334
Views
0
CrossRef citations to date
0
Altmetric
Review

Using Induced Pluripotent Stem Cells to Explore Genetic and Epigenetic Variation Associated With Alzheimer’S Disease

, , &
Pages 1455-1468 | Received 14 Jun 2017, Accepted 23 Aug 2017, Published online: 03 Oct 2017

References

  • What is dementia? www.alz.org/what-is-dementia.asp .
  • Prince M , WimoA , GuerchetM , AliG , WuY , PrinaM . The global impact of dementia: an analysis of prevalence, incidence, cost and trends . Alzheimer. Dis. Int.1 – 87 ( 2015 ).
  • Blurton-Jones M , LaferlaFM . Pathways by which Abeta facilitates tau pathology . Curr. Alzheimer Res.3 ( 5 ), 437 – 448 ( 2006 ).
  • Butterfield DA , Boyd-KimballD . Amyloid beta-peptide(1–42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain . Brain Pathol.14 ( 4 ), 426 – 432 ( 2004 ).
  • Braak H , BraakE . Neuropathological stageing of Alzheimer-related changes . Acta Neuropathol.82 ( 4 ), 239 – 259 ( 1991 ).
  • Rasool CG , SvendsenCN , SelkoeDJ . Neurofibrillary degeneration of cholinergic and noncholinergic neurons of the basal forebrain in Alzheimer’s disease . Ann. Neurol.20 ( 4 ), 482 – 488 ( 1986 ).
  • Braak H , BraakE . Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections . Brain Pathol.1 ( 3 ), 213 – 216 ( 1991 ).
  • Kalus P , BraakH , BraakE , BohlJ . The presubicular region in Alzheimer’s disease: topography of amyloid deposits and neurofibrillary changes . Brain Res.494 ( 1 ), 198 – 203 ( 1989 ).
  • Rogers J , MorrisonJH . Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer’s disease . J. Neurosci.5 ( 10 ), 2801 – 2808 ( 1985 ).
  • Van Hoesen GW , HymanBT . Hippocampal formation: anatomy and the patterns of pathology in Alzheimer’s disease . Prog. Brain Res.83 , 445 – 457 ( 1990 ).
  • Francis PT , PalmerAM , SnapeM , WilcockGK . The cholinergic hypothesis of Alzheimer’s disease: a review of progress . J. Neurol. Neurosurg. Psychiatry66 ( 2 ), 137 – 147 ( 1999 ).
  • Thal DR , RubU , OrantesM , BraakH . Phases of A beta-deposition in the human brain and its relevance for the development of AD . Neurology58 ( 12 ), 1791 – 1800 ( 2002 ).
  • Cragg BG . Autonomic functions of the hippocampus . Nature182 ( 4636 ), 675 – 676 ( 1958 ).
  • Diamond IT , HallWC . Evolution of neocortex . Science164 ( 3877 ), 251 – 262 ( 1969 ).
  • Morris RG , GarrudP , RawlinsJN , O’keefeJ . Place navigation impaired in rats with hippocampal lesions . Nature297 ( 5868 ), 681 – 683 ( 1982 ).
  • Jack CR , Jr , KnopmanDS , JagustWJet al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade . Lancet Neurol.9 ( 1 ), 119 – 128 ( 2010 ).
  • Price JL , MorrisJC . Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease . Ann. Neurol.45 ( 3 ), 358 – 368 ( 1999 ).
  • Gatz M , ReynoldsCA , FratiglioniLet al. Role of genes and environments for explaining Alzheimer disease . Arch. Gen. Psychiatry63 ( 2 ), 168 – 174 ( 2006 ).
  • Poirier J . Apolipoprotein E, cholesterol transport and synthesis in sporadic Alzheimer’s disease . Neurobiol. Aging26 ( 3 ), 355 – 361 ( 2005 ).
  • Nathan BP , BellostaS , SananDA , WeisgraberKH , MahleyRW , PitasRE . Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro . Science264 ( 5160 ), 850 – 852 ( 1994 ).
  • Huang Y . Abeta-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer’s disease . Trends Mol. Med.16 ( 6 ), 287 – 294 ( 2010 ).
  • Zlokovic BV . Cerebrovascular effects of apolipoprotein E: implications for Alzheimer disease . JAMA Neurol.70 ( 4 ), 440 – 444 ( 2013 ).
