678
Views
1
CrossRef citations to date
0
Altmetric
Review

Enhancer Talk

&
Pages 483-498 | Received 27 Nov 2017, Accepted 29 Jan 2018, Published online: 27 Mar 2018

References

  • Banerji J , RusconiS , SchaffnerW . Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences . Cell27 ( 2 Pt 1 ), 299 – 308 ( 1981 ).
  • Sanyal A , LajoieBR , JainG , DekkerJ . The long-range interaction landscape of gene promoters . Nature489 ( 7414 ), 109 – 113 ( 2012 ).
  • Lettice LA , HeaneySJ , PurdieLAet al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly . Hum. Mol. Genet.12 ( 14 ), 1725 – 1735 ( 2003 ).
  • Proudhon C , SnetkovaV , RaviramRet al. Active and inactive enhancers cooperate to exert localized and long-range control of gene regulation . Cell Rep.15 ( 10 ), 2159 – 2169 ( 2016 ).
  • Hewitt SL , FarmerD , MarszalekKet al. Association between the Igk and Igh immunoglobulin loci mediated by the 3′ Igk enhancer induces ‘decontraction’ of the Igh locus in pre-B cells . Nat. Immunol.9 ( 4 ), 396 – 404 ( 2008 ).
  • Pennacchio LA , BickmoreW , DeanA , NobregaMA , BejeranoG . Enhancers: five essential questions . Nat. Rev. Genet.14 ( 4 ), 288 – 295 ( 2013 ).
  • Buffry AD , MendesCC , McGregorAP . The functionality and evolution of eukaryotic transcriptional enhancers . Adv. Genet.96 , 143 – 206 ( 2016 ).
  • Denker A , De LaatW . The second decade of 3C technologies: detailed insights into nuclear organization . Genes Dev.30 ( 12 ), 1357 – 1382 ( 2016 ).
  • De Laat W , DubouleD . Topology of mammalian developmental enhancers and their regulatory landscapes . Nature502 ( 7472 ), 499 – 506 ( 2013 ).
  • Deng WL , LeeJ , WangHXet al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor . Cell149 ( 6 ), 1233 – 1244 ( 2012 ).
  • Deng WL , RuponJW , KrivegaIet al. Reactivation of developmentally silenced globin genes by forced chromatin looping . Cell158 ( 4 ), 849 – 860 ( 2014 ).
  • Van De Werken HJ , LandanG , HolwerdaSJet al. Robust 4C-seq data analysis to screen for regulatory DNA interactions . Nat. Methods9 ( 10 ), 969 – 972 ( 2012 ).
  • Isoda T , MooreAJ , HeZet al. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer–promoter communication and T cell fate . Cell171 ( 1 ), 103 – 119 ( 2017 ).
  • Fabre PJ , LeleuM , MormannBHet al. Large scale genomic reorganization of topological domains at the HoxD locus . Genome Biol.18 ( 1 ), 149 ( 2017 ).
  • Montavon T , SoshnikovaN , MascrezBet al. A regulatory archipelago controls Hox genes transcription in digits . Cell147 ( 5 ), 1132 – 1145 ( 2011 ).
  • Andrey G , MontavonT , MascrezBet al. A switch between topological domains underlies HoxD genes collinearity in mouse limbs . Science340 ( 6137 ), 1234167 ( 2013 ).
  • Jin F , LiY , DixonJRet al. A high-resolution map of the three-dimensional chromatin interactome in human cells . Nature503 ( 7475 ), 290 – 294 ( 2013 ).
  • Ghavi-Helm Y , KleinFA , PakozdiTet al. Enhancer loops appear stable during development and are associated with paused polymerase . Nature512 ( 7512 ), 96 – 100 ( 2014 ).
  • Andrey G , SchopflinR , JerkovicIet al. Characterization of hundreds of regulatory landscapes in developing limbs reveals two regimes of chromatin folding . Genome Res.27 ( 2 ), 223 – 233 ( 2017 ).
  • Ren G , JinW , CuiKet al. CTCF-Mediated enhancer–promoter interaction is a critical regulator of cell-to-cell variation of gene expression . Mol. Cell67 ( 6 ), 1049 – 1058 ( 2017 ).
  • Javierre BM , BurrenOS , WilderSPet al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters . Cell167 ( 5 ), 1369 – 1384 ( 2016 ).
  • Rubin AJ , BarajasBC , Furlan-MagarilMet al. Lineage-specific dynamic and pre-established enhancer–promoter contacts cooperate in terminal differentiation . Nat. Genet.49 ( 10 ), 1522 – 1528 ( 2017 ).
