164
Views
0
CrossRef citations to date
0
Altmetric
Review

The Protective Function of Noncoding DNA in Genome Defense of Eukaryotic Male Germ Cells

, , &
Pages 499-517 | Received 23 Aug 2017, Accepted 07 Dec 2017, Published online: 04 Apr 2018

References

  • Gilbert SF . Developmental Biology . Sinauer Associates, Inc., Swarthmore College and the University of Helsinki , Helsinki, Finland ( 2010 ).
  • Fuentes-Mascorro G , SerranoH , RosadoA . Sperm chromatin . Arch. Androl.45 , 215 – 225 ( 2000 ).
  • Nakamura Y , KagamiH , TagamiT . Development, differentiation and manipulation of chicken germ cells . Dev. Growth Diff.55 , 20 – 40 ( 2013 ).
  • Strome S , LehmannR . Germ versus soma decisions: lessons from flies and worms . Science (NY)316 , 392 – 393 ( 2007 ).
  • Kawamura K , TiozzoS , ManniLet al. Germline cell formation and gonad regeneration in solitary and colonial ascidians . Dev. Dynamic.240 , 299 – 308 ( 2011 ).
  • Extavour CG , AkamM . Mechanisms of germ cell specification across the metazoans: epigenesis and preformation . Development130 , 5869 – 5884 ( 2003 ).
  • Saitou M , YamajiM . Primordial germ cells in mice . Cold Spring Harbor Persp. Biol.4 ( 11 ), pii: a008375 ( 2012 ).
  • Handel MA , EppigJJ , SchimentiJC . Applying “gold standards” to in-vitro-derived germ cells . Cell157 , 1257 – 1261 ( 2014 ).
  • Lau NC . Small RNAs in the animal gonad: guarding genomes and guiding development . Int. J. Biochem. Cell Biol.42 , 1334 – 1347 ( 2010 ).
  • Achi MV , RavindranathN , DymM . Telomere length in male germ cells is inversely correlated with telomerase activity . Biol. Reprod.63 , 591 – 598 ( 2000 ).
  • Mikedis MM , DownsKM . Mouse primordial germ cells: a reappraisal . Int. Rev. Cell Mol. Biol.309 , 1 – 57 ( 2014 ).
  • Rios-Rojas C , BowlesJ , KoopmanP . On the role of germ cells in mammalian gonad development: quiet passengers or back-seat drivers?Reproduction (Cambridge, England)149 , R181 – R191 ( 2015 ).
  • Jonge De CJ . The Sperm Cell . Cambridge University Press , NY, USA ( 2006 ).
  • Carroll J , MarangosP . The DNA damage response in mammalian oocytes . Front. Genet.4 , 117 ( 2013 ).
  • Qiu GH . Genome defense against exogenous nucleic acids in eukaryotes by noncoding DNA occurs through CRISPR-like mechanisms in the cytosol and the bodyguard protection in the nucleus . Mutat. Res.767 , 31 – 41 ( 2016 ).
  • Qiu GH . Protection of the genome and central protein-coding sequences by noncoding DNA against DNA damage from radiation . Mutat. Res.764 , 108 – 117 ( 2015 ).
  • Qiu GH , YangX , ZhengX , HuangC . The eukaryotic genome is structurally and functionally more like a social insect colony than a book . Epigenomics9 , 1469 – 1483 ( 2017 ).
  • Barrangou R , MarraffiniLA . CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity . Mol. Cell54 , 234 – 244 ( 2014 ).
  • Westra ER , BucklingA , FineranPC . CRISPR-Cas systems: beyond adaptive immunity . Nat. Rev. Microbiol.12 , 317 – 326 ( 2014 ).
  • Beisel C , ParoR . Silencing chromatin: comparing modes and mechanisms . Nat. Rev. Genet.12 , 123 – 135 ( 2011 ).
  • Boyle S , GilchristS , BridgerJMet al. The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells . Hum. Mol. Genet.10 , 211 – 219 ( 2001 ).
  • Andrulis ED , NeimanAM , ZappullaDC , SternglanzR . Perinuclear localization of chromatin facilitates transcriptional silencing . Nature394 , 592 – 595 ( 1998 ).
  • Geyer PK , VitaliniMW , WallrathLL . Nuclear organization: taking a position on gene expression . Current Opin. Cell Biol.23 , 354 – 359 ( 2011 ).
