268
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Alzheimer’s Disease DNA Methylome of Pyramidal Layers in Frontal Cortex: Laser-Assisted Microdissection Study

, , , , , , , , & show all
Pages 1365-1382 | Received 05 Dec 2017, Accepted 20 Jun 2018, Published online: 16 Oct 2018

References

  • Querfurth HW , LaferlaFM . Alzheimer’s disease . N. Engl. J. Med.362 ( 4 ), 329 – 344 ( 2010 ).
  • Reitz C , MayeuxR . Genetics of Alzheimer’s disease in Caribbean Hispanic and African American populations . Biol. Psychiatry75 ( 7 ), 534 – 541 ( 2014 ).
  • Selkoe DJ . Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein . Ann. NY Acad. Sci.924 , 17 – 25 ( 2000 ).
  • Hardy J , SelkoeDJ . The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics . Science297 ( 5580 ), 353 – 356 ( 2002 ).
  • Gatz M , ReynoldsCA , FratiglioniLet al. Role of genes and environments for explaining Alzheimer disease . Arch. Gen. Psychiatry63 ( 2 ), 168 – 174 ( 2006 ).
  • Ridge PG , MukherjeeS , CranePK , KauweJS , Alzheimer’s Disease GeneticsC . Alzheimer’s disease: analyzing the missing heritability . PLoS ONE8 ( 11 ), e79771 ( 2013 ).
  • Coppieters N , DieriksBV , LillC , FaullRL , CurtisMA , DragunowM . Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain . Neurobiol. Aging35 ( 6 ), 1334 – 1344 ( 2014 ).
  • Gardiner-Garden M , FrommerM . CpG islands in vertebrate genomes . J. Mol. Biol.196 ( 2 ), 261 – 282 ( 1987 ).
  • Hernandez HG , TseMY , PangSC , ArboledaH , ForeroDA . Optimizing methodologies for PCR-based DNA methylation analysis . Biotechniques55 ( 4 ), 181 – 197 ( 2013 ).
  • Dudziec E , MiahS , ChoudhryHMet al. Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer . Clin. Cancer Res.17 ( 6 ), 1287 – 1296 ( 2011 ).
  • Stirzaker C , SongJZ , NgWet al. Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer . Oncogene36 ( 10 ), 1328 – 1338 ( 2017 ).
  • Doi A , ParkIH , WenBet al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts . Nat. Genet.41 ( 12 ), 1350 – 1353 ( 2009 ).
  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond . Nat. Rev. Genet.13 ( 7 ), 484 – 492 ( 2012 ).
  • Rhee JK , KimK , ChaeHet al. Integrated analysis of genome-wide DNA methylation and gene expression profiles in molecular subtypes of breast cancer . Nucleic Acids Res.41 ( 18 ), 8464 – 8474 ( 2013 ).
  • Brenet F , MohM , FunkPet al. DNA methylation of the first exon is tightly linked to transcriptional silencing . PLoS ONE6 ( 1 ), e14524 ( 2011 ).
  • Barrachina M , FerrerI . DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain . J. Neuropathol. Exp. Neurol.68 ( 8 ), 880 – 891 ( 2009 ).
  • Wang SC , OelzeB , SchumacherA . Age-specific epigenetic drift in late-onset Alzheimer’s disease . PLoS ONE3 ( 7 ), e2698 ( 2008 ).
  • Rao JS , KeleshianVL , KleinS , RapoportSI . Epigenetic modifications in frontal cortex from Alzheimer’s disease and bipolar disorder patients . Transl. Psychiatry2 , e132 ( 2012 ).
  • Bennett DA , YuL , YangJ , SrivastavaGP , AubinC , De JagerPL . Epigenomics of Alzheimer’s disease . Transl. Res.165 ( 1 ), 200 – 220 ( 2015 ).
  • Qazi TJ , QuanZ , MirA , QingH . Epigenetics in Alzheimer’s disease: perspective of DNA methylation . Mol. Neurobiol.55 ( 2 ), 1026 – 1044 ( 2018 ).