  • Bonev B , Mendelson CohenN , SzaboQet al. Multiscale 3D genome rewiring during mouse neural development . Cell171 ( 3 ), 557 – 572 ( 2017 ).
  • Phanstiel DH , Van BortleK , SpacekDet al. Static and dynamic DNA loops form AP-1-bound activation hubs during macrophage development . Mol. Cell67 ( 6 ), 1037 – 1048 ( 2017 ).
  • Allahyar A , VermeulenC , BouwmanBet al. Locus-specific enhancer hubs and architectural loop collisions uncovered from single allele DNA topologies . bioRxiv ( 2017 ).
  • Jiang T , RaviramR , SnetkovaVet al. Identification of multi-loci hubs from 4C-seq demonstrates the functional importance of simultaneous interactions . Nucleic Acids Res.44 ( 18 ), 8714 – 8725 ( 2016 ).
  • Dixon JR , SelvarajS , YueFet al. Topological domains in mammalian genomes identified by analysis of chromatin interactions . Nature485 ( 7398 ), 376 – 380 ( 2012 ).
  • Nora EP , LajoieBR , SchulzEGet al. Spatial partitioning of the regulatory landscape of the X-inactivation centre . Nature485 ( 7398 ), 381 – 385 ( 2012 ).
  • Nasmyth K . Cohesin: a catenase with separate entry and exit gates?Nat. Cell Biol.13 ( 10 ), 1170 – 1177 ( 2011 ).
  • Nichols MH , CorcesVG . A CTCF code for 3D genome architecture . Cell162 ( 4 ), 703 – 705 ( 2015 ).
  • Sanborn AL , RaoSS , HuangSCet al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes . Proc. Natl Acad. Sci. USA112 ( 47 ), E6456 – E6465 ( 2015 ).
  • Fudenberg G , ImakaevM , LuC , GoloborodkoA , AbdennurN , MirnyLA . Formation of chromosomal domains by loop extrusion . Cell Rep.15 ( 9 ), 2038 – 2049 ( 2016 ).
  • Rao SS , HuntleyMH , DurandNCet al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping . Cell159 ( 7 ), 1665 – 1680 ( 2014 ).
  • Symmons O , UsluVV , TsujimuraTet al. Functional and topological characteristics of mammalian regulatory domains . Genome Res.24 ( 3 ), 390 – 400 ( 2014 ).
  • Phillips-Cremins JE , SauriaME , SanyalAet al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment . Cell153 ( 6 ), 1281 – 1295 ( 2013 ).
  • Beagan JA , DuongMT , TitusKRet al. YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment . Genome Res.27 ( 7 ), 1139 – 1152 ( 2017 ).
  • Narendra V , RochaPP , AnDet al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation . Science347 ( 6225 ), 1017 – 1021 ( 2015 ).
  • Narendra V , BulajicM , DekkerJ , MazzoniEO , ReinbergD . CTCF-mediated topological boundaries during development foster appropriate gene regulation . Genes Dev.30 ( 24 ), 2657 – 2662 ( 2016 ).
  • Lupianez DG , KraftK , HeinrichVet al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions . Cell161 ( 5 ), 1012 – 1025 ( 2015 ).
  • Hnisz D , WeintraubAS , DayDSet al. Activation of proto-oncogenes by disruption of chromosome neighborhoods . Science351 ( 6280 ), 1454 – 1458 ( 2016 ).
  • Li L , LyuXW , HouCHet al. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing . Mol. Cell58 ( 2 ), 216 – 231 ( 2015 ).
  • Bunting KL , SoongTD , SinghRet al. Multi-tiered reorganization of the genome during B cell affinity maturation anchored by a germinal center-specific locus control region . Immunity45 ( 3 ), 497 – 512 ( 2016 ).
  • Seitan VC , FaureAJ , ZhanYet al. Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments . Genome Res.23 ( 12 ), 2066 – 2077 ( 2013 ).
  • Sofueva S , YaffeE , ChanWCet al. Cohesin-mediated interactions organize chromosomal domain architecture . EMBO J.32 ( 24 ), 3119 – 3129 ( 2013 ).
  • Zuin J , DixonJR , Van Der ReijdenMIet al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells . Proc. Natl Acad. Sci. USA111 ( 3 ), 996 – 1001 ( 2014 ).
  • Nora EP , GoloborodkoA , ValtonA-Let al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization . Cell169 ( 5 ), 930 – 944 ( 2017 ).
  • Schwarzer W , AbdennurN , GoloborodkoAet al. Two independent modes of chromatin organization revealed by cohesin removal . Nature551 ( 7678 ), 51 – 56 ( 2017 ).