  • Consortium IHGS . Finishing the euchromatic sequence of the human genome . Nature431 , 931 – 945 ( 2004 ).
  • Taft RJ , PheasantM , MattickJS . The relationship between non-protein-coding DNA and eukaryotic complexity . BioEssays29 , 288 – 299 ( 2007 ).
  • Cremer T , CremerC . Chromosome territories, nuclear architecture and gene regulation in mammalian cells . Nat. Rev. Genet.2 , 292 – 301 ( 2001 ).
  • Mattick JS . The central role of RNA in human development and cognition . FEBS Lett.585 , 1600 – 1616 ( 2011 ).
  • van der Oost J , WestraER , JacksonRN , WiedenheftB . Unravelling the structural and mechanistic basis of CRISPR-Cas systems . Nat. Rev. Microbiol.12 , 479 – 92 ( 2014 ).
  • Horvath P , BarrangouR . CRISPR/Cas, the immune system of bacteria and archaea . Science (NY)327 , 167 – 170 ( 2010 ).
  • Karginov FV , HannonGJ . The CRISPR system: small RNA-guided defense in bacteria and archaea . Mol. Cell37 , 7 – 19 ( 2010 ).
  • Harris JF , Micheva-VitevaS , LiN , Hong-GellerE . Small RNA-mediated regulation of host-pathogen interactions . Virulence4 , 785 – 795 ( 2013 ).
  • Wang X , WangP , SunSet al. Transgene induced co-suppression during vegetative growth in Cryptococcus neoformans . PLoS Genet.8 , e1002885 ( 2012 ).
  • Svoboda P . Renaissance of mammalian endogenous RNAi . FEBS Lett.588 , 2550 – 2556 ( 2014 ).
  • Banisch TU , GoudarziM , RazE . Small RNAs in germ cell development . Curr. Topic. Dev. Biol.99 , 79 – 113 ( 2012 ).
  • Luo LF , HouCC , YangWX . Small noncoding RNAs and their associated proteins in spermatogenesis . Gene578 , 141 – 157 ( 2016 ).
  • Kasper DM , GardnerKE , ReinkeV . Homeland security in the C. elegans germ line: insights into the biogenesis and function of piRNAs . Epigenetics9 , 62 – 74 ( 2014 ).
  • Billi AC , FreebergMA , KimJK . piRNAs and siRNAs collaborate in Caenorhabditis elegans genome defense . Genome Biol.13 , 164 ( 2012 ).
  • Rozhkov NV , AravinAA , ZelentsovaESet al. Small RNA-based silencing strategies for transposons in the process of invading Drosophila species . RNA (New York, NY)16 , 1634 – 1645 ( 2010 ).
  • Bortvin A . PIWI-interacting RNAs (piRNAs) – a mouse testis perspective . Biochem. Biokhimiia78 , 592 – 602 ( 2013 ).
  • Crichton JH , DunicanDS , MacLennanM , MeehanRR , AdamsIR . Defending the genome from the enemy within: mechanisms of retrotransposon suppression in the mouse germline . Cell. Mol. Life Sci.71 , 1581 – 605 ( 2014 ).
  • Klattenhoff C , BratuDP , McGinnis-SchultzNet al. Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response . Dev. Cell12 , 45 – 55 ( 2007 ).
  • Mani SR , JulianoCE . Untangling the web: the diverse functions of the PIWI/piRNA pathway . Mol. Reprod. Dev.80 , 632 – 664 ( 2013 ).
  • Soper SF , van der HeijdenGW , HardimanTCet al. Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis . Develop. Cell15 , 285 – 297 ( 2008 ).
  • Thomson T , LinH . The biogenesis and function of PIWI proteins and piRNAs: progress and prospect . Ann. Rev. Develop. Biol.25 , 355 – 376 ( 2009 ).
  • Khurana JS , TheurkaufW . piRNAs, transposon silencing, and Drosophila germline development . J. Cell Biol.191 , 905 – 913 ( 2010 ).
  • Wang G , ReinkeV . A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis . Curr. Biol.18 , 861 – 867 ( 2008 ).
  • Peng JC , LinH . Beyond transposons: the epigenetic and somatic functions of the Piwi-piRNA mechanism . Current Opin. Cell Biol.25 , 190 – 194 ( 2013 ).
  • Meikar O , Da RosM , KorhonenH , KotajaN . Chromatoid body and small RNAs in male germ cells . Reproduction (Cambridge, England)142 , 195 – 209 ( 2011 ).