  • Bakulski KM , DolinoyDC , SartorMAet al. Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex . J. Alzheimers Dis.29 ( 3 ), 571 – 588 ( 2012 ).
  • Lunnon K , SmithR , HannonEet al. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease . Nat. Neurosci.17 ( 9 ), 1164 – 1170 ( 2014 ).
  • De Jager PL , SrivastavaG , LunnonKet al. Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci . Nat. Neurosci.17 ( 9 ), 1156 – 1163 ( 2014 ).
  • Yu L , ChibnikLB , SrivastavaGPet al. Association of brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease . JAMA Neurol.72 ( 1 ), 15 – 24 ( 2015 ).
  • Luebke JI , WeaverCM , RocherABet al. Dendritic vulnerability in neurodegenerative disease: insights from analyses of cortical pyramidal neurons in transgenic mouse models . Brain Struct. Funct.214 ( 2–3 ), 181 – 199 ( 2010 ).
  • Foster V , OakleyAE , SladeJYet al. Pyramidal neurons of the prefrontal cortex in post-stroke, vascular and other ageing-related dementias . Brain137 ( Pt 9 ), 2509 – 2521 ( 2014 ).
  • Bussiere T , GiannakopoulosP , BourasC , PerlDP , MorrisonJH , HofPR . Progressive degeneration of nonphosphorylated neurofilament protein-enriched pyramidal neurons predicts cognitive impairment in Alzheimer’s disease: stereologic analysis of prefrontal cortex area 9 . J. Comp. Neurol.463 ( 3 ), 281 – 302 ( 2003 ).
  • Serrano-Pozo A , FroschMP , MasliahE , HymanBT . Neuropathological alterations in Alzheimer disease . Cold Spring Harb. Perspect. Med.1 ( 1 ), a006189 ( 2011 ).
  • Brock AJ , Kasus-JacobiA , LernerM , LoganS , AdesinaAM , Anne PereiraH . The antimicrobial protein, CAP37, is upregulated in pyramidal neurons during Alzheimer’s disease . Histochem. Cell Biol.144 ( 4 ), 293 – 308 ( 2015 ).
  • Sanchez-Mut JV , AsoE , HeynHet al. Promoter hypermethylation of the phosphatase DUSP22 mediates PKA-dependent TAU phosphorylation and CREB activation in Alzheimer’s disease . Hippocampus24 ( 4 ), 363 – 368 ( 2014 ).
  • Sanchez-Mut JV , AsoE , PanayotisNet al. DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease . Brain136 ( Pt 10 ), 3018 – 3027 ( 2013 ).
  • Hernandez HG , MahechaMF , MejiaA , ArboledaH , ForeroDA . Global long interspersed nuclear element 1 DNA methylation in a Colombian sample of patients with late-onset Alzheimer’s disease . Am. J. Alzheimers Dis. Other Demen.29 ( 1 ), 50 – 53 ( 2014 ).
  • Sandoval-Hernandez AG , HernandezHG , RestrepoAet al. Liver X receptor agonist modifies the DNA methylation profile of synapse and neurogenesis-related genes in the triple transgenic mouse model of Alzheimer’s disease . J. Mol. Neurosci.58 ( 2 ), 243 – 253 ( 2016 ).
  • Kerman IA , BuckBJ , EvansSJ , AkilH , WatsonSJ . Combining laser capture microdissection with quantitative real-time PCR: effects of tissue manipulation on RNA quality and gene expression . J. Neurosci. Methods153 ( 1 ), 71 – 85 ( 2006 ).
  • Moran S , VizosoM , Martinez-CardusAet al. Validation of DNA methylation profiling in formalin-fixed paraffin-embedded samples using the Infinium HumanMethylation450 Microarray . Epigenetics9 ( 6 ), 829 – 833 ( 2014 ).
