222
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Genetic Variation at the Long Noncoding RNA H19 Gene is Associated with the Risk of Hypertrophic Cardiomyopathy

, , , , , , , , & show all
Pages 865-873 | Received 22 Dec 2017, Accepted 03 Mar 2018, Published online: 02 Jul 2018

References

  • Marian AJ , BraunwaldE . Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy . Circ. Res.121 ( 7 ), 749 – 770 ( 2017 ).
  • Roma-Rodrigues C , FernandesAR . Genetics of hypertrophic cardiomyopathy: advances and pitfalls in molecular diagnosis and therapy . Appl. Clin. Genet.7 , 195 – 208 ( 2014 ).
  • Ho CY . Genetics and clinical destiny: improving care in hypertrophic cardiomyopathy . Circulation122 ( 23 ), 2430 – 2440 ( 2010 ).
  • Maron BJ , OmmenSR , SemsarianCet al. Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine . J. Am. Coll. Cardiol.64 ( 1 ), 83 – 99 ( 2014 ).
  • Ho CY , CharronP , RichardPet al. Genetic advances in sarcomeric cardiomyopathies: state of the art . Cardiovasc. Res.105 ( 4 ), 397 – 408 ( 2015 ).
  • Girolami F , OlivottoI , PasseriniIet al. A molecular screening strategy based on beta-myosin heavy chain, cardiac myosin binding protein C and troponin T genes in Italian patients with hypertrophic cardiomyopathy . J. Cardiovasc. Med. (Hagerstown)7 ( 8 ), 601 – 607 ( 2006 ).
  • Thierfelder L , WatkinsH , MacRaeCet al. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere . Cell77 ( 5 ), 701 – 712 ( 1994 ).
  • Lechin M , QuinonesMA , OmranAet al. Angiotensin-I converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy . Circulation92 ( 7 ), 1808 – 1812 ( 1995 ).
  • Marian AJ . Modifier genes for hypertrophic cardiomyopathy . Curr. Opin. Cardiol.17 ( 3 ), 242 – 252 ( 2002 ).
  • Marian AJ , YuQT , WorkmanR , GreveG , RobertsR . Angiotensin-converting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death . Lancet342 ( 8879 ), 1085 – 1086 ( 1993 ).
  • van der Merwe L , CloeteR , ReveraMet al. Genetic variation in angiotensin-converting enzyme 2 gene is associated with extent of left ventricular hypertrophy in hypertrophic cardiomyopathy . Hum. Genet.124 ( 1 ), 57 – 61 ( 2008 ).
  • Su M , WangJ , KangLet al. Rare variants in genes encoding MuRF1 and MuRF2 are modifiers of hypertrophic cardiomyopathy . Int. J. Mol. Sci.15 ( 6 ), 9302 – 9313 ( 2014 ).
  • Coto E , PalacinM , MartinMet al. Functional polymorphisms in genes of the angiotensin and serotonin systems and risk of hypertrophic cardiomyopathy: AT1R as a potential modifier . J. Transl. Med.8 , e64 ( 2010 ).
  • Coto E , RegueroJR , PalacinMet al. Resequencing the whole MYH7 gene (including the intronic, promoter, and 3′ UTR sequences) in hypertrophic cardiomyopathy . J. Mol. Diagn.14 ( 5 ), 518 – 524 ( 2012 ).
  • Mouton JM , van der MerweL , GoosenAet al. MYBPH acts as modifier of cardiac hypertrophy in hypertrophic cardiomyopathy (HCM) patients . Hum. Genet.135 ( 5 ), 477 – 483 ( 2016 ).
  • Rinn JL , ChangHY . Genome regulation by long noncoding RNAs . Annu. Rev. Biochem.81 , 145 – 166 ( 2012 ).
  • Fatica A , BozzoniI . Long non-coding RNAs: new players in cell differentiation and development . Nat. Rev. Genet.15 ( 1 ), 7 – 21 ( 2014 ).
  • Flynn RA , ChangHY . Long noncoding RNAs in cell-fate programming and reprogramming . Cell. Stem. Cell.14 ( 6 ), 752 – 761 ( 2014 ).
