217
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Positional Integration of Lung Adenocarcinoma Susceptibility Loci with Primary Human Alveolar Epithelial Cell Epigenomes

, , , , , , , , & show all
Pages 1167-1187 | Received 02 Jan 2018, Accepted 10 May 2018, Published online: 13 Sep 2018

References

  • Jemal A , BrayF , CenterMM , FerlayJ , WardE , FormanD . Global cancer statistics . CA Cancer J. Clin.61 ( 2 ), 69 – 90 ( 2011 ).
  • Toh CK , LimWT . Lung cancer in never-smokers . J. Clin. Pathol.60 ( 4 ), 337 – 340 ( 2007 ).
  • Sun S , SchillerJH , GazdarAF . Lung cancer in never smokers – a different disease . Nat. Rev. Cancer.7 ( 10 ), 778 – 790 ( 2007 ).
  • American Cancer Society . Cancer facts & figures 2015 ( 2015 ). www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2015/index .
  • Brennan P , HainautP , BoffettaP . Genetics of lung-cancer susceptibility . Lancet Oncol.12 ( 4 ), 399 – 408 ( 2011 ).
  • Lan Q , HsiungCA , MatsuoKet al. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia . Nat. Genet.44 ( 12 ), 1330 – 1335 ( 2012 ).
  • Li Y , SheuCC , YeYet al. Genetic variants and risk of lung cancer in never smokers: a genome-wide association study . Lancet Oncol.11 ( 4 ), 321 – 330 ( 2010 ).
  • Coetzee SG , RhieSK , BermanBP , CoetzeeGA , NoushmehrH . FunciSNP: an R/bioconductor tool integrating functional non-coding data sets with genetic association studies to identify candidate regulatory SNPs . Nucleic Acids Res.40 ( 18 ), e139 ( 2012 ).
  • Tak YG , FarnhamPJ . Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome . Epigenetics Chromatin.8 , 57 ( 2015 ).
  • Schaub MA , BoyleAP , KundajeA , BatzoglouS , SnyderM . Linking disease associations with regulatory information in the human genome . Genome Res.22 ( 9 ), 1748 – 1759 ( 2012 ).
  • Freedman ML , MonteiroAN , GaytherSAet al. Principles for the post-GWAS functional characterization of cancer risk loci . Nat. Genet.43 ( 6 ), 513 – 518 ( 2011 ).
  • Farh KK , MarsonA , ZhuJet al. Genetic and epigenetic fine mapping of causal autoimmune disease variants . Nature518 ( 7539 ), 337 – 343 ( 2015 ).
  • Maurano MT , HaugenE , SandstromRet al. Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo . Nat. Genet.47 ( 12 ), 1393 – 1401 ( 2015 ).
  • Hazelett DJ , RhieSK , GaddisMet al. Comprehensive functional annotation of 77 prostate cancer risk loci . PLoS Genet.10 ( 1 ), e1004102 ( 2014 ).
  • Rhie SK , CoetzeeSG , NoushmehrHet al. Comprehensive functional annotation of seventy-one breast cancer risk Loci . PLoS ONE8 ( 5 ), e63925 ( 2013 ).
  • Yao L , TakYG , BermanBP , FarnhamPJ . Functional annotation of colon cancer risk SNPs . Nat. Commun.5 , 5114 ( 2014 ).
  • Stueve TR , MarconettCN , ZhouBet al. The importance of detailed epigenomic profiling of different cell types within organs . Epigenomics8 ( 6 ), 817 – 829 ( 2016 ).
  • Heintzman ND , StuartRK , HonGet al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome . Nat. Genet.39 ( 3 ), 311 – 318 ( 2007 ).
  • Heintzman ND , HonGC , HawkinsRDet al. Histone modifications at human enhancers reflect global cell-type-specific gene expression . Nature459 ( 7243 ), 108 – 112 ( 2009 ).
