2,237
Views
0
CrossRef citations to date
0
Altmetric
Commentary

Epigenetics of cancer-associated muscle catabolism

, , , , &
Pages 1259-1265 | Published online: 25 Sep 2017

References

  • Walsh D , RybickiL . Symptom clustering in advanced cancer . Support. Care Cancer14 ( 8 ), 831 – 836 ( 2006 ).
  • Dewys WD , BeggC , LavinPTet al. Prognostic effect of weight loss prior to chemotherapy in cancer patients . Am. J. Med.69 ( 4 ), 491 – 497 ( 1980 ).
  • Martin L , BirdsellL , MacdonaldNet al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index . J. Clin. Oncol.31 , 1539 – 1547 ( 2013 ).
  • Cai D , FrantzJD , TawaNEJret al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice . Cell199 , 285 – 298 ( 2004 ).
  • Moore-Carrasco R , BusquetsS , AlmendroVet al. The AP-1/NfkB double inhibitor SP100030 can revert muscle wasting during experimental cancer cachexia . Int. J. Oncol.30 , 1239 – 1245 ( 2007 ).
  • Clarke BA , DrujanD , WillisMSet al. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle . Cell Metab.6 , 376 – 385 ( 2007 ).
  • Cohen S , BraultJJ , GygiSPet al. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation . J. Cell Biol.185 , 1083 – 1095 ( 2009 ).
  • Csibi A , LeibovitchMP , CornilleKet al. MAFbx/Atrogin-1 controls the activity of the initiation factor eIF3-f in skeletal muscle atrophy by targeting multiple C-terminal lysines . J. Biol. Chem.284 , 4413 – 4421 ( 2009 ).
  • Mittal A , BhatnagarS , KumarAet al. The TWEAK, Fa14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice . J. Cell Biol.188 , 833 – 849 ( 2010 ).
  • Gomes MD , LeckerSH , JagoeRTet al. Atrogin-1, a muscle specific F-box protein highly expressed during muscle atrophy . Proc. Natl Acad. Sci. USA98 , 14440 – 14445 ( 2001 ).
  • Bodine SC , LatresE , BaumhueterSet al. Identification of ubiquitin ligases required for skeletal muscle atrophy . Science294 , 1704 – 1708 ( 2001 ).
  • Argiles JM , OrpiM , BusquetsS , Lopez-SorianoFJ . Myostatin, more than just a regulator of muscle mass . Drug Discov. Today17 , 702 – 709 ( 2012 ).
  • Clop A , MarcqF , TakedaHet al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep . Nat. Genet.28 , 813 – 818 ( 2006 ).
  • Lee SJ , McPherronAC . Reulation of myostatin activity and muscle growth . Proc. Natl Acad. Sci. USA98 , 9306 – 9311 ( 2001 ).
  • McPherron AC , LeeSJ . Double muscling in cattle due to mutations in the myostatin gene . Proc. Natl Acad. Sci. USA94 , 12457 – 12461 ( 1997 ).
  • Schuelke M , WagnerKR , StolzLEet al. Myostatin mutation associated with gross muscle hypertrophy in a child . N. Engl. J. Med.350 , 2682 – 2688 ( 2004 ).
  • Lee SJ , ReedLA , DaviesMVet al. Regulation of muscle growth by multiple ligands signaling through activin type II receptors . Proc. Natl Acad. Sci. USA102 , 18117 – 18122 ( 2005 ).
  • Goodman CA , McNallyRM , HoffmannFMet al. Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo . Mol. Endocrinol.27 ( 11 ), 1946 – 1957 ( 2013 ).
  • Bollinger LM , WitczakCA , HoumardJAet al. SMAD3 augments FoxO3-induced MuRF-1 promoter activity in a DNA-binding-dependent manner . Am. J. Physiol. Cell Physiol.307 ( 3 ), C278 – C287 ( 2014 ).
  • Elkina Y , von HaehlingS , AnkerSDet al. The role of myostatin in muscle wasting: an overview . J. Cachexia Sarcopenia Muscle2 ( 3 ), 143 – 151 ( 2011 ).
  • Sandri M , SandriC , GilbertAet al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy . Cell117 , 399 – 412 ( 2004 ).
  • Sartori R , MilanG , PatronMet al. Smad2 and 3 transcription factors control muscle mass in adulthood . Am. J. Physiol. Cell Physiol.296 , C1248 – C1257 ( 2009 ).
  • Trendelenburg AU , MeyerA , RohnerDet al. Myostatin reduces Akt/TORC1/p70SK signaling, inhibiting myoblast differentiation and myotube size . Am. J. Physiol. Cell Physiol.296 , C1258 – C1270 ( 2009 ).
  • Rommel C , BodineSC , ClarkeBAet al. Mediation of IGF-1 induced skeletal myotube hypertrophy by PI(3)K/AKT/mTOR and PI(3)K/AKT/GSK3 pathways . Nat. Cell Biol.3 , 1009 – 1013 ( 2001 ).
  • Ryall JG , Dell’OrsoS , DerfoulAet al. The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells . Cell Stem Cell16 ( 2 ), 171 – 183 ( 2015 ).
  • Faralli H , DilworthFJ . Dystrophic muscle environment induces changes in cell plasticity . Genes Dev.28 ( 8 ), 809 – 811 ( 2014 ).