  • Papaioannou MD , LagarrigueM , VejnarCEet al. Loss of dicer in Sertoli cells has a major impact on the testicular proteome of mice . Mol. Cell. Prot.10 , M900587MCP200 ( 2011 ).
  • Maatouk DM , LovelandKL , McManusMT , MooreK , HarfeBD . Dicer1 is required for differentiation of the mouse male germline . Biol. Reprod.79 , 696 – 703 ( 2008 ).
  • Kotaja N , BhattacharyyaSN , JaskiewiczLet al. The chromatoid body of male germ cells: similarity with processing bodies and presence of dicer and microRNA pathway components . Proc. Natl Acad. Sci. USA103 , 2647 – 2652 ( 2006 ).
  • Schofer C , WeipoltshammerK . Gene dynamics and nuclear architecture during differentiation . Deff. Res. Biol. Div.76 , 41 – 56 ( 2008 ).
  • Aravin A , GaidatzisD , PfefferSet al. A novel class of small RNAs bind to MILI protein in mouse testes . Nature442 , 203 – 207 ( 2006 ).
  • Aravin AA , SachidanandamR , GirardA , Fejes-TothK , HannonGJ . Developmentally regulated piRNA clusters implicate MILI in transposon control . Science (NY)316 , 744 – 747 ( 2007 ).
  • Mohn F , HandlerD , BrenneckeJ . Noncoding RNA. piRNA-guided slicing specifies transcripts for zucchini-dependent, phased piRNA biogenesis . Science (NY)348 , 812 – 817 ( 2015 ).
  • Olovnikov I , RyazanskyS , ShpizSet al. De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment . Nucl. Acid. Res.41 , 5757 – 5768 ( 2013 ).
  • Shpiz S , RyazanskyS , OlovnikovI , AbramovY , KalmykovaA . Euchromatic transposon insertions trigger production of novel Pi- and endo-siRNAs at the target sites in the Drosophila germline . PLoS Genet.10 , e1004138 ( 2014 ).
  • Ronsseray S , JosseT , BoivinA , AnxolabehereD . Telomeric transgenes and trans-silencing in Drosophila . Genetica117 , 327 – 335 ( 2003 ).
  • Josse T , TeyssetL , TodeschiniALet al. Telomeric trans-silencing: an epigenetic repression combining RNA silencing and heterochromatin formation . PLoS Genet.3 , 1633 – 1643 ( 2007 ).
  • Poyhonen M , de VanssayA , DelmarreVet al. Homology-dependent silencing by an exogenous sequence in the Drosophila germline . G3 (Bethesda, MD)2 , 331 – 338 ( 2012 ).
  • Jensen S , GassamaMP , HeidmannT . Taming of transposable elements by homology-dependent gene silencing . Nat. Genet.21 , 209 – 212 ( 1999 ).
  • Ketting RF , PlasterkRH . A genetic link between co-suppression and RNA interference in C. elegans . Nature404 , 296 – 298 ( 2000 ).
  • Montgomery MK , FireA . Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression . Trends Genet.14 , 255 – 258 ( 1998 ).
  • Ding SW , LuR . Virus-derived siRNAs and piRNAs in immunity and pathogenesis . Curr. Opin. Virol.1 , 533 – 544 ( 2011 ).
  • Mims CA . Vertical transmission of viruses . Microbiol. Rev.45 , 267 – 286 ( 1981 ).
  • Longdon B , JigginsFM . Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone?Proc. Biol. Sci. Royal. Sci.279 , 3889 – 3898 ( 2012 ).
  • Cai X , LiJ , YangQ , ShiQ . Gamma-irradiation increased meiotic crossovers in mouse spermatocytes . Mutagenesis26 , 721 – 727 ( 2011 ).
  • Hsu TC . A possible function of constitutive heterochromatin: the bodyguard hypothesis . Genetics79 ( Suppl. ), 137 – 150 ( 1975 ).
  • Costes SV , ChioloI , PluthJM , Barcellos-HoffMH , JakobB . Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization . Mut. Res.704 , 78 – 87 ( 2010 ).
  • Foster HA , Estrada-GironaG , ThemisMet al. Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells . Mut. Res.756 , 66 – 77 ( 2013 ).
  • Gazave E , GautierP , GilchristS , BickmoreWA . Does radial nuclear organisation influence DNA damage?Chrom. Res.13 , 377 – 388 ( 2005 ).