  • Haddad F , QinAX , BodellPWet al. Regulation of antisense RNA expression during cardiac MHC gene switching in response to pressure overload . Am. J. Physiol. Heart. Circ. Physiol.290 ( 6 ), H2351-61 ( 2006 ).
  • Rotini A , Martinez-SarraE , PozzoE , SampaolesiM . Interactions between microRNAs and long non-coding RNAs in cardiac development and repair . Pharmacol. Res.127 , 58 – 66 ( 2018 ).
  • Wang K , LiuF , ZhouLYet al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489 . Circ. Res.114 ( 9 ), 1377 – 1388 ( 2014 ).
  • Huang Y , ZhengY , JiaL , LiW . Long noncoding RNA H19 promotes osteoblast differentiation Via TGF-beta1/Smad3/HDAC signaling pathway by deriving miR-675 . Stem Cells33 ( 12 ), 3481 – 3492 ( 2015 ).
  • Sun L , ZhangY , GuYet al. Expression profile of long non-coding RNAs in a mouse model of cardiac hypertrophy . Int. J. Cardiol.177 ( 1 ), 73 – 75 ( 2014 ).
  • Gabory A , JammesH , DandoloL . The H19 locus: role of an imprinted non-coding RNA in growth and development . BioEssays32 ( 6 ), 473 – 480 ( 2010 ).
  • Martinet C , MonnierP , LouaultYet al. H19 controls reactivation of the imprinted gene network during muscle regeneration . Development143 ( 6 ), 962 – 971 ( 2016 ).
  • Dey BK , PfeiferK , DuttaA . The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration . Genes Dev.28 ( 5 ), 491 – 501 ( 2014 ).
  • Engel N , ThorvaldsenJL , BartolomeiMS . CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus . Hum. Mol. Genet.15 ( 19 ), 2945 – 2954 ( 2006 ).
  • Horike S , FerreiraJC , Meguro-HorikeMet al. Screening of DNA methylation at the H19 promoter or the distal region of its ICR1 ensures efficient detection of chromosome 11p15 epimutations in Russell–Silver syndrome . Am. J. Med. Genet A.149A ( 11 ), 2415 – 2423 ( 2009 ).
  • Rachmilewitz J , GoshenR , ArielIet al. Parental imprinting of the human H19 gene . FEBS Lett.309 ( 1 ), 25 – 28 ( 1992 ).
  • Jinno Y , IkedaY , YunKet al. Establishment of functional imprinting of the H19 gene in human developing placentae . Nat. Genet.10 ( 3 ), 318 – 324 ( 1995 ).
  • Eggermann T , BegemannM , SpenglerSet al. Genetic and epigenetic findings in Silver–Russell syndrome . Pediatr. Endocrinol. Rev.8 ( 2 ), 86 – 93 ( 2010 ).
  • Runge S , NielsenFC , NielsenJet al. H19 RNA binds four molecules of insulin-like growth factor II mRNA-binding protein . J. Biol. Chem.275 ( 38 ), 29562 – 29569 ( 2000 ).
  • Matouk IJ , MezanS , MizrahiAet al. The oncofetal H19 RNA connection: hypoxia, p53 and cancer . Biochim. Biophys. Acta1803 ( 4 ), 443 – 451 ( 2010 ).
  • Imig J , BrunschweigerA , BrummerAet al. miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction . Nat. Chem. Biol.11 ( 2 ), 107 – 114 ( 2015 ).
  • Kallen AN , ZhouXB , XuJet al. The imprinted H19 lncRNA antagonizes let-7 microRNAs . Mol. Cell52 ( 1 ), 101 – 112 ( 2013 ).
  • Cai X , CullenBR . The imprinted H19 noncoding RNA is a primary microRNA precursor . RNA13 ( 3 ), 313 – 316 ( 2007 ).
  • Li X , WangH , YaoBet al. lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy . Sci. Rep.6 , e36340 ( 2016 ).
  • Zhang Y , ZhangM , XuW , ChenJ , ZhouX . The long non-coding RNA H19 promotes cardiomyocyte apoptosis in dilated cardiomyopathy . Oncotarget8 ( 17 ), 28588 – 28594 ( 2017 ).