  • Marchildon F , FuD , Lala-TabbertN , Wiper-BergeronN . CCAAT/enhancer binding protein beta protects muscle satellite cells from apoptosis after injury and in cancer cachexia . Cell Death Dis.7 , e2109 ( 2016 ).
  • He WA , BerandiE , CardilloVMet al. NF-kB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia . J. Clin. Invest.123 ( 11 ), 4821 – 4835 ( 2013 ).
  • Carrió E , MagliA , MuñozMet al. Muscle cell identity requires Pax7-mediated lineage-specific DNA demethylation . BMC Biol.14 , 30 ( 2016 ).
  • Fan H , ZhangR , TesfayeDet al. Sulforaphane causes a major epigenetic repression of myostatin in porcine satellite cells . Epigenetics7 ( 12 ), 1379 – 1390 ( 2012 ).
  • Moresi V , MarroncelliN , ColettiDet al. Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA . Biochim. Biophys. Acta1849 ( 3 ), 309 – 316 ( 2015 ).
  • Ma G , WangY , LiYet al. MiR-206, a key modulator of skeletal muscle development and disease . Int. J. Biol. Sci.11 ( 3 ), 345 – 352 ( 2015 ).
  • Marchildon F , FuD , Lala-TabbertNet al. CCAAT/enhancer binding protein beta protects muscle satellite cells from apoptosis after injury and in cancer cachexia . Cell Death Dis.7 , e2109 ( 2016 ).
  • Liu N , WilliamsAH , MaxeinerJMet al. MicroRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice . J. Clin. Invest.122 ( 6 ), 2054 – 2065 ( 2012 ).
  • McKinsey TA , ZhangCL , LuJet al. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation . Nature408 ( 6808 ), 106 – 111 ( 2000 ).
  • Puri PL , IezziS , StieglerPet al. Class I histone deacetylases sequentially interact with MyoD and pRB during skeletal myogenesis . Mol. Cell8 ( 4 ), 885 – 897 ( 2000 ).
  • Sun R , ZhangS , HuWet al. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated Atrogin1 expression in cancer cachexia . Am. J. Physiol. Cell Physiol.311 ( 1 ), C101 – C115 ( 2016 ).
  • Tseng YC , KulpDK , LaiILet al. Preclinical investigation of the novel histone deacetylase inhibitor AR-42 in the treatment of cancer-induced cachexia . J. Natl Cancer Inst.107 ( 12 ), doi:10.1093/jnci/djv274. ( 2015 ) ( Epub ahead of print ).
  • Acharyya S , SharmaSM , ChengASet al. TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: implications in duchenne muscular dystrophy . PLoS ONE5 ( 8 ), e12479 ( 2010 ).
  • Kim MS , FielitzJ , McAnallyJet al. Protein kinase D1 stimulates MEF2 activity in skeletal muscle and enhances muscle performance . Mol. Cell Biol.28 ( 11 ), 3600 – 3609 ( 2008 ).
  • Serra C , PalaciosD , MozzettaCet al. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation . Mol. Cell28 ( 2 ), 200 – 213 ( 2007 ).
  • Sincennes MC , BrunCE , RudnickiMA . Concise review: epigenetic regulation of myogenesis in health and disease . Stem Cells Transl. Med.5 ( 3 ), 282 – 290 ( 2016 ).
  • Gonnella P , AlamdariN , TizioSet al. C/EBPbeta regulates dexamethasone-induced muscle cell atrophy and expression of atrogin-1 and MuRF1 . J. Cell Biochem.112 ( 7 ), 1737 – 1748 ( 2011 ).
  • Chamberlain W , GonellaP , AlamdariNet al. Multiple muscle wasting-related transcription factors are acetylated in dexamethasone-treated muscle cells . Biochem. Cell Biol.90 ( 2 ), 200 – 208 ( 2012 ).
  • Tseng YC , KulpSK , LaiILet al. Preclinical investigation of the novel histone deacetylase inhibitor AR-42 in the treatment of cancer-induced cachexia . J. Natl Cancer Inst.107 ( 12 ), doi:10.1093/jnci/djv274. ( 2015 ) ( Epub ahead of print ).
  • Alamdari N , AversaZ , CastilleroEet al. Acetylation and deacetylation – novel factors in muscle wasting . Metabolism62 ( 1 ), 1 – 11 ( 2013 ).
  • Guasconi V , PuriPL . Epigenetic drugs in the treatment of skeletal muscle atrophy . Curr. Opin. Clin. Nutr. Metab. Care11 ( 3 ), 233 – 241 ( 2008 ).
  • Lu J , McKinseyTA , NicolRLet al. Signal-dependent activation of the MEF2 transcription factor by disassociation from histone deacetylases . Proc. Natl. Acad. Sci. USA97 ( 8 ), 4070 – 4075 ( 2000 ).
  • Bassel-Duby R , OlsonEN . Signaling pathways in skeletal muscle remodeling . Annu. Rev. Biochem.75 , 19 – 37 ( 2006 ).
  • Serra C , PalaciosD , MozzettaCet al. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation . Mol. Cell28 ( 2 ), 200 – 213 ( 2007 ).