  • Obe G , PfeifferP , SavageJRet al. Chromosomal aberrations: formation, identification and distribution . Mut. Res.504 , 17 – 36 ( 2002 ).
  • Chiolo I , MinodaA , ColmenaresSUet al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair . Cell144 , 732 – 744 ( 2011 ).
  • Torres-Rosell J , SunjevaricI , De PiccoliGet al. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus . Nat. Cell Biol.9 , 923 – 931 ( 2007 ).
  • Dion V , GasserSM . Chromatin movement in the maintenance of genome stability . Cell152 , 1355 – 1364 ( 2013 ).
  • Mine-Hattab J , RothsteinR . Increased chromosome mobility facilitates homology search during recombination . Nat. Cell Biol.14 , 510 – 517 ( 2012 ).
  • Valdiglesias V , GiuntaS , FenechM , NeriM , BonassiS . gammaH2AX as a marker of DNA double strand breaks and genomic instability in human population studies . Mut. Res.753 , 24 – 40 ( 2013 ).
  • Jakob B , SplinterJ , ConradSet al. DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin . Nucl. Acid. Res.39 , 6489 – 6499 ( 2011 ).
  • Nagai S , DubranaK , Tsai-PflugfelderMet al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase . Science (NY)322 , 597 – 602 ( 2008 ).
  • Khadaroo B , TeixeiraMT , LucianoPet al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex . Nat. Cell Biol.11 , 980 – 987 ( 2009 ).
  • Oza P , JaspersenSL , MieleA , DekkerJ , PetersonCL . Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery . Genes Dev.23 , 912 – 927 ( 2009 ).
  • Cohen S , SegalD . Extrachromosomal circular DNA in eukaryotes: possible involvement in the plasticity of tandem repeats . Cytogen. Genome Res.124 , 327 – 338 ( 2009 ).
  • Lahey J , ChaudhryMA . Detection of extrachromosomal circular DNA(eccDNA) in ionizing radiation exposed cells ( 2014 ). www.uvm.edu/∼uvmsrc/archive/2014/abstracts/jlahey2014.pdf .
  • Hartig R , ShoemanRL , JanetzkoA , TolstonogG , TraubP . DNA-mediated transport of the intermediate filament protein vimentin into the nucleus of cultured cells . J. Cell Sci.111 ( Pt 24 ), 3573 – 3584 ( 1998 ).
  • Cesare AJ , GriffithJD . Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops . Mol. Cell. Biol.24 , 9948 – 9957 ( 2004 ).
  • Jones RS , PotterSS . L1 sequences in HeLa extrachromosomal circular DNA: evidence for circularization by homologous recombination . Proc. Natl Acad. Sci. USA82 , 1989 – 1993 ( 1985 ).
  • Riabowol K , Shmookler ReisRJ , GoldsteinS . Interspersed repetitive and tandemly repetitive sequences are differentially represented in extrachromosomal covalently closed circular DNA of human diploid fibroblasts . Nucl. Acid. Res.13 , 5563 – 5584 ( 1985 ).
  • Zufall RA , RobinsonT , KatzLA . Evolution of developmentally regulated genome rearrangements in eukaryotes . J. Exp. Zool.304 , 448 – 455 ( 2005 ).
  • Wang J , DavisRE . Programmed DNA elimination in multicellular organisms . Curr. Opin. Gene. Dev.27 , 26 – 34 ( 2014 ).
  • Nakai Y , KubotaS , KohnoS . Chromatin diminution and chromosome elimination in four Japanese hagfish species . Cytogenet. Cell Genet.56 , 196 – 198 ( 1991 ).
  • Mochizuki K . Developmentally programmed, RNA-directed genome rearrangement in Tetrahymena . Dev. Growth Diff.54 , 108 – 119 ( 2012 ).
  • Chen X , BrachtJR , GoldmanADet al. The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development . Cell158 , 1187 – 1198 ( 2014 ).
  • Muller F , ToblerH . Chromatin diminution in the parasitic nematodes ascaris suum and parascaris univalens . Int. J. Parasitol.30 , 391 – 399 ( 2000 ).
  • Bracht JR , FangW , GoldmanADet al. Genomes on the edge: programmed genome instability in ciliates . Cell152 , 406 – 416 ( 2013 ).
  • Prescott DM . The DNA of ciliated protozoa . Microbiol. Rev.58 , 233 – 267 ( 1994 ).
