501
Views
0
CrossRef citations to date
0
Altmetric
Review

Development and Disease in a Dish: The Epigenetics of Neurodevelopmental Disorders

&
Pages 219-231 | Received 05 Sep 2017, Accepted 18 Oct 2017, Published online: 15 Jan 2018

References

  • Budday S , SteinmannP , KuhlE . Physical biology of human brain development . Front. Cell. Neurosci.9 , 257 ( 2015 ).
  • Silbereis JC , PochareddyS , ZhuY , LiM , SestanN . The cellular and molecular landscapes of the developing human central nervous system . Neuron89 ( 2 ), 248 – 268 ( 2016 ).
  • Moreno-De-Luca A , MyersSM , ChallmanTD , Moreno-De-LucaD , EvansDW , LedbetterDH . Developmental brain dysfunction: revival and expansion of old concepts based on new genetic evidence . Lancet Neurol.12 ( 4 ), 406 – 414 ( 2013 ).
  • Loke YJ , HannanAJ , CraigJM . The role of epigenetic change in autism spectrum disorders . Front. Neurol.6 , 107 ( 2015 ).
  • Lasalle JM . Autism genes keep turning up chromatin . OA Autism1 ( 2 ), 14 ( 2013 ).
  • Quadrato G , BrownJ , ArlottaP . The promises and challenges of human brain organoids as models of neuropsychiatric disease . Nat. Med.22 ( 11 ), 1220 – 1228 ( 2016 ).
  • Iossifov I , RonemusM , LevyDet al. De novo gene disruptions in children on the autistic spectrum . Neuron74 , 285 – 299 ( 2012 ).
  • O’Roak BJ , VivesL , GirirajanSet al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations . Nature485 ( 7397 ), 246 – 250 ( 2012 ).
  • Sanders SJ , MurthaMT , GuptaARet al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism . Nature485 ( 7397 ), 237 – 241 ( 2012 ).
  • Neale BM , KouY , LiuLet al. Patterns and rates of exonic de novo mutations in autism spectrum disorders . Nature485 ( 7397 ), 242 – 245 ( 2012 ).
  • Kim YS , LeventhalBL . Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders . Biol. Psychiatry77 ( 1 ), 66 – 74 ( 2015 ).
  • Mandy W , LaiM-C . Annual research review: the role of the environment in the developmental psychopathology of autism spectrum condition . J. Child Psychol. Psychiatry.57 ( 3 ), 271 – 292 ( 2016 ).
  • Tick B , BoltonP , HappéF , RutterM , RijsdijkF . Heritability of autism spectrum disorders: a meta-analysis of twin studies . J. Child Psychol. Psychiatry Allied Discip.57 ( 5 ), 585 – 595 ( 2016 ).
  • Weiner DJ , WigdorEM , RipkeSet al. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders . Nat. Genet.49 ( 7 ), 978 – 985 ( 2017 ).
  • Rangasamy S , D’MelloSR , NarayananV . Epigenetics, autism spectrum, and neurodevelopmental disorders . Neurotherapeutics10 ( 4 ), 742 – 756 ( 2013 ).
  • Zhubi A , CookEH , GuidottiA , GraysonDR . Epigenetic mechanisms in autism spectrum disorder . Int. Rev. Neurobiol.115 , 203 – 244 ( 2014 ).
  • Ben-David E , ShifmanS . Combined analysis of exome sequencing points toward a major role for transcription regulation during brain development in autism . Mol. Psychiatry18 ( 10 ), 1054 – 1056 ( 2013 ).
  • Stiles J , JerniganTL . The basics of brain development . Neuropsychol. Rev.20 ( 4 ), 327 – 348 ( 2010 ).
  • Patestas M , GartnerLP . A Textbook of Neuroanatomy (2nd Edition) . John Wiley & Sons, Inc. , NJ, USA , 544 ( 2016 ).
  • Martynoga B , DrechselD , GuillemotF . Molecular control of neurogenesis: a view from the mammalian cerebral cortex . Cold Spring Harb. Perspect. Biol.4 ( 10 ), pii:a008359 doi: https://doi.org/10.1101/cshperspect.a008359 ( 2012 ).
  • Bakken TE , MillerJA , DingS-Let al. A comprehensive transcriptional map of primate brain development . Nature535 ( 7612 ), 367 – 375 ( 2016 ).
  • Bystron I , BlakemoreC , RakicP . Development of the human cerebral cortex: Boulder Committee revisited . Nat. Rev. Neurosci.9 ( 2 ), 110 – 122 ( 2008 ).
  • Kelsom C , LuW . Development and specification of GABAergic cortical interneurons . Cell Biosci.3 ( 19 ), 1 – 19 ( 2013 ).
  • Donovan APA , BassonMA . The neuroanatomy of autism – a developmental perspective . J. Anat.230 ( 1 ), 4 – 15 ( 2017 ).