  • Rao SSP , HuangSC , Glenn St HilaireBet al. Cohesin loss eliminates all loop domains . Cell171 ( 2 ), 305 – 320 ; e324 ( 2017 ).
  • Kubo N , IshiiH , GorkinDet al. Preservation of chromatin organization after acute loss of CTCF in mouse embryonic stem cells . bioRxiv ( 2017 ).
  • Long HK , PrescottSL , WysockaJ . Ever-changing landscapes: transcriptional enhancers in development and evolution . Cell167 ( 5 ), 1170 – 1187 ( 2016 ).
  • Whyte WA , OrlandoDA , HniszDet al. Master transcription factors and mediator establish super-enhancers at key cell identity genes . Cell153 ( 2 ), 307 – 319 ( 2013 ).
  • Hnisz D , AbrahamBJ , LeeTIet al. Super-enhancers in the control of cell identity and disease . Cell155 ( 4 ), 934 – 947 ( 2013 ).
  • Hnisz D , SchuijersJ , LinCYet al. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers . Mol. Cell58 ( 2 ), 362 – 370 ( 2015 ).
  • Adam RC , YangH , RockowitzSet al. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice . Nature521 ( 7552 ), 366 – 370 ( 2015 ).
  • Parker SC , StitzelML , TaylorDLet al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants . Proc. Natl Acad. Sci. USA110 ( 44 ), 17921 – 17926 ( 2013 ).
  • Maeda RK , KarchF . Gene expression in time and space: additive vs hierarchical organization of cis-regulatory regions . Curr. Opin. Genet. Dev.21 ( 2 ), 187 – 193 ( 2011 ).
  • Will AJ , CovaG , OsterwalderMet al. Composition and dosage of a multipartite enhancer cluster control developmental expression of Ihh (Indian hedgehog) . Nat. Genet.49 ( 10 ), 1539 – 1545 ( 2017 ).
  • Marinic M , AktasT , RufS , SpitzF . An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape . Dev. Cell24 ( 5 ), 530 – 542 ( 2013 ).
  • Yuh CH , BolouriH , DavidsonEH . Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene . Science279 ( 5358 ), 1896 – 1902 ( 1998 ).
  • Romano LA , WrayGA . Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation . Development130 ( 17 ), 4187 – 4199 ( 2003 ).
  • Shin HY , WilliM , YooKHet al. Hierarchy within the mammary STAT5-driven Wap super-enhancer . Nat. Genet.48 ( 8 ), 904 – 911 ( 2016 ).
  • Triplett AA , SakamotoK , MatulkaLA , ShenL , SmithGH , WagnerKU . Expression of the whey acidic protein (Wap) is necessary for adequate nourishment of the offspring but not functional differentiation of mammary epithelial cells . Genesis43 ( 1 ), 1 – 11 ( 2005 ).
  • Perry MW , BoettigerAN , LevineM . Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo . Proc. Natl Acad. Sci. USA108 ( 33 ), 13570 – 13575 ( 2011 ).
  • Bothma JP , GarciaHG , NgS , PerryMW , GregorT , LevineM . Enhancer additivity and non-additivity are determined by enhancer strength in the Drosophila embryo . Elife4 , e07956 ( 2015 ).
  • Hong JW , HendrixDA , LevineMS . Shadow enhancers as a source of evolutionary novelty . Science321 ( 5894 ), 1314 – 1314 ( 2008 ).
  • Zeitlinger J , ZinzenRP , StarkAet al. Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo . Gene Dev.21 ( 4 ), 385 – 390 ( 2007 ).
  • Frankel N , DavisGK , VargasD , WangS , PayreF , SternDL . Phenotypic robustness conferred by apparently redundant transcriptional enhancers . Nature466 ( 7305 ), 490 – 493 ( 2010 ).
  • Perry MW , BoettigerAN , BothmaJP , LevineM . Shadow enhancers foster robustness of Drosophila gastrulation . Curr. Biol.20 ( 17 ), 1562 – 1567 ( 2010 ).
  • Hay D , HughesJR , BabbsCet al. Genetic dissection of the alpha-globin super-enhancer in vivo . Nat. Genet.48 ( 8 ), 895 – 903 ( 2016 ).
  • Roldan E , FuxaM , ChongWet al. Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene . Nat. Immunol.6 ( 1 ), 31 – 41 ( 2005 ).
  • Skok JA , GislerR , NovatchkovaM , FarmerD , De LaatW , BusslingerM . Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes . Nat. Immunol.8 ( 4 ), 378 – 387 ( 2007 ).
  • Jhunjhunwala S , Van ZelmMC , PeakMMet al. The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions . Cell133 ( 2 ), 265 – 279 ( 2008 ).