  • Chalker DL , MeyerE , MochizukiK . Epigenetics of ciliates . Cold Spring Harbor Persp. Biol.5 , a017764 ( 2013 ).
  • Vogt A , MochizukiK . A domesticated PiggyBac transposase interacts with heterochromatin and catalyzes reproducible DNA elimination in Tetrahymena . PLoS Genet.9 , e1004032 ( 2013 ).
  • McKinnon C , DrouinG . Chromatin diminution in the copepod Mesocyclops edax: elimination of both highly repetitive and nonhighly repetitive DNA . Genome Nat. Res. Counc. Canada56 , 1 – 8 ( 2013 ).
  • Grishanin A . Chromatin diminution in Copepoda (Crustacea): pattern, biological role and evolutionary aspects . Compar. Cytogenet.8 , 1 – 10 ( 2014 ).
  • Smith JJ , AntonacciF , EichlerEE , AmemiyaCT . Programmed loss of millions of base pairs from a vertebrate genome . Proc. Natl Acad. Sci. USA106 , 11212 – 11217 ( 2009 ).
  • Zufall RA , SturmM , MahonBC . Evolution of germline-limited sequences in two populations of the ciliate Chilodonella uncinata . J. Mol. Evolut.74 , 140 – 146 ( 2012 ).
  • Streit A . Silencing by throwing away: a role for chromatin diminution . Dev. Cell23 , 918 – 919 ( 2012 ).
  • Kalmbach KH , Fontes AntunesDM , DracxlerRCet al. Telomeres and human reproduction . Fertil. Steril.99 , 23 – 29 ( 2013 ).
  • Keefe DL , LiuL . Telomeres and reproductive aging . Reprod. Fertil. Dev.21 , 10 – 14 ( 2009 ).
  • Thilagavathi J , VenkateshS , DadaR . Telomere length in reproduction . Andrologia45 , 289 – 304 ( 2013 ).
  • Liu L , BaileySM , OkukaMet al. Telomere lengthening early in development . Nat. Cell Biol.9 , 1436 – 1441 ( 2007 ).
  • Wang F , PanX , KalmbachKet al. Robust measurement of telomere length in single cells . Proc. Natl Acad. Sci. USA110 , e1906 – e1912 ( 2013 ).
  • Schaetzlein S , Lucas-HahnA , LemmeEet al. Telomere length is reset during early mammalian embryogenesis . Proc. Natl Acad. Sci. USA101 , 8034 – 8 ( 2004 ).
  • Varela E , SchneiderRP , OrtegaS , BlascoMA . Different telomere-length dynamics at the inner cell mass versus established embryonic stem (ES) cells . Proc. Natl Acad. Sci. USA108 , 15207 – 15212 ( 2011 ).
  • Samassekou O , GadjiM , DrouinR , YanJ . Sizing the ends: normal length of human telomeres . Ann. Anatomy192 , 284 – 291 ( 2010 ).
  • Cox BD , LyonsMF . The induction by x-rays of chromosome aberrations in germ cells of male guinea pigs, golden hamsters and rabbits. I. Dose response in post-meiotic stages . Mut. Res.29 , 93 – 109 ( 1975 ).
  • Zalensky A , ZalenskayaI . Organization of chromosomes in spermatozoa: an additional layer of epigenetic information?Biochem. Soc. Transact.35 , 609 – 611 ( 2007 ).
  • Olsen AK , LindemanB , WigerR , DualeN , BrunborgG . How do male germ cells handle DNA damage?Toxicol. Appl. Pharmacol.207 , 521 – 531 ( 2005 ).
  • Kimmins S , Sassone-CorsiP . Chromatin remodelling and epigenetic features of germ cells . Nature434 , 583 – 589 ( 2005 ).
  • Govin J , EscoffierE , RousseauxSet al. Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis . J. Cell Biol.176 , 283 – 294 ( 2007 ).
  • Bench GS , FrizAM , CorzettMH , MorseDH , BalhornR . DNA and total protamine masses in individual sperm from fertile mammalian subjects . Cytometry23 , 263 – 271 ( 1996 ).
  • Ward WS . Function of sperm chromatin structural elements in fertilization and development . Mol. Hum. Reprod.16 , 30 – 36 ( 2010 ).
  • Balhorn R . The protamine family of sperm nuclear proteins . Genome Biol.8 , 227 ( 2007 ).