  • Corder EH , SaundersAM , StrittmatterWJet al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families . Science261 ( 5123 ), 921 – 923 ( 1993 ).
  • Slooter AJ , CrutsM , KalmijnSet al. Risk estimates of dementia by apolipoprotein E genotypes from a population-based incidence study: the Rotterdam Study . Arch. Neurol.55 ( 7 ), 964 – 968 ( 1998 ).
  • Lambert JC , Ibrahim-VerbaasCA , HaroldDet al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease . Nat. Genet.45 ( 12 ), 1452 – 1458 ( 2013 ).
  • Ebbert MT , RidgePG , WilsonARet al. Population-based analysis of Alzheimer’s disease risk alleles implicates genetic interactions . Biol. Psychiatry75 ( 9 ), 732 – 737 ( 2014 ).
  • Escott-Price V , SimsR , BannisterCet al. Common polygenic variation enhances risk prediction for Alzheimer’s disease . Brain138 ( Pt 12 ), 3673 – 3684 ( 2015 ).
  • Escott-Price V , ShoaiM , PitherR , WilliamsJ , HardyJ . Polygenic score prediction captures nearly all common genetic risk for Alzheimer’s disease . Neurobiol. Aging49 , 214.e217 – 214.e211 ( 2017 ).
  • Ridge PG , MukherjeeS , CranePK , KauweJS , Alzheimer’s Disease Genetics C . Alzheimer’s disease: analyzing the missing heritability . PLoS ONE8 ( 11 ), e79771 ( 2013 ).
  • Cruchaga C , KarchCM , JinSCet al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease . Nature505 ( 7484 ), 550 – 554 ( 2014 ).
  • Jakobsdottir J , Van Der LeeSJ . Rare functional variant in TM2D3 is associated with late-onset Alzheimer’s disease . PLoS Genet.12 ( 10 ), e1006327 ( 2016 ).
  • Jonsson T , StefanssonH , SteinbergSet al. Variant of TREM2 associated with the risk of Alzheimer’s disease . N. Engl. J. Med.368 ( 2 ), 107 – 116 ( 2013 ).
  • Guerreiro R , WojtasA , BrasJet al. TREM2 variants in Alzheimer’s disease . N. Engl. J. Med.368 ( 2 ), 117 – 127 ( 2013 ).
  • Lord J , TurtonJ , MedwayCet al. Next generation sequencing of CLU, PICALM and CR1: pitfalls and potential solutions . Int. J. Mol. Epidemiol. Genet.3 ( 4 ), 262 – 275 ( 2012 ).
  • Tehranchi AK , MyrthilM , MartinT , HieBL , GolanD , FraserHB . Pooled chIP-seq links variation in transcription factor binding to complex disease risk . Cell165 ( 3 ), 730 – 741 ( 2016 ).
  • Zhernakova DV , DeelenP . Identification of context-dependent expression quantitative trait loci in whole blood . Nat. Genet.49 ( 1 ), 139 – 145 ( 2016 ).
  • Serrano-Pozo A , FroschMP , MasliahE , HymanBT . Neuropathological alterations in Alzheimer disease . Cold Spring Harb. Perspect. Med.1 ( 1 ), a006189 ( 2011 ).
  • Lunnon K , IbrahimZ , ProitsiPet al. Mitochondrial dysfunction and immune activation are detectable in early Alzheimer’s disease blood . J. Alzheimers Dis.30 ( 3 ), 685 – 710 ( 2012 ).
  • Zhang B , GaiteriC , BodeaLGet al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease . Cell153 ( 3 ), 707 – 720 ( 2013 ).
  • Karch CM , EzerskiyLA , BertelsenS , GoateAM . Alzheimer’s disease risk polymorphisms regulate gene expression in the ZCWPW1 and the CELF1 loci . PLoS ONE11 ( 2 ), e0148717 ( 2016 ).
  • Tato CM , Joyce-ShaikhB , BanerjeeAet al. The Myeloid receptor PILRβ mediates the balance of inflammatory responses through regulation of IL-27 production . PLoS ONE7 ( 3 ), e31680 ( 2012 ).
  • Li X , LongJ , HeT , BelshawR , ScottJ . Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer’s disease . Sci. Rep.5 , 12393 ( 2015 ).
  • Wes PD , EastonA , CorradiJet al. Tau overexpression impacts a neuroinflammation gene expression network perturbed in Alzheimer’s disease . PLoS ONE9 ( 8 ), e106050 ( 2014 ).