  • Aryee MJ , JaffeAE , Corrada-BravoHet al. Minfi: a flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays . Bioinformatics30 ( 10 ), 1363 – 1369 ( 2014 ).
  • Sanders AP , SmeesterL , RojasDet al. Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs . Epigenetics9 ( 2 ), 212 – 221 ( 2014 ).
  • Lehne B , DrongAW , LohMet al. A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies . Genome Biol.16 , 37 ( 2015 ).
  • Guillemin C , ProvencalN , SudermanMet al. DNA methylation signature of childhood chronic physical aggression in T cells of both men and women . PLoS ONE9 ( 1 ), e86822 ( 2014 ).
  • Teschendorff AE , MarabitaF , LechnerMet al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA Methylation data . Bioinformatics29 ( 2 ), 189 – 196 ( 2013 ).
  • Horvath S . DNA methylation age of human tissues and cell types . Genome Biol.14 ( 10 ), R115 ( 2013 ).
  • Yousefi P , HuenK , DaveV , BarcellosL , EskenaziB , HollandN . Sex differences in DNA methylation assessed by 450 K BeadChip in newborns . BMC Genomics16 , 911 ( 2015 ).
  • Benjamini Y , HochbergY . Controlling the false discovery rate: a practical and powerful approach to multiple testing . J. R. Stat. Soc. Series B (Methodol.)57 ( 1 ), 289 – 300 ( 1995 ).
  • Dai W , CheungAK , KoJMet al. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma . Cancer Med.4 ( 7 ), 1079 – 1090 ( 2015 ).
  • Speir ML , ZweigAS , RosenbloomKRet al. The UCSC genome browser database: 2016 update . Nucleic Acids Res.44 ( D1 ), D717 – D725 ( 2016 ).
  • Ivorra C , FragaMF , BayonGFet al. DNA methylation patterns in newborns exposed to tobacco in utero . J. Transl. Med.13 , 25 ( 2015 ).
  • Pages H . Package ‘BSgenome’ ( 2015 ). http://doi.org/doi:10.18129/B9.bioc.BSgenome .
  • Al-Shahrour F , MinguezP , TarragaJet al. BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments . Nucleic Acids Res.34 ( web server issue ), W472 – W476 ( 2006 ).
  • Alonso R , SalavertF , Garcia-GarciaFet al. Babelomics 5.0: functional interpretation for new generations of genomic data . Nucleic Acids Res.43 ( web server issue ), W117 – W121 ( 2015 ).
  • Huang DW , ShermanBT , TanQet al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists . Nucleic Acids Res.35 ( web server issue ), W169 – W175 ( 2007 ).
  • Peters T , BuckleyM , StathamAet al. De novo identification of differentially methylated regions in the human genome . Epigenetics Chromatin8 ( 1 ), 6 ( 2015 ).
  • Robinson MD , KahramanA , LawCWet al. Statistical methods for detecting differentially methylated loci and regions . Front. Genet.5 , 324 ( 2014 ).
  • Peters TJ , BuckleyMJ , StathamALet al. De novo identification of differentially methylated regions in the human genome . Epigenetics Chromatin8 , 6 ( 2015 ).
  • Witt SH , JuraevaD , StichtCet al. Investigation of manic and euthymic episodes identifies state- and trait-specific gene expression and STAB1 as a new candidate gene for bipolar disorder . Transl. Psychiatry4 , e426 ( 2014 ).
  • Perry RT , GearhartDA , WienerHWet al. Hemoglobin binding to A beta and HBG2 SNP association suggest a role in Alzheimer’s disease . Neurobiol. Aging29 ( 2 ), 185 – 193 ( 2008 ).
  • Sousa AD , BergJS , RobertsonBW , MeekerRB , CheneyRE . Myo10 in brain: developmental regulation, identification of a headless isoform and dynamics in neurons . J. Cell Sci.119 ( Pt 1 ), 184 – 194 ( 2006 ).