  • Akhtar-Zaidi B , Cowper-Sal-lariR , CorradinOet al. Epigenomic enhancer profiling defines a signature of colon cancer . Science336 ( 6082 ), 736 – 739 ( 2012 ).
  • Pasquali L , GaultonKJ , Rodríguez-SeguíSAet al. Pancreatic islet enhancer clusters enriched in Type 2 diabetes risk-associated variants . Nat. Genet.46 ( 2 ), 136 – 143 ( 2014 ).
  • Gjoneska E , PfenningAR , MathysHet al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease . Nature518 ( 7539 ), 365 – 369 ( 2015 ).
  • Hu Z , WuC , ShiYet al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese . Nat. Genet.43 ( 8 ), 792 – 796 ( 2011 ).
  • Wang Y , McKayJD , RafnarTet al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer . Nat. Genet.46 ( 7 ), 736 – 741 ( 2014 ).
  • Shiraishi K , KunitohH , DaigoYet al. A genome-wide association study identifies two new susceptibility loci for lung adenocarcinoma in the Japanese population . Nat. Genet.44 ( 8 ), 900 – 903 ( 2012 ).
  • Miki D , KuboM , TakahashiAet al. Variation in TP63 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations . Nat. Genet.42 ( 10 ), 893 – 896 ( 2010 ).
  • Hsiung CA , LanQ , HongYCet al. The 5p15.33 locus is associated with risk of lung adenocarcinoma in never-smoking females in Asia . PLoS Genet.6 ( 8 ), e1001051 ( 2010 ).
  • Landi MT , ChatterjeeN , YuKet al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma . Am. J. Hum. Genet.85 ( 5 ), 679 – 691 ( 2009 ).
  • Dong J , HuZ , WuCet al. Association analyses identify multiple new lung cancer susceptibility loci and their interactions with smoking in the Chinese population . Nat. Genet.44 ( 8 ), 895 – 899 ( 2012 ).
  • Wang Z , SeowWJ , ShiraishiKet al. Meta-analysis of genome-wide association studies identifies multiple lung cancer susceptibility loci in never-smoking Asian women . Hum. Mol. Genet.25 ( 3 ), 620 – 629 ( 2016 ).
  • Dobbs LG , JohnsonMD , VanderbiltJ , AllenL , GonzalezR . The great big alveolar TI cell: evolving concepts and paradigms . Cell. Physiol. Biochem.25 ( 1 ), 55 – 62 ( 2010 ).
  • Rackley CR , StrippBR . Building and maintaining the epithelium of the lung . J. Clin. Invest.122 ( 8 ), 2724 – 2730 ( 2012 ).
  • Wang J , EdeenK , ManzerRet al. Differentiated human alveolar epithelial cells and reversibility of their phenotype in vitro . Am. J. Respir. Cell Mol. Biol.36 ( 6 ), 661 – 668 ( 2007 ).
  • Ballard PL , LeeJW , FangXet al. Regulated gene expression in cultured type II cells of adult human lung . Am. J. Physiol. Lung Cell Mol. Physiol.299 ( 1 ), L36 – L50 ( 2010 ).
  • Danto SI , ShannonJM , BorokZ , ZabskiSM , CrandallED . Reversible transdifferentiation of alveolar epithelial cells . Am. J. Respir. Cell Mol. Biol.12 ( 5 ), 497 – 502 ( 1995 ).
  • Desai TJ , BrownfieldDG , KrasnowMA . Alveolar progenitor and stem cells in lung development, renewal and cancer . Nature507 ( 7491 ), 190 – 194 ( 2014 ).
  • Xu X , RockJR , LuYet al. Evidence for type II cells as cells of origin of K-Ras-induced distal lung adenocarcinoma . Proc. Natl Acad. Sci. USA109 ( 13 ), 4910 – 4915 ( 2012 ).
  • Lin C , SongH , HuangCet al. Alveolar type II cells possess the capability of initiating lung tumor development . PLoS ONE7 ( 12 ), e53817 ( 2012 ).