  • Lunnon K , MillJ . Epigenetic studies in Alzheimer’s disease: current findings, caveats, and considerations for future studies . Am. J. Med. Genet. B Neuropsychiatr. Genet.162b ( 8 ), 789 – 799 ( 2013 ).
  • Sung HY , ChoiEN , Ahn JoS , OhS , AhnJH . Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer’s disease model cell line . Biochem. Biophys. Res. Commun.414 ( 4 ), 700 – 705 ( 2011 ).
  • Chen KL , WangSS , YangYY , YuanRY , ChenRM , HuCJ . The epigenetic effects of amyloid-beta(1–40) on global DNA and neprilysin genes in murine cerebral endothelial cells . Biochem. Biophys. Res. Commun.378 ( 1 ), 57 – 61 ( 2009 ).
  • Taher N , MckenzieC , GarrettR , BakerM , FoxN , IsaacsGD . Amyloid-beta alters the DNA methylation status of cell-fate genes in an Alzheimer’s disease model . J. Alzheimers Dis.38 ( 4 ), 831 – 844 ( 2014 ).
  • Mastroeni D , GroverA , DelvauxE , WhitesideC , ColemanPD , RogersJ . Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation . Neurobiol. Aging31 ( 12 ), 2025 – 2037 ( 2010 ).
  • Chouliaras L , MastroeniD , DelvauxEet al. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients . Neurobiol. Aging34 ( 9 ), 2091 – 2099 ( 2013 ).
  • Lashley T , GamiP , ValizadehN , LiA , ReveszT , BalazsR . Alterations in global DNA methylation and hydroxymethylation are not detected in Alzheimer’s disease . Neuropathol. Appl. Neurobiol.41 ( 4 ), 497 – 506 ( 2015 ).
  • Condliffe D , WongA , TroakesCet al. Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer’s disease brain . Neurobiol. Aging35 ( 8 ), 1850 – 1854 ( 2014 ).
  • Coppieters N , DieriksBV , LillC , FaullRL , CurtisMA , DragunowM . Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain . Neurobiol. Aging35 ( 6 ), 1334 – 1344 ( 2014 ).
  • Bradley-Whitman MA , LovellMA . Epigenetic changes in the progression of Alzheimer’s disease . Mech. Ageing Dev.134 ( 10 ), 486 – 495 ( 2013 ).
  • Lunnon K , SmithR , HannonEet al. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease . Nat. Neurosci.17 ( 9 ), 1164 – 1170 ( 2014 ).
  • De Jager PL , SrivastavaG , LunnonK , BurgessJ , SchalkwykLC . Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci . Nat. Neurosci.17 ( 9 ), 1156 – 1163 ( 2014 ).
  • Lord J , CruchagaC . The epigenetic landscape of Alzheimer’s disease . Nat. Neurosci.17 ( 9 ), 1138 – 1140 ( 2014 ).
  • Smith AR , MillJ , SmithRG , LunnonK . Elucidating novel dysfunctional pathways in Alzheimer’s disease by integrating loci identified in genetic and epigenetic studies . Neuroepigenetics6 , 32 – 50 ( 2016 ).
  • Mendioroz M , CelarainN , AltunaMet al. CRTC1 gene is differentially methylated in the human hippocampus in Alzheimer’s disease . Alzheimers Res. Ther.8 ( 1 ), 15 ( 2016 ).
  • Foraker J , MillardSP , LeongLet al. The APOE gene is differentially methylated in Alzheimer’s disease . J. Alzheimers Dis.48 ( 3 ), 745 – 755 ( 2015 ).
  • Smith AR , SmithRG , CondliffeDet al. Increased DNA methylation near TREM2 is consistently seen in the superior temporal gyrus in Alzheimer’s disease brain . Neurobiol. Aging47 , 35 – 40 ( 2016 ).
  • Fischer A , SananbenesiF , WangX , DobbinM , TsaiLH . Recovery of learning and memory is associated with chromatin remodelling . Nature447 ( 7141 ), 178 – 182 ( 2007 ).
  • Cruz JC , TsengHC , GoldmanJA , ShihH , TsaiLH . Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles . Neuron40 ( 3 ), 471 – 483 ( 2003 ).
  • Cruz JC , KimD , MoyLYet al. p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo . J. Neurosci.26 ( 41 ), 10536 – 10541 ( 2006 ).