  • Evgeni E , CharalabopoulosK , AsimakopoulosB . Human sperm DNA fragmentation and its correlation with conventional semen parameters . J. Reprod. Fertil.15 , 2 – 14 ( 2014 ).
  • Boskovic A , Torres-PadillaME . How mammals pack their sperm: a variant matter . Genes Dev.27 , 1635 – 1639 ( 2013 ).
  • Ward WS . The structure of the sleeping genome: implications of sperm DNA organization for somatic cells . J. Cell. Biochem.55 , 77 – 82 ( 1994 ).
  • Zalensky AO , AllenMJ , KobayashiAet al. Well-defined genome architecture in the human sperm nucleus . Chromosoma103 , 577 – 590 ( 1995 ).
  • Zalensky AO , TomilinNV , ZalenskayaIA , TeplitzRL , BradburyEM . Telomere–telomere interactions and candidate telomere binding protein(s) in mammalian sperm cells . Exp. Cell Res.232 , 29 – 41 ( 1997 ).
  • Zalenskaya IA , ZalenskyAO . Non-random positioning of chromosomes in human sperm nuclei . Chrom. Res.12 , 163 – 173 ( 2004 ).
  • Mudrak O , TomilinN , ZalenskyA . Chromosome architecture in the decondensing human sperm nucleus . J. Cell Sci.118 , 4541 – 4550 ( 2005 ).
  • Rudolph KL , ChangS , LeeHWet al. Longevity, stress response, and cancer in aging telomerase-deficient mice . Cell96 , 701 – 712 ( 1999 ).
  • Lee HW , BlascoMA , GottliebGJet al. Essential role of mouse telomerase in highly proliferative organs . Nature392 , 569 – 574 ( 1998 ).
  • Liu L , FrancoS , SpyropoulosBet al. Irregular telomeres impair meiotic synapsis and recombination in mice . Proc. Natl Acad. Sci. USA101 , 6496 – 6501 ( 2004 ).
  • Hemann MT , RudolphKL , StrongMAet al. Telomere dysfunction triggers developmentally regulated germ cell apoptosis . Mol. Biol. Cell12 , 2023 – 2030 ( 2001 ).
  • Franco S , AlsheimerM , HerreraE , BenaventeR , BlascoMA . Mammalian meiotic telomeres: composition and ultrastructure in telomerase-deficient mice . Eur. J. Cell Biol.81 , 335 – 340 ( 2002 ).
  • Rodriguez S , GoyanesV , SegrellesEet al. Critically short telomeres are associated with sperm DNA fragmentation . Fertil. Steril.84 , 843 – 845 ( 2005 ).
  • Moskovtsev SI , WillisJ , WhiteJ , MullenJB . Disruption of telomere–telomere interactions associated with DNA damage in human spermatozoa . Syst. Biol. Reprod. Med.56 , 407 – 412 ( 2010 ).
  • Rodriguez-Brenes IA , PeskinCS . Quantitative theory of telomere length regulation and cellular senescence . Proc. Natl Acad. Sci. USA107 , 5387 – 5392 ( 2010 ).
  • Santiso R , TamayoM , GosalvezJet al. Swim-up procedure selects spermatozoa with longer telomere length . Mut. Res.688 , 88 – 90 ( 2010 ).
  • Yao MC , FullerP , XiX . Programmed DNA deletion as an RNA-guided system of genome defense . Science (NY)300 , 1581 – 1584 ( 2003 ).
  • Howard-Till RA , YaoMC . Tudor nuclease genes and programmed DNA rearrangements in Tetrahymena thermophila . Euk. Cell6 , 1795 – 804 ( 2007 ).
  • Liu Y , SongX , GorovskyMA , KarrerKM . Elimination of foreign DNA during somatic differentiation in Tetrahymena thermophila shows position effect and is dosage dependent . Euk. Cell4 , 421 – 431 ( 2005 ).
  • Matzke MA , BirchlerJA . RNAi-mediated pathways in the nucleus . Nat. Rev. Genet.6 , 24 – 35 ( 2005 ).
  • Busslinger M , TarakhovskyA . Epigenetic control of immunity . Cold Spring Harbor Persp. Biol.6 ( 2014 ).
  • Yan N , ChenZJ . Intrinsic antiviral immunity . Nat. Immunol.13 , 214 – 222 ( 2012 ).
  • Srivastava V , VasilV , VasilIK . Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L.) . Theor. Appl. Genet.92 , 1031 – 1037 ( 1996 ).
