiers of disease severity in patients with long-QT syndrome type 2 . Circ. Cardiovasc. Genet.8 , 447 – 456 ( 2015 ).
  • Amin AS , GiudicessiJR , TijsenAJet al. Variants in the 3′ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner . Eur. Heart J.33 , 714 – 723 ( 2012 ).
  • Smilinich NJ , DayCD , FitzpatrickGVet al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome . Proc. Natl Acad. Sci. USA96 , 8064 – 8069 ( 1999 ).
  • Mancini-DiNardo D , SteeleSJ , IngramRS , TilghmanSM . A differentially methylated region within the gene Kcnq1 functions as an imprinted promoter and silencer . Hum. Mol. Genet.12 , 283 – 294 ( 2003 ).
  • Lewis A , GreenK , DawsonCet al. Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo . Development133 , 4203 – 4210 ( 2006 ).
  • Mohammad F , PandeyRR , NaganoTet al. Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region . Mol. Cell Biol.28 , 3713 – 3728 ( 2008 ).
  • Mohammad F , PandeyGK , MondalTet al. Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing . Development139 , 2792 – 2803 ( 2012 ).
  • Cerrato F , VernucciM , PedonePVet al. The 5′ end of the KCNQ1OT1 gene is hypomethylated in the Beckwith-Wiedemann syndrome . Hum. Genet.111 , 105 – 107 ( 2002 ).
  • Korostowski L , SedlakN , EngelN . The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart . PLoS Genet.8 , e1002956 ( 2012 ).
  • Zhang H , ZeitzMJ , WangHet al. Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the Kcnq1 locus . J. Cell Biol.204 , 61 – 75 ( 2014 ).
  • Papait R , KunderfrancoP , StirparoGG , LatronicoMV , CondorelliG . Long noncoding RNA: a new player of heart failure?J. Cardiovasc. Transl. Res.6 , 876 – 883 ( 2013 ).
  • Schwartz PJ , CrottiL , InsoliaR . Long-QT syndrome: from genetics to management . Circ. Arrhythm Electrophysiol.5 , 868 – 877 ( 2012 ).
  • Gómez J , RegueroJR , MorísC , AlvarezV , CotoE . Non optical semi-conductor next generation sequencing of the main cardiac QT-interval duration genes in pooled DNA samples . J. Cardiovasc. Transl. Res.7 , 133 – 137 ( 2014 ).
  • Riobello C , GómezJ , Gil-PeñaHet al. KCNQ1 gene variants in the risk for Type 2 diabetes and impaired renal function in the Spanish Renastur cohort . Mol. Cell Endocrinol.427 , 86 – 91 ( 2016 ).
  • The R Project for Statistical Computing . www.r-project.org .
  • OEGE – Online Encyclopedia for Genetic Epidemiology studies . www.oege.org/software/hwe-mr-calc.shtml .
  • Ensembl . www.ensembl.org .
  • Gurrieri F , ZollinoM , OlivaAet al. Mild Beckwith-Wiedemann and severe long-QT syndrome due to deletion of the imprinting center 2 on chromosome 11p . Eur. J. Hum. Genet.2 , 965 – 969 ( 2013 ).
  • Itoh H , BerthetM , FressartVet al. Asymmetry of parental origin in long QT syndrome: preferential maternal transmission of KCNQ1 variants linked to channel dysfunction . Eur. J. Hum. Genet.24 , 1160 – 1166 ( 2016 ).
  • Yasuda K , MiyakeK , HorikawaYet al. Variants in KCNQ1 are associated with susceptibility to Type 2 diabetes mellitus . Nat. Genet.40 , 1092 – 1097 ( 2008 ).
  • Demars J , Le BoucY , El-OstaA , GicquelC . Epigenetic and genetic mechanisms of abnormal 11p15 genomic imprinting in Silver-Russell and Beckwith-Wiedemann syndromes . Curr. Med. Chem.18 , 1740 – 1750 ( 2011 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.