  • Lee JH , GaoC , PengGet al. Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts . Circ. Res.109 ( 12 ), 1332 – 1341 ( 2011 ).
  • Li D , ChenG , YangJet al. Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure . PLoS ONE8 ( 10 ), e77938 ( 2013 ).
  • Liu L , AnX , LiZet al. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy . Cardiovasc. Res.111 ( 1 ), 56 – 65 ( 2016 ).
  • Gómez J , RegueroJR , MorisCet al. Mutation analysis of the main hypertrophic cardiomyopathy genes using multiplex amplification and semiconductor next-generation sequencing . Circ. J.78 ( 12 ), 2963 – 2971 ( 2014 ).
  • Gómez J , LorcaR , RegueroJRet al. Screening of the Filamin C gene in a large cohort of hypertrophic cardiomyopathy patients . Circ. Cardiovasc. Genet.10 ( 2 ), e001584 ( 2017 ).
  • Bos JM , WillML , GershBJet al. Characterization of a phenotype-based genetic test prediction score for unrelated patients with hypertrophic cardiomyopathy . Mayo Clin. Proc.89 ( 6 ), 727 – 737 ( 2014 ).
  • Coto E , TaviraB , GomezJ , TrancheS , CorteCD . Effect of the FTO rs9930506 polymorphism on the main comorbidities of the cardiorenal metabolic syndrome in an elderly Spanish cohort . Cardiorenal Med.4 ( 2 ), 82 – 87 ( 2014 ).
  • Riobello C , GomezJ , Gil-PenaHet al. KCNQ1 gene variants in the risk for type 2 diabetes and impaired renal function in the Spanish Renastur cohort . Mol. Cell Endocrinol.427 , 86 – 91 ( 2016 ).
  • Gaunt TR , RodriguezS , DayIN . Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool ‘CubeX’ . BMC Bioinformatics8 , e428 ( 2007 ).
  • Chu M , YuanW , WuSet al. Quantitative assessment of polymorphisms in H19 lncRNA and cancer risk: a meta-analysis of 13,392 cases and 18,893 controls . Oncotarget7 ( 48 ), 78631 – 78639 ( 2016 ).
  • Gao W , ZhuM , WangHet al. Association of polymorphisms in long non-coding RNA H19 with coronary artery disease risk in a Chinese population . Mutat. Res.772 , 15 – 22 ( 2015 ).
  • Hua Q , LvX , GuXet al. Genetic variants in lncRNA H19 are associated with the risk of bladder cancer in a Chinese population . Mutagenesis31 ( 5 ), 531 – 538 ( 2016 ).
  • Tragante V , BarnesMR , GaneshSKet al. Gene-centric meta-analysis in 87,736 individuals of European ancestry identifies multiple blood-pressure-related loci . Am. J. Hum. Genet.94 ( 3 ), 349 – 360 ( 2014 ).
  • St-Pierre J , HivertMF , PerronPet al. IGF2 DNA methylation is a modulator of newborn’s fetal growth and development . Epigenetics7 ( 10 ), 1125 – 1132 ( 2012 ).
  • Pidsley R , DempsterE , TroakesC , Al-SarrajS , MillJ . Epigenetic and genetic variation at the IGF2/H19 imprinting control region on 11p15.5 is associated with cerebellum weight . Epigenetics7 ( 2 ), 155 – 163 ( 2012 ).
  • Petry CJ , SeearRV , WingateDLet al. Maternally transmitted foetal H19 variants and associations with birth weight . Hum. Genet.130 ( 5 ), 663 – 670 ( 2011 ).
  • Rogoyski OM , PueyoJI , CousoJP , NewburySF . Functions of long non-coding RNAs in human disease and their conservation in Drosophila development . Biochem. Soc. Trans.45 ( 4 ), 895 – 904 ( 2017 ).
  • Yuan Y , MengL , ZhouY , LuN . Genetic polymorphism of angiotensin-converting enzyme and hypertrophic cardiomyopathy risk: a systematic review and meta-analysis . Medicine (Baltimore)96 ( 48 ), e8639 ( 2017 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.