  • Joersbo M , BrunstedtJ , MarcussenJ , OkkelsFT . Transformation of the endospermous legume guar (Cyamopsis tetragonoloba L.) and analysis of transgene transmission . Mol. Breed.5 , 521 – 529 ( 1999 ).
  • Risseeuw E , Franke-van DijkME , HooykaasPJ . Gene targeting and instability of Agrobacterium T-DNA loci in the plant genome . Plant J.11 , 717 – 728 ( 1997 ).
  • Howden R , ParkSK , MooreJMet al. Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis . Genetics149 , 621 – 631 ( 1998 ).
  • Romano E , SoaresA , ProiteKet al. Transgene elimination in genetically modified dry bean and soybean lines . Genet. Mol. Res.4 , 177 – 184 ( 2005 ).
  • Sheppard AE , TimmisJN . Instability of plastid DNA in the nuclear genome . PLoS Genet.5 , e1000323 ( 2009 ).
  • Little MP , GoodheadDT , BridgesBA , BoufflerSD . Evidence relevant to untargeted and transgenerational effects in the offspring of irradiated parents . Mut. Res.753 , 50 – 67 ( 2013 ).
  • Demarini DM . Declaring the existence of human germ-cell mutagens . Environ. Mol. Mutagen.53 , 166 – 172 ( 2012 ).
  • Bouffler SD , BridgesBA , CooperDNet al. Assessing radiation-associated mutational risk to the germline: repetitive DNA sequences as mutational targets and biomarkers . Radiat. Res.165 , 249 – 268 ( 2006 ).
  • Kodaira M , SatohC , HiyamaK , ToyamaK . Lack of effects of atomic bomb radiation on genetic instability of tandem-repetitive elements in human germ cells . Am. J. Hum. Genet.57 , 1275 – 1283 ( 1995 ).
  • Kodaira M , RyoH , KamadaNet al. No evidence of increased mutation rates at microsatellite loci in offspring of A-bomb survivors . Radiat. Res.173 , 205 – 213 ( 2010 ).
  • Tawn EJ , ReesGS , LeithCet al. Germline minisatellite mutations in survivors of childhood and young adult cancer treated with radiation . Int. J. Radiat. Biol.87 , 330 – 340 ( 2011 ).
  • Furitsu K , RyoH , YeliseevaKGet al. Microsatellite mutations show no increases in the children of the Chernobyl liquidators . Mut. Res.581 , 69 – 82 ( 2005 ).
  • van Buul PP . Comparison of frequencies of radiation-induced stable chromosomal aberrations in somatic and germ tissues of the mouse . Mut. Res.20 , 369 – 376 ( 1973 ).
  • Brewen JG , PrestonRJ . Radiation-induced chromosome aberrations in somatic and germ cells of the male marmoset . Prim. Med.10 , 199 – 204 ( 1978 ).
  • van Buul PP , RoosRA . The effect of exposure rate on translocation induction in somatic and germ cells of the mouse (Mus musculus) . Mut. Res.42 , 99 – 107 ( 1977 ).
  • Brewen JG , PrestonRJ , GengozianN . Analysis of x-ray-induced chromosomal translocations in human and marmoset spermatogonial stem cells . Nature253 , 468 – 470 ( 1975 ).
  • Brooks AL , LengemannFW . Comparison of radiation-induced chromatid aberrations in the testes and bone marrow of the Chinese hamster . Radiat. Res.32 , 587 – 595 ( 1967 ).
  • Madrigal-Bujaidar E , Hernandez-CeruelosA , ChamorroG . Induction of sister chromatid exchanges by 2,4-dichlorophenoxyacetic acid in somatic and germ cells of mice exposed in vivo . Food Chem. Toxic.39 , 941 – 946 ( 2001 ).
  • Sinha AK , LinscombeVA , GollapudiBB , ZempelJA , WatanabePG . Assessment of cell cycle duration on the incidence of sister chromatid exchanges in somatic and spermatogonial cells of the rat . Cancer Res.48 , 5953 – 5955 ( 1988 ).
  • Hassanane M , AbdallaE , El-FikyS , AmerM , HamdyA . Mutagenicity of the mycotoxin diacetoxyscirpenol on somatic and germ cells of mice . Mycotoxin Res.16 , 53 – 64 ( 2000 ).
  • Adewoye AB , LindsaySJ , DubrovaYE , HurlesME . The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline . Nat. Comm6 , 6684 ( 2015 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.