  • Fischer A , SananbenesiF , PangPT , LuB , TsaiLH . Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory . Neuron48 ( 5 ), 825 – 838 ( 2005 ).
  • Govindarajan N , Agis-BalboaRC , WalterJ , SananbenesiF , FischerA . Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression . J. Alzheimers Dis.26 ( 1 ), 187 – 197 ( 2011 ).
  • Kilgore M , MillerCA , FassDMet al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease . Neuropsychopharmacology35 ( 4 ), 870 – 880 ( 2010 ).
  • Wiley JC , Pettan-BrewerC , LadigesWC . Phenylbutyric acid reduces amyloid plaques and rescues cognitive behavior in AD transgenic mice . Aging Cell10 ( 3 ), 418 – 428 ( 2011 ).
  • Francis YI , FaM , AshrafHet al. Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease . J. Alzheimers Dis.18 ( 1 ), 131 – 139 ( 2009 ).
  • Agis-Balboa RC , PavelkaZ , KerimogluC , FischerA . Loss of HDAC5 impairs memory function: implications for Alzheimer’s disease . J. Alzheimers Dis.33 ( 1 ), 35 – 44 ( 2013 ).
  • Govindarajan N , RaoP , BurkhardtSet al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease . EMBO Mol. Med.5 ( 1 ), 52 – 63 ( 2013 ).
  • Graff J , ReiD , GuanJSet al. An epigenetic blockade of cognitive functions in the neurodegenerating brain . Nature483 ( 7388 ), 222 – 226 ( 2012 ).
  • Milutinovic S , D’alessioAC , DetichN , SzyfM . Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes . Carcinogenesis28 ( 3 ), 560 – 571 ( 2007 ).
  • Dodart JC , BalesKR , GannonKSet al. Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model . Nat. Neurosci.5 ( 5 ), 452 – 457 ( 2002 ).
  • Sacks CA , AvornJ , KesselheimAS . The failure of solanezumab – how the FDA saved taxpayers billions . N. Engl. J. Med.376 ( 18 ), 1706 – 1708 ( 2017 ).
  • Mcgowan E , EriksenJ , HuttonM . A decade of modeling Alzheimer’s disease in transgenic mice . Trends Genet.22 ( 5 ), 281 – 289 ( 2006 ).
  • Takeuchi A , IrizarryMC , DuffKet al. Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss . Am. J. Pathol.157 ( 1 ), 331 – 339 ( 2000 ).
  • Irizarry MC , McNamaraM , FedorchakK , HsiaoK , HymanBT . APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1 . J. Neuropathol. Exp. Neurol.56 ( 9 ), 965 – 973 ( 1997 ).
  • Irizarry MC , SorianoF , McnamaraMet al. Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse . J. Neurosci.17 ( 18 ), 7053 – 7059 ( 1997 ).
  • Kitazawa M , MedeirosR , LaferlaFM . Transgenic mouse models of Alzheimer disease: developing a better model as a tool for therapeutic interventions . Curr. Pharm. Des.18 ( 8 ), 1131 – 1147 ( 2012 ).
  • Rodriguez GA , BurnsMP , WeeberEJ , RebeckGW . Young APOE4 targeted replacement mice exhibit poor spatial learning and memory, with reduced dendritic spine density in the medial entorhinal cortex . Learn. Mem.20 ( 5 ), 256 – 266 ( 2013 ).
  • Chan ES , ShettyMS , SajikumarS , ChenC , SoongTW , WongB-S . ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer’s disease mouse model . Sci. Rep.6 , 26119 ( 2016 ).
  • Evans MJ , KaufmanMH . Establishment in culture of pluripotential cells from mouse embryos . Nature292 ( 5819 ), 154 – 156 ( 1981 ).
  • Takahashi K , YamanakaS . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors . Cell126 ( 4 ), 663 – 676 ( 2006 ).
  • Yamanaka S . A fresh look at iPS cells . Cell137 ( 1 ), 13 – 17 ( 2009 ).
  • Chin MH , MasonMJ , XieWet al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures . Cell Stem Cell5 ( 1 ), 111 – 123 ( 2009 ).
  • Lister R , PelizzolaM , KidaYSet al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells . Nature471 ( 7336 ), 68 – 73 ( 2011 ).
  • Mallon BS , ChenowethJG , JohnsonKRet al. StemCellDB: the human pluripotent stem cell database at the National Institutes of Health . Stem Cell Res.10 ( 1 ), 57 – 66 ( 2013 ).