  • Mainardi S , MijimolleN , FrancozS , Vicente-DueñasC , Sánchez-GarcíaI , BarbacidM . Identification of cancer initiating cells in K-Ras driven lung adenocarcinoma . Proc. Natl Acad. Sci. USA111 ( 1 ), 255 – 260 ( 2014 ).
  • Marconett CN , ZhouB , RiegerMEet al. Integrated transcriptomic and epigenomic analysis of primary human lung epithelial cell differentiation . PLoS Genet.9 ( 6 ), e1003513 ( 2013 ).
  • Kim D , PerteaG , TrapnellC , PimentelH , KelleyR , SalzbergSL . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions . Genome Biol.14 ( 4 ), R36 ( 2013 ).
  • Trapnell C , WilliamsBA , PerteaGet al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation . Nat. Biotechnol.28 ( 5 ), 511 – 515 ( 2010 ).
  • Khurana E , FuY , ColonnaVet al. Integrative annotation of variants from 1092 humans: application to cancer genomics . Science342 ( 6154 ), 1235587 ( 2013 ).
  • San Lucas FA , WangG , ScheetP , PengB . Integrated annotation and analysis of genetic variants from next-generation sequencing studies with variant tools . Bioinformatics28 ( 3 ), 421 – 422 ( 2012 ).
  • Adzhubei I , JordanDM , SunyaevSR . Predicting functional effect of human missense mutations using PolyPhen-2 . Curr. Protoc. Hum. Genet. Chapter 7, Unit 7.20 ( 2013 ).
  • Ng PC , HenikoffS . SIFT: Predicting amino acid changes that affect protein function . Nucleic Acids Res.31 ( 13 ), 3812 – 3814 ( 2003 ).
  • Friedman RC , FarhKK , BurgeCB , BartelDP . Most mammalian mRNAs are conserved targets of microRNAs . Genome Res.19 ( 1 ), 92 – 105 ( 2009 ).
  • Zang C , SchonesDE , ZengC , CuiK , ZhaoK , PengW . A clustering approach for identification of enriched domains from histone modification ChIP-Seq data . Bioinformatics25 ( 15 ), 1952 – 1958 ( 2009 ).
  • Heinz S , BennerC , SpannNet al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities . Mol. Cell.38 ( 4 ), 576 – 589 ( 2010 ).
  • Suzuki A , WakaguriH , YamashitaRet al. DBTSS as an integrative platform for transcriptome, epigenome and genome sequence variation data . Nucleic Acids Res.43 ( Database issue ), D87 – D91 ( 2015 ).
  • Kheradpour P , KellisM . Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments . Nucleic Acids Res.42 ( 5 ), 2976 – 2987 ( 2014 ).
  • Wang J , ZhuangJ , IyerSet al. Factorbook.org: a Wiki-based database for transcription factor-binding data generated by the ENCODE consortium . Nucleic Acids Res.41 ( Database issue ), D171 – D176 ( 2013 ).
  • Kulakovskiy IV , MedvedevaYA , SchaeferUet al. HOCOMOCO: a comprehensive collection of human transcription factor binding sites models . Nucleic Acids Res.41 ( Database issue ), D195 – D202 ( 2013 ).
  • Grant CE , BaileyTL , NobleWS . FIMO: scanning for occurrences of a given motif . Bioinformatics27 ( 7 ), 1017 – 1018 ( 2011 ).
  • Consortium G . The Genotype-Tissue Expression (GTEx) project . Nat. Genet.45 ( 6 ), 580 – 585 ( 2013 ).
  • Thorvaldsdóttir H , RobinsonJT , MesirovJP . Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration . Brief Bioinform.14 ( 2 ), 178 – 192 ( 2013 ).
  • Falvella FS , GalvanA , FrullantiEet al. Transcription deregulation at the 15q25 locus in association with lung adenocarcinoma risk . Clin. Cancer Res.15 ( 5 ), 1837 – 1842 ( 2009 ).