  • Yao B , JinP . Unlocking epigenetic codes in neurogenesis . Genes Dev.28 ( 12 ), 1253 – 1271 ( 2014 ).
  • Ronan JL , WuW , CrabtreeGR . From neural development to cognition: unexpected roles for chromatin . Nat. Rev. Genet.14 ( 5 ), 347 – 359 ( 2013 ).
  • Cotney J , MuhleRA , SandersSJet al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment . Nat. Commun.6 , 6404 ( 2015 ).
  • Tyssowski K , KishiY , GotohY . Chromatin regulators of neural development . Neuroscience264 , 4 – 16 ( 2014 ).
  • Burney MJ , JohnstonC , WongKYet al. An epigenetic signature of developmental potential in neural stem cells and early neurons . Stem Cells31 ( 9 ), 1868 – 1880 ( 2013 ).
  • Hirabayashi Y , GotohY . Epigenetic control of neural precursor cell fate during development . Nat. Publ. Gr.11 , 377 – 388 ( 2010 ).
  • Jang HS , ShinWJ , LeeJE , DoJT . CpG and non-CpG methylation in epigenetic gene regulation and brain function . Genes (Basel)8 ( 6 ), 2 – 20 ( 2017 ).
  • Jobe EM , McQuateAL , ZhaoX . Crosstalk among epigenetic pathways regulates neurogenesis . Front. Neurosci.6 ( 59 ), 1 – 15 ( 2012 ).
  • Martins-Taylor K , SchroederDI , LasalleJM , LalandeM , XuRH . Role of DNMT3B in the regulation of early neural and neural crest specifiers . Epigenetics7 ( 1 ), 71 – 82 ( 2012 ).
  • Li R , DongQ , YuanXet al. Misregulation of alternative splicing in a mouse model of Rett Syndrome . PLoS Genet.12 ( 6 ), 1 – 25 ( 2016 ).
  • Yasui DH , XuH , DunawayKW , LaSalleJM , JinL-W , MaezawaI . MeCP2 modulates gene expression pathways in astrocytes . Mol. Autism4 ( 1 ), 3 ( 2013 ).
  • Murao N , NoguchiH , NakashimaK . Epigenetic regulation of neural stem cell property from embryo to adult . Neuroepigenetics5 , 1 – 10 ( 2016 ).
  • Takahashi K , TanabeK , OhnukiMet al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors . Cell131 ( 5 ), 861 – 872 ( 2007 ).
  • Clowry GJ . An enhanced role and expanded developmental origins for gamma-aminobutyric acidergic interneurons in the human cerebral cortex . J. Anat.227 ( 4 ), 384 – 393 ( 2015 ).
  • Ardhanareeswaran K , MarianiJ , CoppolaG , AbyzovA , VaccarinoFM . Human induced pluripotent stem cells for modelling neurodevelopmental disorders . Nat. Rev. Neurol.13 , 265 – 278 ( 2017 ).
  • Nestler EJ , HymanSE . Animal models of neuropsychiatric disorders . Nat. Neurosci.13 ( 10 ), 1161 – 1169 ( 2010 ).
  • Zikopoulos B , BarbasH . Altered neural connectivity in excitatory and inhibitory cortical circuits in autism . Front. Hum. Neurosci.7 , 609 ( 2013 ).
  • Zhou T , BendaC , DunzingerSet al. Generation of human induced pluripotent stem cells from urine samples . Nat. Protoc.7 ( 12 ), 2080 – 2089 ( 2012 ).
  • Loh Y-H , AgarwalS , ParkI-Het al. Generation of induced pluripotent stem cells from human blood . Blood113 ( 22 ), 5476 – 5479 ( 2009 ).
  • Tamaoki N , TakahashiK , TanakaTet al. Dental pulp cells for induced pluripotent stem cell banking . J. Dent. Res.89 ( 8 ), 773 – 778 ( 2010 ).
  • Chambers SM , FasanoCA , PapapetrouEP , TomishimaM , SadelainM , StuderL . Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling . Nat. Biotechnol.27 ( 3 ), 275 – 280 ( 2009 ).
  • Maroof AM , KerosS , TysonJAet al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells . Cell Stem Cell12 ( 5 ), 559 – 572 ( 2013 ).
  • Nicholas CR , ChenJ , TangYet al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development . Cell Stem Cell12 ( 5 ), 573 – 586 ( 2013 ).
  • Boissart C , PouletA , GeorgesPet al. Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening . Transl. Psychiatry3 ( 8 ), 1 – 11 ( 2013 ).
  • Tamburini C , LiM . Understanding neurodevelopmental disorders using human pluripotent stem cell-derived neurons . Brain Pathol.27 ( 4 ), 508 – 517 ( 2017 ).