  • Mallon BS , HamiltonRS , KozhichOAet al. Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin . Stem Cell Res.12 ( 2 ), 376 – 386 ( 2014 ).
  • Kim K , DoiA , WenBet al. Epigenetic memory in induced pluripotent stem cells . Nature467 ( 7313 ), 285 – 290 ( 2010 ).
  • Mikkelsen TS , HannaJ , ZhangXet al. Dissecting direct reprogramming through integrative genomic analysis . Nature454 ( 7200 ), 49 – 55 ( 2008 ).
  • Newman AM , CooperJB . Lab-specific gene expression signatures in pluripotent stem cells . Cell Stem Cell7 ( 2 ), 258 – 262 ( 2010 ).
  • Newman AM , CooperJB . AutoSOME: a clustering method for identifying gene expression modules without prior knowledge of cluster number . BMC Bioinform.11 , 117 ( 2010 ).
  • Lister R , PelizzolaM , DowenRHet al. Human Dna Methylomes at Base Resolution Show Widespread Epigenomic Differences . Nature462 ( 7271 ), 315 – 322 ( 2009 ).
  • Chambers SM , FasanoCA , PapapetrouEP , TomishimaM , SadelainM , StuderL . Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling . Nat. Biotechnol.27 ( 3 ), 275 – 280 ( 2009 ).
  • Lopez-Coviella I , MellottTM , KovachevaVPet al. Developmental pattern of expression of BMP receptors and Smads and activation of Smad1 and Smad5 by BMP9 in mouse basal forebrain . Brain Res.1088 ( 1 ), 49 – 56 ( 2006 ).
  • Shi Y , KirwanP , LiveseyFJ . Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks . Nat. Protoc.7 ( 10 ), 1836 – 1846 ( 2012 ).
  • Moretti A , BellinM , WellingAet al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome . N. Engl. J. Med.363 ( 15 ), 1397 – 1409 ( 2010 ).
  • Lee G , PapapetrouEP , KimHet al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs . Nature461 ( 7262 ), 402 – 406 ( 2009 ).
  • Carvajal-Vergara X , SevillaA , D’souzaSLet al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome . Nature465 ( 7299 ), 808 – 812 ( 2010 ).
  • Marchetto MC , CarromeuC , AcabAet al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells . Cell143 ( 4 ), 527 – 539 ( 2010 ).
  • Nieweg K , AndreyevaA , Van StegenB , TanrioverG , GottmannK . Alzheimer’s disease-related amyloid-beta induces synaptotoxicity in human iPS cell-derived neurons . Cell Death Dis.6 , e1709 ( 2015 ).
  • Duan L , BhattacharyyaBJ , BelmadaniA , PanL , MillerRJ , KesslerJA . Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death . Mol. Neurodegener.9 , 3 ( 2014 ).
  • Young Jessica E , Boulanger-WeillJ , Williams DanielAet al. Elucidating molecular phenotypes caused by the SORL1 Alzheimer’s disease genetic risk factor using human induced pluripotent stem cells . Cell Stem Cell16 ( 4 ), 373 – 385 ( 2015 ).
  • Israel MA , YuanSH , BardyCet al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells . Nature482 ( 7384 ), 216 – 220 ( 2012 ).
  • Kondo T , AsaiM , TsukitaKet al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness . Cell Stem Cell12 ( 4 ), 487 – 496 ( 2013 ).
  • Byrne SM , MaliP , ChurchGM . Genome editing in human stem cells . Methods Enzymol.546 , 119 – 138 ( 2014 ).
  • Mali P , YangL , EsveltKMet al. RNA-Guided human genome engineering via Cas9 . Science339 ( 6121 ), 823 – 826 ( 2013 ).
  • Cong L , RanFA , CoxDet al. Multiplex genome engineering using CRISPR/cas systems . Science339 ( 6121 ), 819 – 823 ( 2013 ).
  • Pires C , SchmidB , PetraeusCet al. Generation of a gene-corrected isogenic control cell line from an Alzheimer’s disease patient iPSC line carrying a A79V mutation in PSEN1 . Stem Cell Res.17 ( 2 ), 285 – 288 ( 2016 ).