  • Nguyen JD , LamontagneM , CoutureCet al. Susceptibility loci for lung cancer are associated with mRNA levels of nearby genes in the lung . Carcinogenesis35 ( 12 ), 2653 – 2659 ( 2014 ).
  • Improgo MR , ScofieldMD , TapperAR , GardnerPD . The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: dual role in nicotine addiction and lung cancer . Prog. Neurobiol.92 ( 2 ), 212 – 226 ( 2010 ).
  • Doyle GA , WangMJ , ChouADet al. In vitro and ex vivo analysis of CHRNA3 and CHRNA5 haplotype expression . PLoS ONE6 ( 8 ), e23373 ( 2011 ).
  • Giresi PG , KimJ , McDaniellRM , IyerVR , LiebJD . FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin . Genome Res.17 ( 6 ), 877 – 885 ( 2007 ).
  • Sanyal A , LajoieBR , JainG , DekkerJ . The long-range interaction landscape of gene promoters . Nature489 ( 7414 ), 109 – 113 ( 2012 ).
  • Marconett CN , ZhouB , SiegmundKD , BorokZ , Laird-OffringaIA . Transcriptomic profiling of primary alveolar epithelial cell differentiation in human and rat . Genom. Data2 , 105 – 109 ( 2014 ).
  • Bernstein BE , BirneyE , DunhamI , GreenED , GunterC , SnyderM . An integrated encyclopedia of DNA elements in the human genome . Nature489 ( 7414 ), 57 – 74 ( 2012 ).
  • Watanabe H , FrancisJM , WooMSet al. Integrated cistromic and expression analysis of amplified NKX2-1 in lung adenocarcinoma identifies LMO3 as a functional transcriptional target . Genes Dev.27 ( 2 ), 197 – 210 ( 2013 ).
  • James MA , VikisHG , TateE , RymaszewskiAL , YouM . CRR9/CLPTM1L regulates cell survival signaling and is required for Ras transformation and lung tumorigenesis . Cancer Res.74 ( 4 ), 1116 – 1127 ( 2014 ).
  • James MA , WenW , WangYet al. Functional characterization of CLPTM1L as a lung cancer risk candidate gene in the 5p15.33 locus . PLoS ONE7 ( 6 ), e36116 ( 2012 ).
  • Wang Z , ZhuB , ZhangMet al. Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33 . Hum. Mol. Genet.23 ( 24 ), 6616 – 6633 ( 2014 ).
  • Chen XF , CaiS , ChenQGet al. Multiple variants of TERT and CLPTM1L constitute risk factors for lung adenocarcinoma . Genet. Mol. Res.11 ( 1 ), 370 – 378 ( 2012 ).
  • Timofeeva MN , HungRJ , RafnarTet al. Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls . Hum. Mol. Genet.21 ( 22 ), 4980 – 4995 ( 2012 ).
  • Mocellin S , VerdiD , PooleyKAet al. Telomerase reverse transcriptase locus polymorphisms and cancer risk: a field synopsis and meta-analysis . J. Natl. Cancer Inst.104 ( 11 ), 840 – 854 ( 2012 ).
  • Minoo P . Transcriptional regulation of lung development: emergence of specificity . Respir. Res.1 ( 2 ), 109 – 115 ( 2000 ).
  • Herriges M , MorriseyEE . Lung development: orchestrating the generation and regeneration of a complex organ . Development141 ( 3 ), 502 – 513 ( 2014 ).
  • Dang CV . c-Myc target genes involved in cell growth, apoptosis, and metabolism . Mol. Cell. Biol.19 ( 1 ), 1 – 11 ( 1999 ).
  • Seo AN , YangJM , KimHet al. Clinicopathologic and prognostic significance of c-MYC copy number gain in lung adenocarcinomas . Br. J. Cancer.110 ( 11 ), 2688 – 2699 ( 2014 ).
  • Iwakawa R , KohnoT , KatoMet al. MYC amplification as a prognostic marker of early-stage lung adenocarcinoma identified by whole genome copy number analysis . Clin. Cancer Res.17 ( 6 ), 1481 – 1489 ( 2011 ).