  • Lancaster MA , CorsiniNS , WolfingerSet al. Guided self-organization and cortical plate formation in human brain organoids . Nat. Biotechnol.35 , 659 – 666 ( 2017 ).
  • Renner M , LancasterMA , BianSet al. Self-organized developmental patterning and differentiation in cerebral organoids . EMBO J.36 ( 10 ), 1316 – 1329 ( 2017 ).
  • Lancaster MA , RennerM , MartinC-Aet al. Cerebral organoids model human brain development and microcephaly . Nature501 , 373 – 379 ( 2013 ).
  • Abud EM , RamirezRN , MartinezESet al. iPSC-derived human microglia-like cells to study neurological diseases . Neuron94 ( 2 ), 278.e9 – 293.e9 ( 2017 ).
  • Mariani J , CoppolaG , ZhangPet al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders . Cell162 ( 2 ), 375 – 390 ( 2015 ).
  • Wang P , MokhtariR , PedrosaEet al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells . Mol. Autism8 ( 1 ), 11 ( 2017 ).
  • Wang P , LinM , PedrosaEet al. CRISPR/Cas9-mediated knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment . Mol. Autism6 ( 55 ), 1 – 18 ( 2015 ).
  • Sugathan A , BiagioliM , GolzioCet al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors . Proc. Natl Acad. Sci. USA111 ( 42 ), E4468 – E4477 ( 2014 ).
  • Marchetto MCN , CarromeuC , AcabAet al. A model for neural development and treatment of Rett Syndrome using human induced pluripotent stem cells . Cell143 ( 4 ), 527 – 539 ( 2010 ).
  • Nageshappa S , CarromeuC , TrujilloCAet al. Altered neuronal network and rescue in a human MECP2 duplication model . Mol. Psychiatry21 ( 2 ), 178 – 188 ( 2016 ).
  • Cheung AYL , HorvathLM , GrafodatskayaDet al. Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation . Hum. Mol. Genet.20 ( 11 ), 2103 – 2115 ( 2011 ).
  • Ananiev G , WilliamsEC , LiH , ChangQ . Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett Syndrome patients as in vitro disease model . PLoS ONE6 ( 9 ), e25255 ( 2011 ).
  • Kim K-Y , HysolliE , ParkI-H . Neuronal maturation defect in induced pluripotent stem cells from patients with Rett Syndrome . Proc. Natl Acad. Sci. USA108 ( 34 ), 14169 – 14174 ( 2011 ).
  • Andoh-Noda T , AkamatsuW , MiyakeKet al. Differentiation of multipotent neural stem cells derived from Rett Syndrome patients is biased toward the astrocytic lineage . Mol. Brain8 , 31 ( 2015 ).
  • Ernst C . Proliferation and differentiation deficits are a major convergence point for neurodevelopmental disorders . Trends Neurosci.39 ( 5 ), 290 – 299 ( 2016 ).
  • Marchetto M , BelinsonH , TianYet al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals . Mol. Psychiatry22 ( 6 ), 820 – 835 ( 2016 ).
  • Aksoy I , UtamiKH , WinataCLet al. Personalized genome sequencing coupled with iPSC technology identifies GTDC1 as a gene involved in neurodevelopmental disorders . Hum. Mol. Genet.26 ( 2 ), 367 – 382 ( 2017 ).
  • Griesi-Oliveira K , AcabA , GuptaARet al. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons . Mol. Psychiatry20 ( 11 ), 1350 – 1365 ( 2015 ).
  • Mitra I , TsangK , Ladd-AcostaCet al. Pleiotropic mechanisms indicated for sex differences in autism . PLoS Genet.12 ( 11 ), 1 – 27 ( 2016 ).
  • Kilpinen H , GoncalvesA , LehaAet al. Common genetic variation drives molecular heterogeneity in human iPSCs . Nature546 , 3370 – 3375 ( 2017 ).
  • Dandulakis MG , MeganathanK , KrollKL , BonniA , ConstantinoJN . Complexities of X chromosome inactivation status in female human induced pluripotent stem cells a brief review and scientific update for autism research . J. Neurodev. Disord.8 ( 1 ), 22 ( 2016 ).
  • Lister R , PelizzolaM , KidaYSet al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells . Nature471 , 68 – 73 ( 2011 ).
  • Theunissen TW , FriedliM , HeYet al. Molecular criteria for defining the naive human pluripotent state . Cell Stem Cell19 ( 4 ), 502 – 515 ( 2016 ).
  • Kim K , ZhaoR , DoiAet al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells . Nat. Biotechnol.29 ( 12 ), 1117 – 1119 ( 2011 ).
  • Ziller MJ , EdriR , YaffeYet al. Dissecting neural differentiation regulatory networks through epigenetic footprinting . Nature518 , 355 – 359 ( 2015 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.