  • Blasky AJ , PanL , MoensCB , AppelB . Pard3 regulates contact between neural crest cells and the timing of Schwann cell differentiation but is not essential for neural crest migration or myelination . Dev. Dyn.243 ( 12 ), 1511 – 1523 ( 2014 ).
  • Aliev G , PriyadarshiniM , ReddyVPet al. Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease . Curr. Med. Chem.21 ( 19 ), 2208 – 2217 ( 2014 ).
  • Krstic D , KnueselI . Deciphering the mechanism underlying late-onset Alzheimer disease . Nat. Rev. Neurol.9 ( 1 ), 25 – 34 ( 2013 ).
  • Tan MS , YuJT , TanL . Bridging integrator 1 (BIN1): form, function, and Alzheimer’s disease . Trends Mol. Med.19 ( 10 ), 594 – 603 ( 2013 ).
  • Taylor MJ , PerraisD , MerrifieldCJ . A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis . PLoS Biol.9 ( 3 ), e1000604 ( 2011 ).
  • Evergren E , MarcucciM , TomilinNet al. Amphiphysin is a component of clathrin coats formed during synaptic vesicle recycling at the lamprey giant synapse . Traffic5 ( 7 ), 514 – 528 ( 2004 ).
  • Hu X , PickeringE , LiuYCet al. Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer’s disease . PLoS ONE6 ( 2 ), e16616 ( 2011 ).
  • Karch CM , JengAT , NowotnyP , CadyJ , CruchagaC , GoateAM . Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains . PLoS ONE7 ( 11 ), e50976 ( 2012 ).
  • Xu C , BianC , LamR , DongA , MinJ . The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain . Nat. Commun.2 , 227 ( 2011 ).
  • Butler JS , LeeJH , SkalnikDG . CFP1 interacts with DNMT1 independently of association with the Setd1 Histone H3K4 methyltransferase complexes . DNA Cell Biol.27 ( 10 ), 533 – 543 ( 2008 ).
  • Li L , ChenBF , ChanWY . An epigenetic regulator: methyl-CpG-binding domain protein 1 (MBD1) . Int. J. Mol. Sci.16 ( 3 ), 5125 – 5140 ( 2015 ).
  • Jorgensen HF , Ben-PorathI , BirdAP . Mbd1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains . Mol. Cell. Biol.24 ( 8 ), 3387 – 3395 ( 2004 ).
  • Portela A , EstellerM . Epigenetic modifications and human disease . Nat. Biotechnol.28 ( 10 ), 1057 – 1068 ( 2010 ).
  • Lee JH , SkalnikDG . CpG-binding protein is a nuclear matrix- and euchromatin-associated protein localized to nuclear speckles containing human trithorax. Identification of nuclear matrix targeting signals . J. Biol. Chem.277 ( 44 ), 42259 – 42267 ( 2002 ).
  • Zhao X , UebaT , ChristieBRet al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function . Proc. Natl Acad. Sci. USA100 ( 11 ), 6777 – 6782 ( 2003 ).
  • Liu C , TengZQ , SantistevanNJet al. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation . Cell Stem Cell6 ( 5 ), 433 – 444 ( 2010 ).
  • Anderson S , VanderhaeghenP . Cortical neurogenesis from pluripotent stem cells: complexity emerging from simplicity . Curr. Opin. Neurobiol.27 , 151 – 157 ( 2014 ).
  • Kamphuis W , OrreM , KooijmanL , DahmenM , HolEM . Differential cell proliferation in the cortex of the APPswePS1dE9 Alzheimer’s disease mouse model . Glia60 ( 4 ), 615 – 629 ( 2012 ).
  • Chatterjee P , RoyD , RathiN . Epigenetic drug repositioning for Alzheimer’s disease based on epigenetic targets in human interactome . J. Alzheimers Dis.61 ( 1 ), 53 – 65 ( 2018 ).
  • Liang G , HeJ , ZhangY . Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming . Nat. Cell Biol.14 ( 5 ), 457 – 466 ( 2012 ).