  • Iyer NG , OzdagH , CaldasC . p300/CBP and cancer . Oncogene23 ( 24 ), 4225 – 4231 ( 2004 ).
  • Kan Z , JaiswalBS , StinsonJet al. Diverse somatic mutation patterns and pathway alterations in human cancers . Nature466 ( 7308 ), 869 – 873 ( 2010 ).
  • Rajatapiti P , KesterMH , de KrijgerRR , RottierR , VisserTJ , TibboelD . Expression of glucocorticoid, retinoid, and thyroid hormone receptors during human lung development . J. Clin. Endocrinol. Metab.90 ( 7 ), 4309 – 4314 ( 2005 ).
  • Kolla V , GonzalesLW , GonzalesJet al. Thyroid transcription factor in differentiating type II cells: regulation, isoforms, and target genes . Am. J. Respir. Cell Mol. Biol.36 ( 2 ), 213 – 225 ( 2007 ).
  • Hume R , RichardK , KapteinE , StanleyEL , VisserTJ , CoughtrieMW . Thyroid hormone metabolism and the developing human lung . Biol. Neonate.80 ( Suppl. 1 ), 18 – 21 ( 2001 ).
  • Hellevik AI , AsvoldBO , Bj⊘roT , RomundstadPR , NilsenTI , VattenLJ . Thyroid function and cancer risk: a prospective population study . Cancer Epidemiol. Biomarkers Prev.18 ( 2 ), 570 – 574 ( 2009 ).
  • Kachuri L , AmosCI , McKayJDet al. Fine mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density genotyping identifies novel lung cancer susceptibility loci . Carcinogenesis37 ( 1 ), 96 – 105 ( 2016 ).
  • Ma X , GongR , WangRet al. Recurrent TERT promoter mutations in non-small cell lung cancers . Lung Cancer86 ( 3 ), 369 – 373 ( 2014 ).
  • Calado RT . Telomeres in lung diseases . Prog. Mol. Biol. Transl. Sci.125 , 173 – 183 ( 2014 ).
  • James MA , WenW , WangYet al. Functional characterization of CLPTM1L as a lung cancer risk candidate gene in the 5p15.33 locus . PLoS ONE7 ( 6 ), e36116 ( 2012 ).
  • Ward LD , KellisM . HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease . Nucleic Acids Res.44 ( D1 ), D877 – D881 ( 2016 ).
  • Astapova I . Role of co-regulators in metabolic and transcriptional actions of thyroid hormone . J. Mol. Endocrinol.56 ( 3 ), 73 – 97 ( 2016 ).
  • Caunt M , MakJ , LiangWCet al. Blocking neuropilin-2 function inhibits tumor cell metastasis . Cancer Cell.13 ( 4 ), 331 – 342 ( 2008 ).
  • Takeuchi K , SodaM , TogashiYet al. RET, ROS1 and ALK fusions in lung cancer . Nat. Med.18 ( 3 ), 378 – 381 ( 2012 ).
  • Burman B , ZhangZZ , PegoraroG , LiebJD , MisteliT . Histone modifications predispose genome regions to breakage and translocation . Genes Dev.29 ( 13 ), 1393 – 1402 ( 2015 ).
  • Seow WJ , MatsukoK , HsiungCAet al. Association between GWAS-identified lung adenocarcinoma susceptibility loci and EGFR mutations in never-smoking Asian women, and comparison with findings from Western populations . Hum. Mol. Genet.26 ( 2 ), 454 – 465 ( 2017 ).
  • McKay JD , HungRJ , HanYet al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histologial subtypes . Nature Genet.49 ( 7 ), 1126 – 1132 ( 2017 ).
  • Sutherland KD , BernsA . Cell of origin of lung cancer . Mol. Oncol.4 ( 5 ), 397 – 403 ( 2010 ).
  • Van de Laar E , CliffordM , HasenoederSet al. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas . Respir. Res.15 , 160 ( 2014 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.