  • Proudhon C , HaoB , RaviramR , ChaumeilJ , SkokJA . Long-range regulation of V(D)J recombination . Adv. Immunol.128 , 123 – 182 ( 2015 ).
  • Queen C , BaltimoreD . Immunoglobulin gene-transcription is activated by downstream sequence elements . Cell33 ( 3 ), 741 – 748 ( 1983 ).
  • Cockerill PN , GarrardWT . Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites . Cell44 ( 2 ), 273 – 282 ( 1986 ).
  • Meyer KB , NeubergerMS . The immunoglobulin kappa-locus contains a second, stronger b-cell-specific enhancer which is located downstream of the constant region . Embo J.8 ( 7 ), 1959 – 1964 ( 1989 ).
  • Liu ZM , George-RaizenJB , LiS , MeyersKC , ChangMY , GarrardWT . Chromatin structural analyses of the mouse Igkappa gene locus reveal new hypersensitive sites specifying a transcriptional silencer and enhancer . J. Biol. Chem.277 ( 36 ), 32640 – 32649 ( 2002 ).
  • Inlay M , AltFW , BaltimoreD , XuY . Essential roles of the kappa light chain intronic enhancer and 3′ enhancer in kappa rearrangement and demethylation . Nat. Immunol.3 ( 5 ), 463 – 468 ( 2002 ).
  • Inlay MA , GaoHH , OdegardVH , LinT , SchatzDG , XuY . Roles of the Ig kappa light chain intronic and 3′ enhancers in Igk somatic hypermutation . J. Immunol.177 ( 2 ), 1146 – 1151 ( 2006 ).
  • Xiang Y , GarrardWT . The downstream transcriptional enhancer, Ed, positively regulates mouse Ig kappa gene expression and somatic hypermutation . J. Immunol.180 ( 10 ), 6725 – 6732 ( 2008 ).
  • Zhou X , XiangY , GarrardWT . The Igkappa gene enhancers, E3′ and Ed, are essential for triggering transcription . J. Immunol.185 ( 12 ), 7544 – 7552 ( 2010 ).
  • Qian J , WangQ , DoseMet al. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity . Cell159 ( 7 ), 1524 – 1537 ( 2014 ).
  • Huang Y , KouesOI , ZhaoJYet al. cis-regulatory circuits regulating NEK6 kinase overexpression in transformed b cells are super-enhancer independent . Cell Rep.18 ( 12 ), 2918 – 2931 ( 2017 ).
  • Engreitz JM , HainesJE , PerezEMet al. Local regulation of gene expression by lncRNA promoters, transcription and splicing . Nature539 ( 7629 ), 452 – 455 ( 2016 ).
  • Moorthy SD , DavidsonS , ShchukaVMet al. Enhancers and super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes . Genome Res.27 ( 2 ), 246 – 258 ( 2017 ).
  • Patwardhan RP , HiattJB , WittenDMet al. Massively parallel functional dissection of mammalian enhancers in vivo . Nat. Biotechnol.30 ( 3 ), 265 – 270 ( 2012 ).
  • Arnold CD , GerlachD , StelzerC , BorynLM , RathM , StarkA . Genome-wide quantitative enhancer activity maps identified by STARR-seq . Science339 ( 6123 ), 1074 – 1077 ( 2013 ).
  • Dickel DE , ZhuY , NordASet al. Function-based identification of mammalian enhancers using site-specific integration . Nat. Methods11 ( 5 ), 566 – 571 ( 2014 ).
  • Canver MC , SmithEC , SherFet al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis . Nature527 ( 7577 ), 192 – 197 ( 2015 ).
  • Sanjana NE , WrightJ , ZhengKet al. High-resolution interrogation of functional elements in the noncoding genome . Science353 ( 6307 ), 1545 – 1549 ( 2016 ).
  • Diao Y , FangR , LiBet al. A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells . Nat. Methods14 ( 6 ), 629 – 635 ( 2017 ).
  • Sen DR , KaminskiJ , BarnitzRAet al. The epigenetic landscape of T cell exhaustion . Science354 ( 6316 ), 1165 – 1169 ( 2016 ).
  • Fulco CP , MunschauerM , AnyohaRet al. Systematic mapping of functional enhancer–promoter connections with CRISPR interference . Science354 ( 6313 ), 769 – 773 ( 2016 ).
  • Gasperini M , FindlayGM , McKennaAet al. CRISPR/Cas9-mediated scanning for regulatory elements required for HPRT1 expression via thousands of large, programmed genomic deletions . Am. J. Hum. Genet.101 ( 2 ), 192 – 205 ( 2017 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.