  • Wu X , JohansenJV , HelinK . Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation . Mol. Cell49 ( 6 ), 1134 – 1146 ( 2013 ).
  • Tzatsos A , PaskalevaP , LymperiSet al. Lysine-specific demethylase 2B (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells . J. Biol. Chem.286 ( 38 ), 33061 – 33069 ( 2011 ).
  • De Jager PL , SrivastavaG , LunnonKet al. Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci . Nat. Neurosci.17 ( 9 ), 1156 – 1163 ( 2014 ).
  • Wylie CJ , HendricksTJ , ZhangBet al. Distinct transcriptomes define rostral and caudal serotonin neurons . J. Neurosci.30 ( 2 ), 670 – 684 ( 2010 ).
  • Wakamatsu A , ImaiJ , WatanabeS , IsogaiT . Alternative splicing of genes during neuronal differentiation of NT2 pluripotential human embryonal carcinoma cells . FEBS Lett.584 ( 18 ), 4041 – 4047 ( 2010 ).
  • Tzatsos A , PaskalevaP , FerrariFet al. KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs . J. Clin. Invest.123 ( 2 ), 727 – 739 ( 2013 ).
  • Sakamoto Y , WatanabeS , IchimuraTet al. Overlapping roles of the methylated DNA-binding protein MBD1 and polycomb group proteins in transcriptional repression of HOXA genes and heterochromatin foci formation . J. Biol. Chem.282 ( 22 ), 16391 – 16400 ( 2007 ).
  • Farcas AM , BlackledgeNP , SudberyIet al. KDM2B links the polycomb repressive complex 1 (PRC1) to recognition of CpG islands . Elife1 , e00205 ( 2012 ).
  • Espina V , WulfkuhleJD , CalvertVSet al. Laser-capture microdissection . Nat. Protoc.1 ( 2 ), 586 – 603 ( 2006 ).
  • Luo C , KeownCL , KuriharaLet al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex . Science357 ( 6351 ), 600 – 604 ( 2017 ).
  • Lokk K , ModhukurV , RajashekarBet al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns . Genome Biol.15 ( 4 ), 3248 ( 2014 ).
  • Mano T , NagataK , NonakaTet al. Neuron-specific methylome analysis reveals epigenetic regulation and tau-related dysfunction of BRCA1 in Alzheimer’s disease . Proc. Natl Acad. Sci. USA114 ( 45 ), e9645 – e9654 ( 2017 ).
  • Moroz LL , KohnAB . Single-neuron transcriptome and methylome sequencing for epigenomic analysis of aging . Methods Mol. Biol.1048 , 323 – 352 ( 2013 ).
  • Victora CG , HortaBL , Loret De MolaCet al. Association between breastfeeding and intelligence, educational attainment, and income at 30 years of age: a prospective birth cohort study from Brazil . Lancet Glob. Health3 ( 4 ), e199 – e205 ( 2015 ).
  • Bollati V , GalimbertiD , PergoliLet al. DNA methylation in repetitive elements and Alzheimer disease . Brain Behav. Immun.25 ( 6 ), 1078 – 1083 ( 2011 ).
  • Gabel HW , KindeB , StroudHet al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome . Nature522 ( 7554 ), 89 – 93 ( 2015 ).
  • Smeets HJ , SmitsAP , VerheijCEet al. Normal phenotype in two brothers with a full FMR1 mutation . Hum. Mol. Genet.4 ( 11 ), 2103 – 2108 ( 1995 ).
  • Sweatt JD . The emerging field of neuroepigenetics . Neuron80 ( 3 ), 624 – 632 ( 2013 ).
  • Rudenko A , DawlatyMM , SeoJet al. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction . Neuron79 ( 6 ), 1109 – 1122 ( 2013 ).
  • Miller CA , GavinCF , WhiteJAet al. Cortical DNA methylation maintains remote memory . Nat. Neurosci.13 ( 6 ), 664 – 666 ( 2010 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.