  • Woodruff G , YoungJE , MartinezFJet al. The presenilin-1 DeltaE9 mutation results in reduced gamma-secretase activity, but not total loss of PS1 function, in isogenic human stem cells . Cell Rep.5 ( 4 ), 974 – 985 ( 2013 ).
  • Choi SH , KimYH , HebischMet al. A three-dimensional human neural cell culture model of Alzheimer’s disease . Nature515 ( 7526 ), 274 – 278 ( 2014 ).
  • Paquet D , KwartD , ChenAet al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9 . Nature533 ( 7601 ), 125 – 129 ( 2016 ).
  • Cong L , RanFA , CoxDet al. Multiplex genome engineering using CRISPR/Cas systems . Science339 ( 6121 ), 819 – 823 ( 2013 ).
  • Holler CJ , DavisPR , BeckettTLet al. Bridging integrator 1 (BIN1) protein expression increases in the Alzheimer’s disease brain and correlates with neurofibrillary tangle pathology . J. Alzheimers Dis.42 ( 4 ), 1221 – 1227 ( 2014 ).
  • Harold D , AbrahamR , HollingworthPet al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease . Nat. Genet.41 ( 10 ), 1088 – 1093 ( 2009 ).
  • Xu W , TanL , YuJT . The role of PICALM in Alzheimer’s disease . Mol. Neurobiol.52 ( 1 ), 399 – 413 ( 2015 ).
  • Karch CM , GoateAM . Alzheimer’s disease risk genes and mechanisms of disease pathogenesis . Biol. Psychiatry77 ( 1 ), 43 – 51 ( 2015 ).
  • Morgen K , RamirezA , FrolichLet al. Genetic interaction of PICALM and APOE is associated with brain atrophy and cognitive impairment in Alzheimer’s disease . Alzheimers Dement.10 ( 5 Suppl. ), S269 – S276 ( 2014 ).
  • Nordstedt C , CaporasoGL , ThybergJ , GandySE , GreengardP . Identification of the Alzheimer beta/A4 amyloid precursor protein in clathrin-coated vesicles purified from PC12 cells . J. Biol. Chem.268 ( 1 ), 608 – 612 ( 1993 ).
  • Cirrito JR , KangJE , LeeJet al. Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo . Neuron58 ( 1 ), 42 – 51 ( 2008 ).
  • Liu XS , WuH , JiXet al. Editing DNA Methylation in the Mammalian Genome . Cell167 ( 1 ), 233.e217 – 247.e217 ( 2016 ).
  • Bernstein DL , Le LayJE , RuanoEG , KaestnerKH . TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts . J. Clin. Invest.125 ( 5 ), 1998 – 2006 ( 2015 ).
  • Maeder ML , AngstmanJF , RichardsonMEet al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins . Nat. Biotechnol.31 ( 12 ), 1137 – 1142 ( 2013 ).
  • Rivenbark AG , StolzenburgS , BeltranASet al. Epigenetic reprogramming of cancer cells via targeted DNA methylation . Epigenetics7 ( 4 ), 350 – 360 ( 2012 ).
  • Nunna S , ReinhardtR , RagozinS , JeltschA . Targeted methylation of the epithelial cell adhesion molecule (EpCAM) promoter to silence its expression in ovarian cancer cells . PLoS ONE9 ( 1 ), e87703 ( 2014 ).
  • Weick JP . Functional properties of human stem cell-derived neurons in health and disease . Stem Cells Int. 2016 , 4190438 ( 2016 ).
  • Stein JL , De La Torre-UbietaL , TianYet al. A quantitative framework to evaluate modeling of cortical development by neural stem cells . Neuron83 ( 1 ), 69 – 86 ( 2014 ).
  • Mariani J , SimoniniMV , PalejevDet al. Modeling human cortical development in vitro using induced pluripotent stem cells . Proc. Natl Acad. Sci. USA109 ( 31 ), 12770 – 12775 ( 2012 ).
  • Livesey MR , MagnaniD , HardinghamGE , ChandranS , WyllieDJA . Functional properties of in vitro excitatory cortical neurons derived from human pluripotent stem cells . J. Physiol.594 ( 22 ), 6573 – 6582 ( 2016 ).
  • Miller JD . Human iPSC-based modeling of late-onset disease via progerin-induced aging . Cell Stem Cell13 ( 6 ), 691 – 705 ( 2013 ).
  • Mertens J , PaquolaAC , KuMet al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects . Cell Stem Cell17 ( 6 ), 705 – 718 ( 2015 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.